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Abstract

We de8ne the notion of factorizable quasi-Hopf algebra by using a categorical point of view.
We show that the Drinfeld double D(H) of any 8nite dimensional quasi-Hopf algebra H is
factorizable, and we characterize D(H) when H itself is factorizable. Finally, we prove that any
8nite dimensional factorizable quasi-Hopf algebra is unimodular. In particular, we obtain that
the Drinfeld double D(H) is a unimodular quasi-Hopf algebra.
c© 2004 Published by Elsevier B.V.
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0. Introduction

The concept of a quasi-triangular (or braided) bialgebra is due to Drinfeld [9].
Roughly speaking, a bialgebra H is quasi-triangular if the monoidal category of left
H -modules is braided in the sense of Joyal and Street [16]. In other words, H is
quasi-triangular if there exists an invertible element R∈H ⊗ H satisfying some ad-
ditional relations (see the complete de8nition below). In the Hopf algebra case a
reformulation of this de8nition was given by Radford [24]. Ribbon and factorizable
Hopf algebras are special classes of quasi-triangular Hopf algebras, and in this theory
a particular interest is produced by the Drinfeld double D(H). By the Drinfeld double
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construction [9], every 8nite dimensional Hopf algebra H can be embedded into a
8nite dimensional quasi-triangular Hopf algebra D(H).
As we pointed out, factorizable Hopf algebras belong to the class of quasi-triangular

Hopf algebras. Suppose that (H; R) is a quasi-triangular Hopf algebra and denote by
R1⊗R2 and r1⊗r2 two copies of the R-matrix R of H . Then (H; R) is called factorizable
if

Q : H∗ → H; Q(�) = �(R2r1)R1r2 ∀�∈H∗

is a linear isomorphism or, equivalently, if the map

Q : H∗ → H; Q(�) = �(R1r2)R2r1 ∀�∈H∗

is a linear isomorphism. Factorizable Hopf algebras were introduced and studied by
Reshetikhin and Semenov-Tian-Shansky [26]. They are important in the Hennings
investigation of 3-manifold invariants [15]. Hennings shows how we can construct
3-manifold invariants using some 8nite dimensional ribbon Hopf algebras which are,
in particular, factorizable. Afterwards, KauHman reworked the Hennings construction,
see [19] or [25] for more details. We note that factorizable Hopf algebras are also im-
portant in the representation theory [27], notably with applications to the classi8cation
of a certain classes of Hopf algebras, see [11].
Now, quasi-bialgebras and quasi-Hopf algebras were introduced by Drinfeld [10].

They come out from categorical considerations: putting some additional structure on
the category of modules over an algebra H , the de8nition of a quasi-bialgebra H en-
sures that the category of left H -modules HM is a monoidal category. So H is a unital
associative algebra together with a comultiplication � : H → H ⊗H and a usual counit
� : H → k such that � and � are algebra maps, and � is quasi-coassociative, in the
sense that it is coassociative up to conjugation by an invertible element 
∈H ⊗H ⊗H .
Consequently the de8nition of a quasi-bialgebra is not self dual. For a quasi-Hopf alge-
bra H the de8nition ensures that the category of 8nite dimensional left H -modules is a
monoidal category with left duality. In a similar manner one can de8ne quasi-triangular
(ribbon, at least in the 8nite dimensional case) quasi-bialgebras: a quasi-bialgebra is
called quasi-triangular (ribbon) if the monoidal category HM is braided (ribbon, respec-
tively). In the quasi-triangular case, this means that there exists an invertible element
R∈H ⊗ H satisfying some additional conditions. If H is a quasi-Hopf algebra then
the de8nition of a quasi-triangular quasi-bialgebra can be reformulated, see [7]. As we
have already explained the study of quasi-Hopf algebras, or quasi-triangular (ribbon)
quasi-Hopf algebras is strictly connected to the study of monoidal, or braided (ribbon)
categories. Thus, in general, when we want to de8ne some classes of quasi-Hopf al-
gebras we should look at the classical Hopf case in the sense that we should try to
reformulate their basic properties at a categorical level, and then we must come back
to the quasi-Hopf case; if this is not possible then we have to be lucky in order to
de8ne (and then study) them.
As far as we are concerned, in the classical case, the de8nition of the map Q given

above has a categorical interpretation due to Majid [22]. Hence, if in the quasi-Hopf
case a suitable map satis8es the same categorical interpretation then it makes sense
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to de8ne the factorizable notion. This is way we propose in Section 2 the following
de8nition for the map Q:

Q(�) = 〈�; S(X 22 p̃
2)f1R2r1U 1X 3〉X 1S(X 21 p̃1)f2R1r2U 2;

for all �∈H∗, where r1 ⊗ r2 is another copy of R, 
=X 1 ⊗X 2 ⊗X 3 = Y 1 ⊗ Y 2 ⊗ Y 3,
and f1 ⊗ f2, U 1 ⊗ U 2, p̃1 ⊗ p̃2 ∈H ⊗ H are some special elements which we will
de8ne below. Moreover, we will see that in the quasi-Hopf case the analogues of the
map Q is

Q(�) = 〈�; S−1(X 3)q2R1r2X 22 p̃
2〉q1R2r1X 21 p̃1S−1(X 1);

for all �∈H∗, where q1⊗q2 ∈H ⊗H is another special element which will be de8ned.
Following [22], in Section 4 we will give the categorical interpretation of the map

Q in the quasi-Hopf case. For this, we develop 8rst in Section 3 the transmutation the-
ory for dual quasi-Hopf algebras. Using the dual reconstruction theorem (also due to
Majid) we will show that to any co-quasi-triangular dual quasi-Hopf algebra A we can
associate a braided commutative Hopf algebra A in the category of right A-comodules.
Keeping the same terminology as in the Hopf case we will call A the function al-
gebra braided group associated to A. This procedure is the formal dual of the one
performed in [6] where to any quasi-triangular quasi-Hopf algebra H is associated a
braided cocommutative group H in the braided category of left H -modules. We call
H the associated enveloping algebra braided group of H . We notice that, in the 8-
nite dimensional case, A cannot be obtained from H by (usual) dualisation. In fact,
if H is 8nite dimensional then the map Q provides a braided Hopf algebra morphism
between the function algebra braided group H∗ associated to H∗ and H (Proposition
4.1). Moreover, H∗ is always isomorphic to the categorical dual of H as braided Hopf
algebra (Proposition 4.2). So the true meaning of the map Q is that H and H∗ are self
dual (in a categorical sense) provided Q is bijective, i.e. H is factorizable.
Let H be a 8nite dimensional quasi-Hopf algebra and D(H) the Drinfeld double

of H . Similarly to the Hopf case we will show in Section 2 that D(H) is always
factorizable. The description of D(H) when H is quasi-triangular was given in [4].
In this case D(H) is a biproduct (in the sense of [6]) of a braided Hopf algebra Bi

and H , and, as a vector space, Bi is isomorphic to H∗. Furthermore, in Section 5
we will see that the Drinfeld double D(H) has a very simple description when H
itself is factorizable. In fact, we will give a quasi-Hopf version of a result claimed
in [26] and proved in [27]. We will show that if H is factorizable then D(H) is
isomorphic as a quasi-Hopf algebra to a twist of a usual (componentwise) tensor
product quasi-Hopf algebra H ⊗ H . To this end we need the alternative de8nition for
the space of coinvariants of a right quasi-Hopf H -bimodule and the second structure
theorem for right quasi-Hopf H -bimodules proved in [3]. Finally, in Section 6 we
will prove that any 8nite dimensional factorizable quasi-Hopf algebra is unimodular.
In particular, we deduce that the Drinfeld double D(H) is a unimodular quasi-Hopf
algebra.
As we will see, the theory of quasi-Hopf algebras is technically more complicated

than the classical Hopf algebra theory. This happens because of the nature of the prob-
lems which occur in the quasi-Hopf algebra theory. When we pass from Hopf algebras
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to quasi-Hopf algebras the appearance of the reassociator 
 and of the elements � and
� in the de8nition of the antipode increases the complexity of formulas, and therefore
of computations and proofs.

1. Preliminaries

1.1. Quasi-Hopf algebras

We work over a commutative 8eld k. All algebras, linear spaces etc. will be over
k; unadorned ⊗ means ⊗k . Following Drinfeld [10], a quasi-bialgebra is a four-tuple
(H , �, �, 
) where H is an associative algebra with unit, 
 is an invertible element in
H ⊗H ⊗H , and � :H → H ⊗H and � :H → k are algebra homomorphisms satisfying
the identities

(id ⊗ �)(�(h)) = 
(� ⊗ id)(�(h))
−1; (1.1)

(id ⊗ �)(�(h)) = h ⊗ 1; (� ⊗ id)(�(h)) = 1⊗ h; (1.2)

for all h∈H , and 
 has to be a 3-cocycle, in the sense that

(1⊗ 
)(id ⊗ � ⊗ id)(
)(
 ⊗ 1) = (id ⊗ id ⊗ �)(
)(� ⊗ id ⊗ id)(
); (1.3)

(id ⊗ � ⊗ id)(
) = 1⊗ 1⊗ 1: (1.4)

The map � is called the coproduct or the comultiplication, � the counit and 
 the
reassociator. As for Hopf algebras we denote �(h) = h1 ⊗ h2, but since � is only
quasi-coassociative we adopt the further convention (summation understood):

(� ⊗ id)(�(h)) = h(1;1) ⊗ h(1;2) ⊗ h2; (id ⊗ �)(�(h)) = h1 ⊗ h(2;1) ⊗ h(2;2);

for all h∈H . We will denote the tensor components of 
 by capital letters, and the
ones of 
−1 by small letters, namely


= X 1 ⊗ X 2 ⊗ X 3 = T 1 ⊗ T 2 ⊗ T 3 = V 1 ⊗ V 2 ⊗ V 3 = · · ·


−1 = x1 ⊗ x2 ⊗ x3 = t1 ⊗ t2 ⊗ t3 = v1 ⊗ v2 ⊗ v3 = · · ·
H is called a quasi-Hopf algebra if, moreover, there exists an anti-morphism S of the
algebra H and elements �; �∈H such that, for all h∈H , we have:

S(h1)�h2 = �(h)� and h1�S(h2) = �(h)�; (1.5)

X 1�S(X 2)�X 3 = 1 and S(x1)�x2�S(x3) = 1: (1.6)

Our de8nition of a quasi-Hopf algebra is diHerent to the one given by Drinfeld [10]
in the sense that we do not require the antipode to be bijective. Nevertheless, in the
8nite dimensional or quasi-triangular case the antipode is automatically bijective, cf.
[3] and [7]. In this way we omit the bijectivity of S in the de8nition of a quasi-Hopf
algebra.
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For a quasi-Hopf algebra the antipode is determined uniquely up to a transfor-
mation � �→ �U := U�, � �→ �U := �U−1, S(h) �→ SU(h) := US(h)U−1, where
U∈H is invertible. In this case we will denote by HU the new quasi-Hopf algebra
(H;�; �; 
; SU; �U; �U).
The axioms for a quasi-Hopf algebra imply that � ◦ S = � and �(�)�(�) = 1, so, by

rescaling � and �, we may assume without loss of generality that �(�) = �(�) = 1.
Identities (1.2)–(1.4) also imply that

(� ⊗ id ⊗ id)(
) = (id ⊗ id ⊗ �)(
) = 1⊗ 1⊗ 1: (1.7)

Next we recall that the de8nition of a quasi-Hopf algebra is “twist coinvariant” in the
following sense. An invertible element F ∈H ⊗ H is called a gauge transformation or
twist if (�⊗id)(F)=(id⊗�)(F)=1. If H is a quasi-Hopf algebra and F=F1⊗F2 ∈H⊗H
is a gauge transformation with inverse F−1 = G1 ⊗ G2, then we can de8ne a new
quasi-Hopf algebra HF by keeping the multiplication, unit, counit and antipode of H
and replacing the comultiplication, reassociator and the elements � and � by

�F(h) = F�(h)F−1; (1.8)


F = (1⊗ F)(id ⊗ �)(F)
(� ⊗ id)(F−1)(F−1 ⊗ 1); (1.9)

�F = S(G1)�G2; �F = F1�S(F2): (1.10)

It is well-known that the antipode of a Hopf algebra is an anti-coalgebra morphism.
For a quasi-Hopf algebra, we have the following statement: there exists a gauge trans-
formation f∈H ⊗ H such that

f�(S(h))f−1 = (S ⊗ S)(�op(h)); for all h∈H; (1.11)

where �op(h) = h2 ⊗ h1. f can be computed explicitly. First set

A1 ⊗ A2 ⊗ A3 ⊗ A4 = (
 ⊗ 1)(� ⊗ id ⊗ id)(
−1);

B1 ⊗ B2 ⊗ B3 ⊗ B4 = (� ⊗ id ⊗ id)(
)(
−1 ⊗ 1)
and then de8ne "; #∈H ⊗ H by

"= S(A2)�A3 ⊗ S(A1)�A4 and #= B1�S(B4)⊗ B2�S(B3): (1.12)

f and f−1 are then given by the formulas

f = (S ⊗ S)(�op(x1))"�(x2�S(x3)); (1.13)

f−1 = �(S(x1)�x2)#(S ⊗ S)(�op(x3)): (1.14)

Moreover, f satis8es the following relations:

f�(�) = "; �(�)f−1 = #: (1.15)

Furthermore the corresponding twisted reassociator (see (1.9)) is given by


f = (S ⊗ S ⊗ S)(X 3 ⊗ X 2 ⊗ X 1): (1.16)
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In a Hopf algebra H , we obviously have the identity

h1 ⊗ h2S(h3) = h ⊗ 1; for all h∈H:

We will need the generalization of this formula to quasi-Hopf algebras. Following
[12,13], we de8ne

pR = p1 ⊗ p2 = x1 ⊗ x2�S(x3); qR = q1 ⊗ q2 = X 1 ⊗ S−1(�X 3)X 2: (1.17)

pL = p1L ⊗ p2L = X 2S−1(X 1�)⊗ X 3; qL = q1L ⊗ q2L = S(x1)�x2 ⊗ x3: (1.18)

For all h∈H , we then have

�(h1)pR[1⊗ S(h2)] = pR[h ⊗ 1]; [1⊗ S−1(h2)]qR�(h1) = (h ⊗ 1)qR; (1.19)

�(h2)pL[S−1(h1)⊗ 1] = pL(1⊗ h); [S(h1)⊗ 1]qL�(h2) = (1⊗ h)qL; (1.20)

and

�(q1)pR[1⊗ S(q2)] = 1⊗ 1; [1⊗ S−1(p2)]qR�(p1) = 1⊗ 1; (1.21)

[S(p1L)⊗ 1]qL�(p2L) = 1⊗ 1; �(q2L)pL[S−1(q1L)⊗ 1] = 1⊗ 1; (1.22)


(� ⊗ id)(pR)(pR ⊗ id)

= (id ⊗ �)(�(x1)pR)(1⊗ f−1)(1⊗ S(x3)⊗ S(x2)); (1.23)

(1⊗ qL)(id ⊗ �)(qL)
= (S(x2)⊗ S(x1)⊗ 1)(f ⊗ 1)(� ⊗ id)(qL�(x3)); (1.24)

where f = f1 ⊗ f2 is the twist de8ned in (1.13).
Note that some of the above formulas use the bijectivity of the antipode S. Never-

theless, we will restrict ourselves to apply them only in this case.

1.2. Quasi-triangular quasi-Hopf algebras

A quasi-Hopf algebra H is quasi-triangular (QT for short) if there exists an element
R∈H ⊗ H such that

(� ⊗ id)(R) = 
312R13
−1
132R23
; (1.25)

(id ⊗ �)(R) = 
−1
231R13
213R12


−1; (1.26)

�op(h)R= R�(h); for all h∈H; (1.27)

(� ⊗ id)(R) = (id ⊗ �)(R) = 1; (1.28)

where, if % denotes a permutation of {1; 2; 3}, we set 
%(1)%(2)%(3) =X %−1(1)⊗X %−1(2)⊗
X %−1(3), and Rij means R acting non-trivially in the ith and jth positions of H ⊗H ⊗H .
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In [7] it is shown that, consequently, R is invertible. Furthermore, the element

u= S(R2p2)�R1p1 (1.29)

(with pR = p1 ⊗ p2 de8ned as in (1.17)) is invertible in H , and

u−1 = X 1R2p2S(S(X 2R1p1)�X 3); (1.30)

�(u) = 1 and S2(h) = uhu−1 (1.31)

for all h∈H . Consequently the antipode S is bijective, so, as in the Hopf algebra case,
the assumptions about invertibility of R and bijectivity of S can be dropped. Moreover,
the R-matrix R= R1 ⊗ R2 satisfy the identities (see [1,13,7]):

f21Rf−1 = (S ⊗ S)(R); (1.32)

S(R2)�R1 = S(�)u: (1.33)

1.3. Hopf algebras in braided categories

For further use we brieOy recall some concepts concerning braided categories and
braided Hopf algebras. For more details the reader is invited to consult [18] or [22].
A monoidal category means a category C with objects U; V;W etc., a functor ⊗ :C×

C → C equipped with an associativity natural transformation consisting of functorial
isomorphisms aU;V;W : (U ⊗V )⊗W → U ⊗ (V ⊗W ) satisfying a pentagon identity, and
a compatible unit object 1 and associated functorial isomorphisms (the left and right
unit constraints, lV :V ∼= V ⊗ 1 and rV :V ∼= 1⊗ V , respectively).
Let C be a monoidal category. An object V ∈C has a left dual or is left rigid if

there is an object V ∗ and morphisms evV :V ∗ ⊗ V → 1, coevV :1 → V ⊗ V ∗ such that

l−1V ◦ (idV ⊗ evV ) ◦ aV;V∗ ;V ◦ (coevV ⊗ idV ) ◦ rV = idV ; (1.34)

r−1
V∗ ◦ (evV ⊗ idV∗) ◦ a−1

V∗ ;V;V∗ ◦ (idV∗ ⊗ coevV ) ◦ lV∗ = idV∗ : (1.35)

If every object in the category has a left dual, then we say that C is a left rigid
monoidal category or a monoidal category with left duality.
A braided category is a monoidal category equipped with a commutativity natural

transformation consisting of functorial isomorphisms cU;V :U ⊗V → V ⊗U compatible
with the unit and the associativity structures in a natural way (for a complete de8nition
see [18,22]).
Suppose that (H;�; �; 
) is a quasi-bialgebra. If U; V; W are left H -modules, de8ne

aU;V;W : (U ⊗ V )⊗ W → U ⊗ (V ⊗ W ) by

aU;V;W ((u ⊗ v)⊗ w) = 
 · (u ⊗ (v ⊗ w)): (1.36)

Then the category HM of left H -modules becomes a monoidal category with tensor
product ⊗ given via �, associativity constraints aU;V;W , unit k as a trivial H -module
and the usual left and right unit constraints. If H is a quasi-Hopf algebra then the
category of 8nite dimensional left H -modules is left rigid; the left dual of V is V ∗
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with the H -module structure given by (h · v∗)(v) = v∗(S(h) · v), for all v∈V , v∗ ∈V ∗,
h∈H and with

evV (v∗ ⊗ v) = v∗(� · v); coevV (1) = � · iv ⊗ iv; (1.37)

where {iv} is a basis in V with dual basis {iv}. Now, if H is a QT quasi-Hopf algebra
with R-matrix R= R1 ⊗ R2, then HM is a braided category with braiding

cU;V (u ⊗ v) = R2 · v ⊗ R1 · u; for all u∈U; v∈V: (1.38)

Finally, the de8nition of a Hopf algebra B in a braided category C is obtained in
the obvious way in analogy with the standard axioms [28]. Thus, a bialgebra in C
is (B;mB; /B; �B; �B) where B is an object in C and the morphism mB:B ⊗ B → B
forms a multiplication that is associative up to the isomorphism a. Similarly for the
coassociativity of the comultiplication �B:B → B ⊗ B. The identity in the algebra B is
expressed as usual by /B :1 → B such that mB ◦ (/B ⊗ id) = mB ◦ (id ⊗ /B) = id. The
counit axiom is (�B ⊗ id) ◦ �B = (id ⊗ �B) ◦ �B = id. In addition, �B is required to be
an algebra morphism where B ⊗ B has the multiplication

mB⊗B : (B ⊗ B)⊗ (B ⊗ B) a→B ⊗ (B ⊗ (B ⊗ B))id⊗a−1

−−−→B ⊗ ((B ⊗ B)⊗ B)

id⊗(c⊗id)−−−−−→B ⊗ ((B ⊗ B)⊗ B) id⊗a−−−→B ⊗ (B ⊗ (B ⊗ B)) a−1

−→ (B ⊗ B)⊗ (B ⊗ B)

mB⊗mB−−−−−→B ⊗ B:

A Hopf algebra B is a bialgebra with a morphism SB : B → B in C (the antipode)
satisfying the usual axioms mB ◦ (SB ⊗ id) ◦ �B = /B ◦ �B = mB ◦ (id ⊗ SB) ◦ �B.

2. Factorizable QT quasi-Hopf algebras

In this Section we will introduce the notion of factorizable quasi-Hopf algebra and
we will show that the quantum double is an example of this type.
If (H; R) is a QT quasi-Hopf algebra then we will see that the k-linear map Q:H∗ →

H , given for all �∈H∗ by

Q(�) = 〈�; S(X 22 p̃2)f1R2r1U 1X 3〉X 1S(X 21 p̃1)f2R1r2U 2; (2.1)

where r1 ⊗ r2 is another copy of R and

U = g1S(q2)⊗ g2S(q1) (2.2)

(here f−1 = g1 ⊗ g2 and qR = q1 ⊗ q2 are the elements de8ned by (1.14) and (1.17),
respectively) has most of the properties satis8ed by the map H∗ � � �→ 〈�; R2r1〉
R1r2 ∈H de8ned in the Hopf case. For this reason we will propose the
following.

De!nition 2.1. A QT quasi-Hopf algebra (H; R) is called factorizable if the map Q
de8ned by (2.1) is bijective.
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We will see in the next Section that the above de8nition has a categorical ex-
planation. In fact in this way we were able to 8nd a suitable de8nition for the
map Q.
In the sequel we will need a second formula for the map Q. Also, another k-linear

map Q:H∗ → H is required.

Proposition 2.2. Let (H; R) be a QT quasi-Hopf algebra.

(i) The map Q de8ned by (2.1) has a second formula given for all �∈H∗ by

Q(�) = 〈�; q̃1X 1R2r1p1〉q̃21X 2R1r2p2S(q̃22X 3); (2.3)

where qL = q̃1 ⊗ q̃2 and pR = p1 ⊗ p2 are the elements de8ned by (1.18) and
(1.17), respectively.

(ii) Let Q :H∗ → H be the k-linear map de8ned for all �∈H∗ by

Q(�) = 〈�; S−1(X 3)q2R1r2X 22 p̃
2〉q1R2r1X 21 p̃1S−1(X 1); (2.4)

where qR = q1 ⊗ q2 and pL = p̃1 ⊗ p̃2 are the elements de8ned by (1.17) and
(1.18), respectively. Then Q is bijective if and only if Q is bijective.

Proof. (i) It is not hard to see that (1.3) and (1.7) imply

X 1S(X 21 p̃
1)⊗ X 22 p̃

2 ⊗ X 3 = S(x1p̃1)⊗ x2p̃21 ⊗ x3p̃22: (2.5)

We need also the formulas

pR = �(S(p̃1))U (p̃2 ⊗ 1); (2.6)

U 1 ⊗ U 2S(h) = S(h1)1U 1h2 ⊗ S(h1)2U 2; (2.7)

which can be found in [14]. Now, we claim that

R1U 1 ⊗ R2U 2 = q̃12R
1p1 ⊗ q̃11R

2p2S(q̃2): (2.8)

Indeed, we calculate:

q̃12R
1p1 ⊗ q̃11R

2p2S(q̃2)
(1:27)
= R1q̃11p

1 ⊗ R2q̃12p
2S(q̃2);

(2:6) = R1(q̃1S(p̃1))1U 1p̃2 ⊗ R2(q̃1S(p̃1))2U 2S(q̃2);

(2:7) = R1(q̃1S(q̃21p̃
1))1U 1q̃22p̃

2 ⊗ R2(q̃1S(q̃21p̃
1))2U 2;

(1:22) = R1U 1 ⊗ R2U 2;

as needed. Now, if we denote by Q̃1 ⊗ Q̃2 another copy of qL then for all �∈H∗ we
have

Q(�)
(2:1;2:5)
= 〈�; S(x2p̃21)f1R2r1U 1x3p̃22〉S(x1p̃1)f2R1r2U 2;

(2:8; 1:19; 1:27) = 〈�; S(x2p̃21)f1q̃11(x3p̃22)(1;1)R2r1p1〉
×S(x1p̃1)f2q̃12(x

3p̃22)(1;2)R
1r2p2S(q̃2(x3p̃22)2);
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(1:24) = 〈�; S(p̃21)Q̃1X 1(p̃22)(1;1)R2r1p1〉
×S(p̃1)q̃1Q̃21X

2(p̃22)(1;2)R
1r2p2S(q̃2Q̃22X

3(p̃22)2);

(1:1; 1:20) = 〈�; Q̃1X 1R2r1p1〉S(p̃1)q̃1p̃21Q̃21X 2R1r2p2S(q̃2p̃22Q̃22X 3);
(1:22) = 〈�; Q̃1X 1R2r1p1〉Q̃21X 2R1r2p2S(Q̃22X 3);

so we have proved relation (2.3).
(ii) For all �∈H∗ we have

Q(�)
(2:1;2:2)
= 〈�; S(X 22 p̃2)f1R2r1g1S(q2)X 3〉X 1S(X 21 p̃1)f2R1r2g2S(q1);

(twice 1:32) = 〈�; S(q2r1R2X 22 p̃2)X 3〉X 1S(q1r2R1X 21 p̃1);
(2:3) = S(Q(� ◦ S)):

Since the antipode S is bijective we conclude that Q is bijective if and only if Q is
bijective, so our proof is complete.

In the Hopf case perhaps the most important example of factorizable Hopf algebra
is the Drinfeld double. We will see that this is also true in the quasi-Hopf case.
Firstly, from [12,13,4], we recall the de8nition of the Drinfeld double D(H) of a 8nite
dimensional quasi-Hopf algebra H . We point out that the quasi-Hopf algebra D(H) was
8rst described by Majid [23] in the form of an implicit Tannaka–Krein reconstruction
theorem.
Let {ie}i=1; n be a basis of H and {ie}i=1; n the corresponding dual basis of H∗. It

is well known that H∗ is a coassociative coalgebra with comultiplication

�(�) = �1 ⊗ �2 := �(ieje)ie ⊗ je

and counit �. Moreover, H∗ is a H -bimodule, by

〈h′ * � ( h′′; h〉= 〈�; h′′hh′〉
for all h; h′; h′′ ∈H and �∈H∗. The convolution is a multiplication on H . It is not asso-
ciative but ensures us that H∗ is an algebra in the monoidal category of H -bimodules.
We also introduce S : H∗ → H∗ as the coalgebra antimorphism dual to S, i.e.
〈S(�); h〉= 〈�; S(h)〉. Now, consider 5∈H⊗5 given by

5=51 ⊗ 52 ⊗ 53 ⊗ 54 ⊗ 55

= X 1(1;1)y
1x1 ⊗ X 1(1;2)y

2x21 ⊗ X 12 y
3x22 ⊗ S−1(f1X 2x3)⊗ S−1(f2X 3); (2.9)

where f=f1 ⊗f2 is the Drinfeld twist de8ned in (1.13). The quantum double D(H)
is de8ned as follows. As k vector spaces D(H) = H∗ ⊗ H and the multiplication is
given by

(� ./ h)( ./ h′) = [(51 * � ( 55)(52h(1;1) *  ( S−1(h2)54)]

./ 53h(1;2)h′ (2.10)
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for all �;  ∈H∗ and h; h′ ∈H . The unit is � ./ 1. By the above, it is easy to see that

(� ./ h)(� ./ h′) = h(1;1) * � ( S−1(h2) ./ h(1;2)h′ and

(� ./ h)(� ./ h′) = � ./ hh′ (2.11)

for any h; h′ ∈H , �∈H∗. The explicit formulas for the comultiplication, the counit and
the antipode are

�D(� ./ h) = (� ./ X 1Y 1)(p11x
1 * �2 ( Y 2S−1(p2) ./ p12x

2h1)

⊗ (X 21 * �1 ( S−1(X 3) ./ X 22 Y
3x3h2); (2.12)

�D(� ./ h) = �(h)�(S−1(�)); (2.13)

SD(� ./ h) = (� ./ S(h)f1)(p11U
1 * S−1(�)( f2S−1(p2) ./ p12U

2); (2.14)

�D = � ./ �; (2.15)

�D = � ./ �: (2.16)

Here pR = p1 ⊗ p2, f = f1 ⊗ f2 and U = U 1 ⊗ U 2 are the elements de8ned by
(1.17), (1.13) and (2.2), respectively. Thus, D(H) is a quasi-Hopf algebra and H is
a quasi-Hopf subalgebra via the canonical morphism iD :H → D(H), iD(h) = � ./ h.
Moreover, D(H) is QT, the R-matrix being de8ned by

R= (� ./ S−1(p2)iep11)⊗ (ie ./ p12): (2.17)

We are now able to prove the following result.

Proposition 2.3. Let H be a 8nite dimensional quasi-Hopf algebra and D(H) its
Drinfeld double. Then D(H) is a factorizable quasi-Hopf algebra.

Proof. We will show that in the Drinfeld double case the map Q de8ned by (2.3) is
bijective, so by Proposition 2.2 it follows that D(H) is factorizable. For this we will
compute 8rst the element R2R1 ⊗ R1R2, where we denote by R1 ⊗ R2 another copy
of the R-matrix R of D(H). In fact, if we denote by P1 ⊗ P2 another copy of the
element pR then we compute

R2R1 ⊗ R1R2 = (ie ./ p12)(� ./ S−1(P2)jeP11)⊗ (� ./ S−1(p2)iep11)(
je ./ P12);

(2:11) = ie ./ p12S
−1(P2)jeP11 ⊗ (S−1(p2)iep11)(1;1) *

je

( S−1((S−1(p2)iep11)2) ./ (S
−1(p2)iep11)(1;2)P

1
2 ;

= ie ./ p12S
−1((S−1(p2)iep11)2P

2)je(S−1(p2)iep11)(1;1)P
1
1 ⊗ je

./ (S−1(p2)iep11)(1;2)P
1
2 ;

(1:19) = ie ./ S−1((S−1(p2)ie)2P2)je(S−1(p2)ie)(1;1)P11p
1
1 ⊗ je

./ (S−1(p2)ie)(1;2)P12p
1
2:
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Now, H is a quasi-Hopf subalgebra of D(H), so we have to calculate the element

b1⊗b2 := (� ./ S−1(X 3)q2)R1R2(� ./ X 22 p̃
2)⊗ (� ./ q1)R2R1(� ./ X 21 p̃

1S−1(X 1)):

By dual basis and (2.11) we have

b1 ⊗ b2 = (� ./ S−1(X 3))(je ./ (q2S−1(q12p
2)ie)(1;2)((q11)(1;1)P

1)2p12)(� ./ X 22 p̃
2)

⊗ ie ./ S−1((q2S−1(q12p
2)ie)2(q11)(1;2)P

2S((q11)2))je

× (q2S−1(q12p
2)ie)(1;1)((q11)(1:1)P

1)1p11)(� ./ X 21 p̃
1S−1(X 1));

(1:19; 1:21) = (� ./ S−1(X 3))(je ./ (ie)(1;2)P12)(� ./ X 22 p̃
2)

⊗ (ie ./ S−1((ie)2P2)je(ie)(1;1)P11)(� ./ X 21 p̃
1S−1(X 1));

(2:11; 2:5) = (� ./ S−1(x3p̃22)ie)(
je ./ P12x

2p̃21)⊗ (ie ./ S−1(P2)jeP11x1p̃
1):

Now we want an explicit formula for the element SD(b1) ⊗ b2. To this end we need
the following relations:

S(P12x
2p̃21)1f

1
1p

1 ⊗ S(P12x
2p̃21)2f

1
2p

2S(f2)S2(P11x
1p̃1)

= g1S(P1y3x22p̃(1;2))⊗ g2S(S(y1x1p̃1)�y2x21p̃
2
(1;1)); (2.18)

S(P1)2U 2 ⊗ S(P1)1U 1P2 = g2 ⊗ g1: (2.19)

The 8rst one follows applying (1.11, 1.9, 1.16, 1.1, 1.5) and then f1�S(f2) = S(�)
and (1.1, 1.5). The second one can be proved more easily by using (2.2, 1.11) and
(1.21), we leave the details to the reader. Therefore, if we denote by G1 ⊗G2 another
copy of f−1 then from the de8nition (2.14) of SD, (2.18, 2.19) and the axioms of a
quasi-Hopf algebra we obtain

SD(b1)⊗ b2 = (S−1(je) ./ S(ie))⊗ (X 21 S−1(g12G
2)* ie ( S−1(X 3)

./ X 22 S
−1(g11G

1)jeS−2(g2S(X 1))):

We are able now to prove that Q is injective. To this end, let D∈ (D(H))∗ such that
Q(D ◦ SD) = 0. That means D(SD(b1))b2 = 0 and it is equivalent to

D(S−1(je) ./ S(ie))〈ie; S−1(X 3)hX 21 S
−1(g12G

2)〉
〈�; X 22 S−1(g11G

1)jeS−2(g2S(X 1))〉= 0;
for all h∈H and �∈H∗. In particular,

D(S−1(je) ./ S(ie))〈ie; S−1(X 3)(S−1(x3)hS−1(F2f12 )x
2
1)X

2
1 S

−1(g12G
2)〉

〈S−2(S(x1)f2)* � ( S−1(F1f11 )x
2
2 ; X

2
2 S

−1(g11G
1)jeS−2(g2S(X 1))〉= 0;

for all h∈H and �∈H∗, and therefore

D(S−1(�) ./ S(h)) = 0 ∀�∈H∗ and h∈H:

Since the antipode S is bijective (H is 8nite dimensional) we conclude that D=0 and
using the bijectivity of SD it follows that Q is injective. Finally, Q is bijective because
of 8nite dimensionality of D(H), so the proof is 8nished.
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3. Transmutation theory for dual quasi-Hopf algebras

As we pointed out, our de8nition of a factorizable quasi-Hopf algebra has a categor-
ical interpretation. Toward this end we 8rst need to associate to any co-quasi-triangular
dual quasi-Hopf algebra A a braided commutative Hopf algebra A in the category of
right A-comodules, MA. For this we will use the dual reconstruction theorem due to
Majid [20]. We notice that this reconstruction theorem is the formal dual case of the
reconstruction theorem used in [6] but, even in the 8nite dimensional case, the resulting
object A cannot be viewed as the formal dual of the object obtained in [6]. Thus, we
will present all the details concerning how we can get the structure of A as a Hopf
algebra in MA.
Throughout this section, A will be a dual quasi-bialgebra or a dual quasi-Hopf al-

gebra. Following [22], a dual quasi-bialgebra A is a coassociative coalgebra A with
comultiplication � and counit � together with coalgebra morphisms mA : A ⊗ A → A
(the multiplication; we write mA(a ⊗ b) = ab) and /A : k → A (the unit; we write
/A(1)=1), and an invertible element ’∈ (A⊗A⊗A)∗ (the reassociator), such that for
all a; b; c; d∈A the following relations hold (summation understood):

a1(b1c1)’(a2; b2; c2) = ’(a1; b1; c1)(a2b2)c2; (3.1)

1a= a1 = a; (3.2)

’(a1; b1; c1d1)’(a2b2; c2; d2) = ’(b1; c1; d1)’(a1; b2c2; d2)’(a2; b3; c3); (3.3)

’(a; 1; b) = �(a)�(b): (3.4)

A is called a dual quasi-Hopf algebra if, moreover, there exist an anti-morphism S of
the coalgebra A and elements �; �∈A∗ such that, for all a∈A:

S(a1)�(a2)a3 = �(a)1; a1�(a2)S(a3) = �(a)1; (3.5)

’(a1�(a2); S(a3); �(a4)a5) = ’−1(S(a1); �(a2)a3; �(a4)S(a5)) = �(a): (3.6)

It follows from the axioms that S(1) = 1 and �(1)�(1) = 1, so we can assume that
�(1) = �(1) = 1. Moreover (3.3) and (3.4) imply

’(1; a; b) = ’(a; b; 1) = �(a)�(b); ∀a; b∈A: (3.7)

For dual quasi-Hopf algebras the antipode is an anti-algebra morphism up to a conju-
gation by a twist. Let "; #∈ (A ⊗ A)∗ be de8ned by

"(a; b) = ’(S(b2); S(a2); a4)�(a3)’−1(S(b1)S(a1); a5; b4)�(b3); (3.8)

#(a; b) = ’(a1b1; S(b5); S(a4))�(a3)’−1(a2; b2; S(b4))�(b3); (3.9)

for all a; b∈A. If we de8ne f;f−1 ∈ (A ⊗ A)∗,

f(a; b) = ’−1(S(b1)S(a1); a3b3; S(a5b5))�(a4b4)"(a2; b2); (3.10)

f−1(a; b) = ’−1(S(a1b1); a3b3; S(b5)S(a5))�(a2b2)#(a4; b4); (3.11)
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then f and f−1 are inverses in the convolution algebra and

f(a1; b1)S(a2b2)f−1(a3; b3) = S(b)S(a); (3.12)

for all a; b∈A. Moreover, the following relations hold:

"(a; b) = f(a1; b1)�(a2b2) and #(a; b) = �(a1b1)f−1(a2; b2): (3.13)

Suppose that A is a dual quasi-bialgebra or a dual quasi-Hopf algebra. A right A-
comodule M is a k-vector space together with a linear map >M :M → M ⊗A required
to satisfy

(>M ⊗ idA) ◦ >M = (idM ⊗ �) ◦ >M and (idM ⊗ �) ◦ >M = idM :

As usual, we denote >M (m)=m(0)⊗m(1). The category of right A-comodules is denoted
by MA and it is a monoidal category. The tensor product is given via mA, i.e. for any
M;N ∈MA, M ⊗ N ∈MA via the structure map

>M⊗N (m ⊗ n) = m(0) ⊗ n(0) ⊗ m(1)n(1): (3.14)

The associativity constraints aM;N;P: (M ⊗ N )⊗ P → M ⊗ (N ⊗ P) are de8ned by

aM;N;P(m; n; p) = ’(m(1); n(1); p(1))m(0) ⊗ (n(0) ⊗ p(0))) (3.15)

for all M;N; P ∈MA. The unit is k as a trivial right A-comodule, and the left and right
unit constraints are the usual ones.
If A is a dual quasi-Hopf algebra then any 8nite dimensional object M of MA has a

left dual, i.e. the category of 8nite dimensional right A-comodules is left rigid. Indeed,
the left dual of M is M∗ with the right A-comodule structure

>M∗(m∗) = 〈m∗; im(0)〉im ⊗ S(im(1));

for all m∗ ∈M∗, where (im)i is a basis in M with dual basis (im)i. The evaluation and
coevaluation maps are de8ned by

evM :M∗ ⊗ M → k; evM (m∗ ⊗ m) = �(m(1))m∗(m(0)); (3.16)

coevM : k → M ⊗ M∗; coevM (1) = �(im(1))im(0) ⊗ im: (3.17)

A dual quasi-bialgebra or dual quasi-Hopf algebra is called co-quasi-triangular (CQT
for short) if there exists a k-bilinear form %:A⊗A → k such that the following relations
hold:

%(ab; c) = ’(c1; a1; b1)%(a2; c2)’−1(a3; c3; b2)%(b3; c4)’(a4; b4; c5); (3.18)

%(a; bc) = ’−1(b1; c1; a1)%(a2; c2)’(b2; a3; c3)%(a4; b3)’−1(a5; b4; c4); (3.19)

%(a1; b1)a2b2 = b1a1%(a2; b2); (3.20)

%(a; 1) = %(1; a) = �(a); (3.21)

for all a; b; c∈A.
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As in the Hopf case, if A is a CQT dual quasi-Hopf algebra then we can prove that
the bilinear form % is convolution invertible, and that the antipode S is bijective.

Proposition 3.1. Let (A; %) be a CQT dual quasi-Hopf algebra. Then:

(i) % is convolution invertible. More exactly, its inverse (denoted by %−1) is given
by

%−1(a; b) =’(a1; S(a3); b4a10)�(a2)’(b1; S(a6); a8)%(S(a5); b2)

×’−1(S(a4); b3; a9)�(a7); (3.22)

for all a,b∈A.
(ii) The element u∈A∗, given by

u(a) = ’−1(a7; S(a3); S2(a1))%(a6; S(a4))�(a5)�(S(a2)) (3.23)

for all a∈A, is invertible. Its inverse is given for all a∈A, by

u−1(a) =’(a1; S2(a8); S(a6))�(a4)%(S2(a9); a2)�(S(a7))

×’−1(S2(a10); a3; S(a5)): (3.24)

(iii) For all a∈A,

S2(a) = u(a1)a2u−1(a3): (3.25)

In particular, the antipode S is bijective.

Proof. If A is 8nite dimensional then the proof follows from [7] by duality. This is
why we restrict to give a sketch of the proof, leaving other details to the reader.

(i) Follows by [7, Lemma 2.2], by duality.
(ii) Firstly, one can prove that

%(S(a1); S(b1))"(a2; b2) = "(b1; a1)%(a2; b2) (3.26)

for all a; b∈A∗ and then that

f(b1; a1)%(a2; b2)f−1(a3; b3) = %(S(a); S(b)): (3.27)

Note that these formulas are the formal duals of [7, Lemma 2.3]. Secondly, using
(3.27) and the equalities

u(a2)S2(a1) = u(a1)a2 and �(S(a1))u(a2) = %(a3; S(a1))�(a2) (3.28)

one can show that u ◦ S2 = u (see [7, Lemmas 2.4 and 2.5] for the dual case). Now,
using (3.28), (3.19) and (3.21) it can be proved that u−1 de8ned by (3.24) is a left
inverse of u. It is also a right inverse since

u(a1)u−1(a2) = u−1(S2(a1))u(a2) = u−1(S2(a1))u(S2(a2)) = �(S2(a)) = �(a);

because of (3.28) and u ◦ S2 = u (for the dual case see [7, Theorem 2.6]).
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By the above Proposition, if (A; %) is a CQT dual quasi-Hopf algebra then it follows
that MA is a braided category. For any M;N ∈MA, the braiding is given by

cM;N (m ⊗ n) = %(m(1); n(1))n(0) ⊗ m(0):

We will use now the dual braided reconstruction theorem in order to obtain the
structure of A as a braided Hopf algebra in MA. Let C and D be two monoidal
categories with D braided. If F;G:C → D are two functors then we denote by
Nat(F;G) the set of natural transformations @: F → G, by F ⊗ M : C → D the
functor (F⊗M)(N )= F(N )⊗M , where N ∈C; M ∈D, and by Hom(M;M ′) the set of
morphism between M and M ′ in D. Suppose that there is an object B∈D such that
for all M ∈D

Hom(B;M) ∼= Nat(F; F⊗ M)

by functorial bisections AM and let B= {BN : F(N ) → F(N )⊗ B |N ∈C} be the natural
transformation corresponding to the identity morphism idB. Then, using B and the
braiding in D we have induced maps

Cs
M :Hom(B⊗s; M) ∼= Nat(Fs; Fs ⊗ M)

and we assume that these are bijections. This is the representability assumption for
comodules and is always satis8ed if D is co-complete and if the image of F is rigid,
cf. [20]. Then, using (C2

B)
−1; B1; A−1

B⊗B and A−1
1 we can de8ne a multiplication, a unit,

a comultiplication and a counit for B.

Theorem 3.2 (Majid [20]). Let C and D be monoidal categories with D braided and
F:C → D a monoidal functor satisfying the representability assumption for comod-
ules. Then B as above is a bialgebra in D. If C is rigid then B is a Hopf algebra in D.

Let now (A; %) be a CQT dual quasi-Hopf algebra, AR the k-vector space A viewed
as a right A-comodule via � and A the same k-vector space A but viewed now as an
object of MA via the right adjoint coaction:

>A(a) = a2 ⊗ S(a1)a3; (3.29)

for all a∈A. We apply now the Theorem 3.2 in the case that C=D=MA and F= id.
The 8rst step is to show that A is the representability object which we need.
Dual to the quasi-Hopf case, since the antipode S is bijective, we de8ne the elements

pL; qL ∈ (A ⊗ A)∗ given by

pL(a; b) = ’(S−1(a3); a1; b)�(S−1(a2)) and

qL(a; b) = ’−1(S(a1); a3; b)�(a2) (3.30)

for all a; b∈A. Then, for all a; b∈A, the following relations hold:

pL(a2; b2)S−1(a3)(a1b1) =pL(a; b1)b2;

qL(a2; b1)S(a1)(a3b2) = qL(a; b2)b1; (3.31)

pL(S(a1); a3b2)qL(a2; b1) = �(a)�(b);

qL(S−1(a3); a1b1)pL(a2; b2) = �(a)�(b): (3.32)
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Lemma 3.3. Let A be a dual quasi-Hopf algebra and M ∈MA. If we de8ne

AM :Hom(A;M) → Nat(id; id ⊗ M);

AM (�)N (n) = pL(S(n(1)); n(3))n(0) ⊗ �(n(2)); (3.33)

for all �∈Hom(A;M), N ∈MA and n∈N , then AM is well de8ned and a bijection.
Its inverse, A−1

M :Nat(id; id⊗M) → Hom(A;M), is given for all @∈Nat(id; id⊗M) by

A−1
M (@)(a) = qL(a1; (a2)〈1〉(1) )�((a2)〈0〉)(a2)〈1〉(0) ; (3.34)

for all a∈A, where we denote @AR(a) = a〈0〉 ⊗ a〈1〉.

Proof. We have to prove 8rst that AM is well de8ned, that means AM (�)N is a right
A-colinear map and AM (�) is a natural transformation. Since � :A → M is a morphism
in MA we have

�(a)(0) ⊗ �(a)(1) = �(a2)⊗ S(a1)a3; (3.35)

for all a∈A. Now, if n∈N then:

>N⊗M (AM (�)N (n)) =pL(S(n(1)); n(3))>N⊗M (n(0) ⊗ �(n(2)));

(3:14) =pL(S(n(2)); n(4))n(0) ⊗ �(n(3))(0) ⊗ n(1)�(n(3))(1);

(3:35) =pL(S(n(2)); n(6))n(0) ⊗ �(n(4))⊗ n(1)(S(n(3))n(5));

(3:31) =pL(S(n(1)); n(3))n(0) ⊗ �(n(2))⊗ n(4);

(3:33) = AM (�)N (n(0))⊗ n(1) = (AM (�)N ⊗ idA)(>N (n));

as needed. It is not hard to see that AM (�) is a natural transformation, so we are left
to show that A−1

M is also well de8ned, and that AM and A−1
M are inverses. The 8rst

assertion follows from the following. Since @AR is a right A-comodule map we have

(a1)〈0〉 ⊗ (a1)〈1〉 ⊗ a2 = a〈0〉1 ⊗ a〈1〉(0) ⊗ a〈0〉2a〈1〉(1) ; (3.36)

for all a∈A. On the other hand, for all a∗ ∈A∗ the map Ea∗ :AR → AR; Ea∗(a): =
a∗(a1)a2, is right A-colinear. Since @ is functorial under morphism Ea∗ we obtain that

a∗(a〈0〉1 )a〈0〉2 ⊗ a〈1〉 = a∗(a1)(a2)〈0〉 ⊗ (a2)〈1〉;
for all a∗ ∈A∗ and a∈A, and this is equivalent to

a〈0〉1 ⊗ a〈0〉2 ⊗ a〈1〉 = a1 ⊗ (a2)〈0〉 ⊗ (a2)〈1〉; (3.37)

for all a∈A. Then for a∈A we have

(A−1
M (@)⊗ idA)(>A(a)) = A−1

M (@)(a2)⊗ S(a1)a3

= qL(a2; (a3)〈1〉(1) )�((a3)〈0〉)(a3)〈1〉(0) ⊗ S(a1)a4;

(3:36) = qL(a2; (a3)〈1〉(1) )�((a3)〈0〉1 )(a3)〈1〉(0) ⊗ S(a1)((a3)〈0〉2 (a3)〈1〉(2) )

= qL(a2; (a3)〈1〉(1) )�((a3)〈0〉2 )(a3)〈1〉(0) ⊗ S(a1)((a3)〈0〉1 (a3)〈1〉(2) );
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(3:37) = qL(a2; (a4)〈1〉(1) )�((a4)〈0〉)(a4)〈1〉(0) ⊗ S(a1)(a3(a4)〈1〉(2) );

(3:31) = qL(a1; (a2)〈1〉(2) )�((a2)〈0〉)(a2)〈1〉(0) ⊗ (a2)〈1〉(1)
= (>M ◦ A−1

M (@))(a);

so A−1
M (@) is a right A-comodule map. We show now that A

−1
M is a left inverse for AM .

Indeed, from de8nitions we have

AM (@)AR(a) = pL(S(a2); a4)a1 ⊗ @(a3): = a〈0〉 ⊗ a〈1〉;

for all a∈A, and therefore

(A−1
M ◦ AM )(�)(a) = qL(a1; �(a4)(1))�(a2)pL(S(a3); a5)�(a4)(0)

= qL(a1; S(a3)a4)pL(S(a2); a5)�(a2);

(3:32) = �(a1)�(a3)�(a2) = �(a);

for all �∈Hom(A;M) and a∈A. In order to prove that A−1
M is a right inverse for

AM observe 8rst that for any N ∈MA and n∗ ∈N ∗, the map En∗ :N → AR; En∗(n) =
n∗(n(0))n(1), is right A-colinear. The fact that @ is functorial under the morphism En∗

means

n∗(n[0](0) )n[0](1) ⊗ n[1] = n∗(n(0))n(1)〈0〉 ⊗ n(1)〈1〉 ;

where we denote @N (n): = n[0] ⊗ n[1]. Since it is true for any n∗ ∈N ∗ we obtain

n[0](0) ⊗ n[0](1) ⊗ n[1] = n(0) ⊗ n(1)〈0〉 ⊗ n(1)〈1〉 (3.38)

for all n∈N . Now, for all n∈N we compute:

(AM ◦A−1
M )(@)N (n) = AM (A−1

M (@))N (n)=pL(S(n(1)); n(3))n(0)⊗A−1
M (@)(n(2))

= pL(S(n(1)); n(4))qL(n(2); (n(3))〈1〉(1) )�((n(3))〈0〉)n(0) ⊗ (n(3))〈1〉(0) ;
(3:36) = pL(S(n(1)); (n(3))〈0〉2 (n(3))〈1〉(2) )qL(n(2); (n(3)〈1〉(1) )

×�((n(3))〈0〉1 )n(0) ⊗ (n(3))〈1〉(0) ;
(3:38) = pL(S(n[0](1) ); n[0](3)n[1](2) )qL(n[0](2) ; n[1](1) )n[0](0) ⊗ n[1](0) ;

(3:32) = �(n[0](1) )�(n[1](1) )n[0](0) ⊗ n[1](0) = n[0] ⊗ n[1] = @N (n);

as needed, and this 8nishes the proof.

We are now able to begin our reconstruction. The natural transformation B∈Nat(id;
id ⊗ A) corresponding to the identity morphism idA is given by

BN (n) = AA(idA)N (n) = pL(S(n(1)); n(3))n(0) ⊗ n(2)
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for all N ∈MA and n∈N . By [20, Lemma 2.4] the multiplication of A is characterized
as being the unique morphism m :A ⊗ A in MA such that

BM⊗N = (idM⊗N ⊗ m) ◦ a−1
M;N;A⊗A ◦ (idM ⊗ aN;A;A) ◦ (idM ⊗ (cA;N ⊗ idA))

◦(idM ⊗ a−1
A;NA) ◦ aM;A;N⊗A ◦ (BM ⊗ BN );

for any M;N ∈MA. Using the braided categorical structure of MA and the de8nition
of B it is not hard to see that m is the unique morphism in MA which satis8es

pL(S(m(1)n(1)); m(3)n(3))(m(0) ⊗ n(0))⊗ m(2)n(2)

=pL(S(m(3)); m(15))pL(S(n(5)); n(13))

×’(m(2); S(m(4))m(14); n(14))’−1(S(m(5))m(13); n(4); S(n(6))n(12))%(S(m(6))m(12); n(3))

×’(n(2); S(m(7))m(11); S(n(7))n(11))’−1(m(1); n(1); m(9)n(9))

×(m(0) ⊗ n(0))⊗ (S(m(8))m(10)) · (S(n(8))n(10))
for all M;N ∈MA and m∈M , n∈N , where we denote by a · b := m(a ⊗ b). We can
easily check that the above equality is equivalent to

pL(S(a1b1); a3b3)a2b2

=pL(S(a3); a15)pL(S(b5); b13)’(a2; S(a4)a14; b14)

×’−1(S(a5)a13; b4; S(b6)b12)%(S(a6)a12; b3)’(b2; S(a7)a11; S(b7)b11)

×’−1(a1; b1; a9b9)(S(a8)a10) · (S(b8)b10) (3.39)

for all a; b∈A. Now, the explicit formula for the multiplication · is the following:
a · b=’(S(a1); a10; S(b1)b12)f(b6; a3)%(a8; S(b3))’−1(S(a2); S(b5); a6b9)%(a4; b7)

×’−1(a9; S(b2); b11)’(S(b4); a7; b10)a5b8; (3.40)

for all a; b∈A. Indeed, it is easy to see that the multiplication · de8ned by (3.40)
is a right A-colinear map. A straightforward but tedious computation ensures that ·
satis8es the relation (3.39), we leave all these details to the reader. It is not hard to
see that the unit of A is 1, the unit of A.
Following [20], the comultiplication of A is obtained as � = A−1

A⊗A(@), where @ is
de8ned by the following composition

@N :N
BN−→N ⊗ A

BN−→(N ⊗ A)⊗ A
aN ;A;A−−−→N ⊗ (A ⊗ A);

for all N ∈MA. Explicitly, for all n∈N ,

@N (n) =’(n(1); S(n(3))n(5); S(n(8))n(10))pL(S(n(7)); n(11))

pL(S(n(2)); n(6))n(0) ⊗ (n(4) ⊗ n(9)): (3.41)

The counit � is obtained as �(a) = A−1
k (l)(a), where l is the left unit constraint.



58 D. Bulacu, B. Torrecillas / Journal of Pure and Applied Algebra 194 (2004) 39–84

Proposition 3.4. Let A be a dual quasi-Hopf algebra. Then the comultiplication of A
is given for all a∈A by

�(a) = ’−1(S(a1); a5; S(a7))�(a6)’(S(a2)a4; S(a8); a10)a3 ⊗ a9: (3.42)

The counit of � is �= �.

Proof. Let us start by noting that (3.3) and the de8nitions (3.30) of pL and qL imply:

qL(a1; b1c1)’(a2; b2; c2) = �(a3)’−1(S(a2); a4; b1)’−1(S(a1); a5b2; c); (3.43)

’−1(a; b1; S(b3)c1)pL(S(b2); c2)=’(a1b1; S(b5); c)’−1(a2; b2; S(b4))�(b3);
(3.44)

for all a; b; c∈A. On the other hand, from (3.41) we can easily see that

@AR(a) = a〈0〉 ⊗ a〈1〉 =pL(S(a3); a7)pL(S(a8); a12)’(a2; S(a4)a6; S(a9)a11)

a1 ⊗ (a5 ⊗ a10): (3.45)

Now, for all a∈A we compute:

�A(a) = A−1
A⊗A(@) = qL(a1; (a2)〈1〉(1) )�((a2)〈0〉)(a2)〈1〉(0) ;

(3:45) = qL(a1; (a5 ⊗ a10)(1))pL(S(a8); a12)pL(S(a3); a7)

×’(a2; S(a4)a6; S(a9)a11)(a5 ⊗ a10)(0);

(3:14) = qL(a1; (S(a5)a7)(S(a12)a14))pL(S(a10); a16)pL(S(a3); a9)

×’(a2; S(a4)a8; S(a11)a15)a6 ⊗ a13;

(3:43) = �(a3)’−1(S(a2); a4; S(a8)a10)’−1(S(a1); a5(S(a7)a11); S(a14)a16)

×pL(S(a13); a17)pL(S(a6); a12)a9 ⊗ a15;

(3:31) = �(a3)’−1(S(a2); a4; S(a6)a8)’−1(S(a1); a10; S(a12)a14)

×pL(S(a11); a15)pL(S(a5); a9)a7 ⊗ a13;

(3:44) = �(a4)’−1(S(a3); a5; S(a7)a9)’(S(a2)a11; S(a15); a17)

×’−1(S(a1); a12; S(a14))�(a13)pL(S(a6); a10)a8 ⊗ a16;

(3:30) = qL(a3; S(a5)a7)’(S(a2)a9; S(a13); a15)’−1(S(a1); a10; S(a12))

×�(a11)pL(S(a4); a8)a6 ⊗ a14;

(3:32) = ’−1(S(a1); a5; S(a7))�(a6)’(S(a2)a4; S(a8); a10)a3 ⊗ a9;

for all a∈A. The counit of � is �(a) = A−1
k (l)(a) = qL(a; 1) = �(a) for all a∈A, so

�= �.
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Let now M be a 8nite dimensional right A-comodule and M∗ its left dual. According
to [20, Proposition 2.9], the reconstructed antipode S of A is characterized as being
the unique morphism in C satisfying

(idM ◦ S) ◦ BM = l−1M⊗A ◦ (idM⊗A ⊗ evM ) ◦ (aM;A;M∗ ⊗ idM ) ◦ (a−1
M;A;M∗ ⊗ idM )

◦((idM ⊗ c−1
A;M∗)⊗ idM ) ◦ ((idM ⊗ BM∗)⊗ idM )

◦(coevM ⊗ idM ) ◦ rM ;

for any 8nite dimensional object M of MA, where l; r; a; c; ev and coev are the
left unit constraints, the right unit constraints, the associativity constraints, the braid-
ing of MA, and the evaluation and coevaluation map, respectively. This comes out
explicitly as

pL(S(m(1)); m(3))m(0) ⊗ S(m(2))

=�(m(3))pL(S2(m(12)); S(m(4)))

×%−1(S2(m(11))S(m(5)); S(m(13)))’−1(m(2); S2(m(10))S(m(6)); S(m(14)))

×’(m(1)[S2(m(9))S(m(7))]; S(m(15)); m(17))�(m(16))m(0) ⊗ S(m(8));

for all 8nite dimensional right A-comodule M and m∈M . It follows that the above
relation is equivalent to

pL(S(a1); a3)S(a2) = �(a3)pL(S2(a12); S(a4))%−1(S2(a11)S(a5); S(a13))

×’−1(a2; S2(a10)S(a6); S(a14))

×’(a1[S2(a9)S(a7)]; S(a15); a17)�(a16)S(a8);

(3:3; 3:5) = �(a2)pL(S2(a11); S(a3))%−1(S2(a10)S(a4); S(a12))

×’(S2(a8)S(a6); S(a14); a16)’(a1; [S2(a9)S(a5)]S(a13); a17)

�(a15)S(a7);

(3:31; 3:30) =pL(S(a1); a13)pL(S2(a8); S(a2))%−1(S2(a7)S(a3); S(a9))

×’(S2(a6)S(a4); S(a10); a12)�(a11)S(a5)

for all a∈A, and therefore

S(a) =pL(S2(a7); S(a1))%−1(S2(a6)S(a2); S(a8))

’(S2(a5)S(a3); S(a9); a11)�(a10)S(a4) (3.46)

for all a∈A (it is not hard to see that S de8ned above is right A-colinear). We
summarize all this in the following.

Theorem 3.5. Let (A; %) be a CQT dual quasi-Hopf algebra. Then there is a braided
Hopf algebra A in the category MA. A coincides with A as k-linear space, and it is
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an object in MA by the right coadjoint action

>A(a) = a2 ⊗ S(a1)a3:

The algebra structure, the coalgebra structure and the antipode are transmuted to

a · b=’(S(a1); a10; S(b1)b12)f(b6; a3)%(a8; S(b3))

×’−1(S(a2); S(b5); a6b9)%(a4; b7)

×’−1(a9; S(b2); b11)’(S(b4); a7; b10)a5b8;

�(a) =’−1(S(a1); a5; S(a7))�(a6)’(S(a2)a4; S(a8); a10)a3 ⊗ a9;

S(a) =pL(S2(a7); S(a1))%−1(S2(a6)S(a2); S(a8))

’(S2(a5)S(a3); S(a9); a11)�(a10)S(a4);

for all a; b∈A. The unit element is 1 of A, and the counit is � = �. As in the Hopf
case, we will cal A the associated function algebra braided group of A.

Remark 3.6. The braided group A is braided commutative in the sense of [20]. More
precisely, A has a second multiplication (denoted by mop) also making A into a braided
bialgebra, and there exists a convolution invertible morphism R:A ⊗ A → k relating
mop by conjugation to m. Moreover, R makes A with its products into a CQT Hopf
algebra in MA in some sense, analogues to the de8nition of an ordinary CQT Hopf
algebra, see [21,22]. Now, A is braided commutative mean that mop =m and R= �⊗ �.
We would like to stress that the opposite multiplication mop is characterized by

M ⊗ N
BM⊗BN−−−−−→ (M ⊗ A)⊗ (N ⊗ A) M ⊗ N

BM⊗idN−−−−−→ (M ⊗ A)⊗ N
aM;A;N⊗A−−−−−→ M ⊗ (A ⊗ (N ⊗ A))

aM;A;N−−−−−→ M ⊗ (A ⊗ N )

idM⊗a−1
A;N;A−−−−−→ M ⊗ ((A ⊗ N )⊗ A)

idM⊗c−1
N;A−−−−−→ M ⊗ (N ⊗ A)

idM⊗(cA;N⊗idA)−−−−−−−−→M ⊗ ((N ⊗ A)⊗ A) =
idM⊗(BN⊗idA)−−−−−−−−→ M ⊗ ((N ⊗ A)⊗ A)

idM⊗aN;A;A−−−−−→ M ⊗ (N ⊗ (A ⊗ A))
idM⊗aN;A;A−−−−−→ M ⊗ (N ⊗ (A ⊗ A))

a−1
M;N;A⊗A−−−−−→ (M ⊗ N )⊗ (A ⊗ A)

a−1
M;N;A⊗A−−−−−→ (M ⊗ N )⊗ (A ⊗ A)

idM⊗N⊗mop−−−−−→ (M ⊗ N )⊗ A
idM⊗N⊗m−−−−−→ (M ⊗ N )⊗ A:

The above equality and mop =m reduce to an intrinsic form of braided commutativity
of A, we leave the details to the reader.

4. The categorical interpretation

In this Section our goal is to give a categorical interpretation for our de8nition of a
factorizable quasi-Hopf algebra. In the Hopf case it was given by Majid [22]. If (H; R)
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is a Hopf algebra then we can associate to H a braided cocommutative Hopf algebra
H in the braided category HM. As we have already seen in the previous Section, we
can associate to any CQT (dual quasi-) Hopf algebra (A; %) a braided commutative
Hopf algebra A in the category of right A-comodules MA. Now, let (H; R) be a 8nite
dimensional factorizable Hopf algebra and (A; %) the CQT Hopf algebra dual to H . If
A is viewed as a braided Hopf algebra in HM then H and A are isomorphic as braided
Hopf algebras. Moreover, the isomorphism is given by the canonical map Q considered
in Section 2. Also, A is always isomorphic to the categorical left dual of H .
We will generalize the above results to the quasi-Hopf case. In [8] there was intro-

duced another multiplication on H , denoted by •, given by the formula
h • h′ = X 1hS(x1X 2)�x2X 31 h

′S(x3X 32 ); (4.1)

(1:3; 1:5) = X 1x11hS(X
2x12)�X

3x2h′S(x3) (4.2)

for all h; h′ ∈H and it was proved that, if we denote by H0 this structure, then H0
becomes an algebra within the monoidal category of left H -modules, with unit � and
left H -action given by

h . h′ = h1h′S(h2); (4.3)

for all h; h′ ∈H . If (H; R) is quasi-triangular then H0 is a Hopf algebra with bijective
antipode in HM, with the additional structures (see [6]):

�(h) = h1 ⊗ h2: = x1X 1h1g1S(x2R2y3X 32 )⊗ x3R1 . y1X 2h2g2S(y2X 31 ); (4.4)

�(h) = �(h); (4.5)

S(h) = X 1R2p2S(q1(X 2R1p1 . h)S(q2)X 3); (4.6)

for all h∈H , where R=R1⊗R2 is the R-matrix R of H , and f−1=g1⊗g2; pR=p1⊗p2

and qR = q1 ⊗ q2 are the elements de8ned by (1.14) and (1.17), respectively. Thus, in
the quasi-Hopf case, H=H0 as an algebra with the additional structures (4.4), (4.5) and
(4.6). As in the Hopf case, we will call H the associated enveloping algebra braided
group of H . Note that, all the above structures were obtained by using the braided
reconstruction theorem also due to Majid [22] (see [6] for full details).
Suppose now that (H; R) is a 8nite dimensional QT quasi-Hopf algebra. Then H∗,

the linear dual of H , it is in an obvious way a CQT dual quasi-Hopf algebra, so it
makes sense to consider H∗, the function algebra braided group associated to H∗. It
is a braided Hopf algebra in the category of right H∗-comodules, hence it is a braided
Hopf algebra in the category of left H -modules. By Theorem 3.5, H∗ is a braided
Hopf algebra in HM. From (3.29), H∗ is a left H -module via

h I � = h2 * � ( S(h1) (4.7)

for all h∈H and �∈H∗. By Theorem 3.5, the structure of H∗ as a Hopf algebra in
HM is given by:

� ·  = [x31Y 2r1y1X 2 * � ( S(x1X 1)f2R1]

×[x32Y 3y3X 32 *  ( S(x2Y 1r2y2X 31 )f
1R2]; (4.8)
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1H∗ = �; (4.9)

�H∗(�) = �1 ( S(x1)⊗ x32X
3 * �2 ( x2X 1�S(x31X

2); (4.10)

�H∗(�) = �(�); (4.11)

S(�) = q12R
1
2p̃
2 * �S ( q2R2S(q11R

1
1p̃
1); (4.12)

for all �;  ∈H∗. Here pR = p1 ⊗ p2 and qR = q1 ⊗ q2 are the elements de8ned by
(1.17), f = f1 ⊗ f2 is the Drinfeld’s twist de8ned by (1.13), R−1 = R1 ⊗ R2, and
qL = q̃1 ⊗ q̃2 is the element given by (1.18), respectively.
We would like to stress that formula (2.1) was chosen in such a way that it provides

a left H -module morphism from H∗ to H . Indeed, for all �∈H∗ and h∈H we have:

h . Q(�)
(2:1)
= 〈�; S(X 22 p̃2)f1R2r1U 1X 3〉h1X 1S(X 21 p̃1)f2R1r2U 2S(h2)

(2:7; 1:27; 1:11) = 〈�; S((h(2;1)X 2)2p̃2)f1R2r1U 1h(2;2)X 3〉
×h1X 1S((h(2;1)X 2)1p̃1)f2R1r2U 2

(1:1; 1:20) = 〈�; S(X 22 p̃2h1)f1R2r1U 1X 3h2〉X 1S(X 21 p̃1)f2R1r2U 2

(2:1; 4:7) = Q(h2 * � ( S(h1)) = Q(h I �):

It is quite remarkable that (2.1) is a braided Hopf algebra morphism, too.

Proposition 4.1. Let (H; R) be a 8nite dimensional QT quasi-Hopf algebra, H the
associated enveloping algebra braided group of H and H∗ the function algebra braided
group associated to H∗. Then the map Q de8ned by (2.1) is a braided Hopf algebra
morphism from H∗ to H .

Proof. We have already seen that Q is a morphism in HM. Hence, it remains to show
that Q is an algebra and a coalgebra morphism. To this end, we will use the second
formula (2.3) for the map Q. From (1.3), (1.5) it follows that

q̃1X 1 ⊗ q̃21X
2 ⊗ q̃22X

3 = S(x1)q̃1x21 ⊗ q̃2x22 ⊗ x3; (4.13)

x1 ⊗ x21p
1 ⊗ x22p

2S(x3) = X 1p11 ⊗ X 2p12 ⊗ X 3p2: (4.14)

We set R=R1⊗R2=r1⊗r2=R1⊗R2=R1⊗R2=r1⊗r2=R1⊗R2, qL=q̃1⊗q̃2=Q̃1⊗Q̃2

and pR = p1 ⊗ p2 = P1 ⊗ P2. Now, for all �;  ∈H∗ we compute:

Q(� ·  ) = 〈�; S(x1X 1)f2R1q̃11Z11R2
1r
1
1p
1
1x
3
1Y

2r1y1X 2〉
×〈 ; S(x2Y 1r2y2X 31 )f

1R2q̃12Z
1
2R

2
2r
1
2p
1
2x
3
2Y

3y3X 32 〉q̃21Z2R1r2p2S(q̃22Z
3);

(1:27; 4:14) = 〈�; S(x1X 1)f2q̃12[Z1R2r1x3(1;1)p
1]2R

1Y 2r1y1X 2〉

×〈 ; S(x2Y 1r2y2X 31 )f
1q̃11[Z

1R2r1x3(1;1)p
1]1R

2Y 3y3X 32 〉

×q̃21Z
2R1r2x3(1;2)p

2S(q̃22Z
3x32);
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(1:27; 1:1; 1:24) = 〈�; S(X 1)q̃1Q̃21T 2Z12R2
2r
1
2p
1
2R
1Y 2r1y1X 2〉

×〈 ; S(Y 1r2y2X 31 )Q̃
1T 1Z11R

2
1r
1
1p
1
1R
2Y 3y3X 32 〉

×q̃21Q̃
2
(2;1)T

3
1 Z

2R1r2p2S(q̃22Q̃(2;2)T
3
2 Z

3);

(1:3; 1:1; 4:13; 1:27) = 〈�; S(X 1)q̃1V 1Q̃21x2(2;1)Z2R2
2R
1r11p

1
1Y

2r1y1X 2〉

×〈 ; S(x1Y 1r2y2X 31 )Q̃
1x21Z

1R2
1R
2r12p

1
2Y

3y3X 32 〉
×q̃21V

2Q̃22x
2
(2;2)Z

3R1r2p2S(q̃22V
3x3);

(1:1; 1:27; 4:14) = 〈�; S(X 1)q̃1V 1Q̃21Z2R2
2R
1r11T

2
1 Y

2r1y1p11X
2〉

×〈 ; S(T 1Y 1r2y2(p12X
3)1)Q̃1Z1R2

1R
2r12T

2
2 Y

3y3(p12X
3)2〉

×q̃21V
2Q̃22Z

3R1r2T 3p2S(q̃22V
3);

(1:3; 1:27; 1:25; 1:26) = 〈�; S(X 1)q̃1V 1Q̃21R2Z3x3R1W 2r1z1T 2r1Y 11 y
1p11X

2〉
×〈 ; S(T 1r2Y 12 y

2(p12X
3)1)Q̃1Z1R2x2R2W 3z3R1T 31 Y

2y3(p12X
3)2〉

×q̃21V
2Q̃22R

1Z2R1x1W 1r2z2R2T 32 Y
3p2S(q̃22V

3);

(1:3; 1:27; 1:26) = 〈�; S(X 1)q̃1V 1Q̃21R2Z3x3W 3
2 R

1T 2r1D1z11Y
1
1 y

1p11X
2〉

×〈 ; S(W 1T 11 r
2
1D

2z12Y
1
2 y

2(p12X
3)1)Q̃1Z1R2x2W 3

1 R
2T 3z3R1Y 2y3(p12X

3)2〉
×q̃21V

2Q̃22R
1Z2R1x1W 2T 12 r

2
2D

3z2R2Y 3p2S(q̃22V
3);

(1:26; 1:3; 1:1) = 〈�; S(X 1)q̃1V 1Q̃21R2Z3T 3r1Y 1p11X
2〉

×〈 ; S(T 1r21C
1Y 21 (p

1
2X

3)1)Q̃1Z1R2T 22 r
2
(2;2)R

1C2Y 22 (p
1
2X

3)2〉

×q̃21V
2Q̃22R

1Z2R1T 21 r
2
(2;1)R

2C3Y 3p2S(q̃22V
3);

(4:13; 1:27; 1:1; 1:5) = 〈�; S(y1X 1)q̃1R2r1y21Y
1p11X

2〉
×〈 ; S(x1C1(Y 2p12)1X

3
1 )�x

2R2R1C2(Y 2p12)2X
3
2 〉

×q̃2R1r2y22x
3R1R2C3Y 3p2S(y3);

(4:14; 1:27; 1:1; 1:5) = 〈�; S(y1X 1)q̃1R2r1y21z
1X 2〉

×〈 ; S(C1p11X
3
1 )Q̃

1R2R1C2p12X
3
2 〉

×q̃2R1r2y22z
2Q̃2R1R2C3p2S(y3z3):
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On the other hand, if we denote by P1 ⊗ P2 another copy of pR then by (4.2, 1.17,
2.3) we have:

Q(�) • Q( ) = 〈�; q̃1Y 1R2r1P1〉〈 ; Q̃1Z1R2r1p1〉
q1y11q̃

2
1Y

2R1r2P2S(q2y12q̃
2
2Y

3)y2Q̃21Z
2R1r2p2S(y3Q̃22Z

3);

(4:13; 1:27; 4:14) = 〈�; S(X 1P11)q̃1R2r1X 2P12〉〈 ; Q̃1Z1R2r1p1〉
×q1y11q̃

2R1r2X 3P2S(q2y12)y
2Q̃21Z

2R1r2p2S(y3Q̃22Z
3);

(1:20; 1:27; 1:1; 1:19) = 〈�; S(X 1(q11P1)1y11)q̃1R2r1X 2(q11P1)2y12〉
×〈 ; Q̃1Z1R2r1p1〉q̃2R1r2X 3q12P2S(q2)
×y2Q̃21Z

2R1r2p2S(y3Q̃22Z
3);

(1:21; 1:3; 4:13; 1:27; 4:14) = 〈�; S(y1X 1)q̃1R2r1y21x1X 2〉〈 ; S(Y 1p11)Q̃
1R2r1Y 2p12〉

×q̃2R1r2y22x
2X 31 Q̃

2R1r2Y 3p2S(y3x3X 32 );

(1:20; 1:27; 1:1; 1:19) = 〈�; S(y1X 1)q̃1R2r1y21x1X 2〉
×〈 ; S(Y 1p11X

3
1 )Q̃

1R2r1Y 2p12X
3
2 〉

×q̃2R1r2y22x
2Q̃2R1r2Y 3p2S(y3x3):

By the above it follows that Q is multiplicative. Since Q(1H∗) = Q(�) = �= 1H , we
conclude that Q is an algebra map. Thus, one has only to show that Q is a coalgebra
map. To this end, observe 8rst that (1.3), (5.5) imply

X 11 p
1 ⊗ X 12 p

2S(X 2)⊗ X 3 = x1 ⊗ x2S(x31p̃
1)⊗ x32p̃

2: (4.15)

Also, it is not hard to see that (4.4, 4.3, 1.25, 1.27) and (1.32) imply

�H (h) = x1X 1h1r2g2S(x2Y 1R2y2X 31 )⊗ x31Y
2R1y1X 2h2r1g1S(x32Y

3y3X 32 ): (4.16)

Therefore, by (4.16) and (2.3), for any �∈H∗ we have

�H (Q(�)) = 〈�; q̃1Z1R2r1p1〉x1X 1q̃2(1;1)Z21R1
1r
2
1p
2
1S(q̃

2
2Z
3)1r2g2S(x2Y 1R2y2X 31 )

⊗ x31Y
2R1y1X 2q̃2(1;2)Z

2
2R

1
2r
2
2p
2
2S(q̃

2
2Z
3)2r1g1S(x32Y

3y3X 32 );

(1:27; 1:11; 1:23; 1:1) = 〈�; q̃1Z1R2r1V 1(T 11p
1)1P1〉

×x1X 1(q̃21Z
2)1R1

1r
2r22V

3T 12p
2S(x2Y 1R2y2(X 3q̃22)1Z

3
1T

2)

⊗x31Y
2R1y1X 2(q̃21Z

2)2R1
2r
1r21V

2(T 11p
1)2

×P2S(x32Y
3y3(X 3q̃22)2Z

3
2T

3);
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(4:15; 1:26; 1:25; 4:13) = 〈�; S(v1)q̃1v21R2t3r12R
1z11P

1〉
×x1X 1q̃21v

2
(2;1)R

1
1t
1r2z2S(x2Y 1R2y2X 31 v

3
1z
3
1p̃

1)

⊗x31Y
2R1y1X 2q̃22v

2
(2;2)R

1
2t
2r11R

2z12P
2S(x32Y

3y3X 32 v
3
2z
3
2p̃

2);

(1:25; 1:27; 1:25) = 〈�; S(v1)q̃1v21T 1R2r1t1V 1R2R1z11P
1〉

×x1X 1q̃21v
2
(2;1)T

2R1r2t2r2V 3z2S(x2Y 1R2y2X 31 v
3
1z
3
1p̃

1)

⊗x31Y
2R1y1X 2q̃22v

2
(2;2)T

3t3r1V 2R1R2z12P
2S(x32Y

3y3X 32 v
3
2z
3
2p̃

2);

(1:1; 4:13; 1:20; 1:3) = 〈�; S(v1)q̃1v21X 11R2r1t1V 1R2R1z11P
1〉

×x1q̃2v22X
1
2R1r2t2r2V 3z2S(x2Y 1R2y2v3(2;1)X

3
1 z
3
1p̃

1)

⊗x31Y
2R1y1v31X

2t3r1V 2R1R2z12P
2S(x32Y

3y3v3(2;2)X
3
2 z
3
2p̃

2);

(1:27; 1:3; 1:20) = 〈�; S(v1)q̃1v21R2r1t1Z1R2R1P1〉
×x1q̃2v22R

1r2t2X 1r2z2S(x2Y 1R2y2(v3t3)(2;1)X 31 z
3
1p̃

1)

⊗x31Y
2R1y1(v3t3)1X 2r1z1Z2R1R2P2S(x32Y

3y3(v3t3)(2;2)X 32 z
3
2p̃

2Z3);

(1:1; 1:27; 1:3; 1:26) = 〈�; S(v1)q̃1v21R2r1t1Z1R2R1P1〉
×x1q̃2v22R

1r2t2T 1X 1R21V
2y12z

2S(x2(v3t3)1Y 1T 21X
2R22V

3y2z31p̃
1)

⊗x31(v
3t3)(2;1)Y 2T 22X

3R1V 1y11z
1Z2R1R2P2

×S(x32(v
3t3)(2;2)Y 3T 3y3z32p̃

2Z3);

(1:3; 1:18; 1:5) = 〈�; S(v1)q̃1v21R2r1t1Z1R2R1P1〉x1q̃2v22R1r2t2X 1�S(x2(v3t3)1X 2)

⊗x31(v
3t3)(2;1)X 31 Z

2R1R2P2S(x32(v
3t3)(2;2)X 32 Z

3);

(1:3; 1:5; 1:20; 1:27) = 〈�; S(t1x1)q̃1R2r1t21x
2
(1;1)z

1Z1R2R1P1〉q̃2R1r2t22x
2
(1;2)z

2�S(t3x22z
3)

⊗x31Z
2R1R2P2S(x32Z

3);

(1:1; 1:5; 1:27; 2:3) = Q(�1 ( S(x1))⊗ �2(x2Z1R2R1P1)x31Z
2R1R2P2S(x32Z

3):

On the other hand, by (4.10) we have

(Q ⊗ Q)(�H∗(�)) = Q(�1 ( S(x1))⊗ Q(x32X
3 * �2 ( x2X 1�S(x31X

2));

(2:3; 1:19; 1:27) =Q(�1 ( S(x1))⊗ 〈�2; x2X 1�S(x31X 2)Q̃1Z1(x32X 3)(1;1)R2R1P1〉
×Q̃21Z

2(x32X
3)(1;2)R1R2P2S(Q̃22Z

3(x32X
3)2);
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(1:1; 1:20; 1:18) =Q(�1 ( S(x1))⊗ 〈�2; x2S(p̃1)Q̃1p̃21Z1R2R1P1〉
×x31(Q̃

2p̃22)1Z
2R1R2P2S(x32(Q̃

2p̃22)2Z
3);

(1:22) = Q(�1 ( S(x1))⊗ 〈�2; x2Z1R2R1P1〉x31Z2R1R2P2S(x32Z
3):

So Q is a coalgebra map since (�H ◦Q)(�)=�(�)=�H∗ and this 8nishes our proof.

Let C be a braided category with left duality. For any two objects M;N ∈C there

exists a canonical isomorphism in C; M∗⊗N ∗%∗
M;N→ (M⊗N )∗. In fact, %∗

M;N=I∗
N;M◦c−1

N∗ ;M∗ ,
where I∗

N;M :N
∗ ⊗ M∗ → (M ⊗ N )∗ is given by the following compositions:

N ∗ ⊗ M∗ idN∗⊗M∗ ⊗lN∗⊗M∗−−−−−−−−−−−−→ (N ∗ ⊗ M∗)⊗ 1
idN∗⊗M∗ ⊗coevM⊗N−−−−−−−−−−−−→ (N ∗ ⊗ M∗)⊗ ((M ⊗ N )⊗ (M ⊗ N )∗)

a−1
N∗⊗M∗ ; M⊗N; (M⊗N )∗−−−−−−−−−−−−→ ((N ∗ ⊗ M∗)⊗ (M ⊗ N ))⊗ (M ⊗ N )∗

aN∗ ; M∗ ; M⊗N⊗id(M⊗N )∗−−−−−−−−−−−−→ (N ∗ ⊗ (M∗ ⊗ (M ⊗ N )))⊗ (M ⊗ N )∗

(idN∗ ⊗a−1
M∗ ; M;N )⊗id(M⊗N )∗−−−−−−−−−−−−−−→ (N ∗ ⊗ ((M∗ ⊗ M)⊗ N ))⊗ (M ⊗ N )∗

(idN∗ ⊗(evM⊗idN ))⊗id(M⊗N )∗−−−−−−−−−−−−−−−−→ (N ∗ ⊗ (1⊗ N ))⊗ (M ⊗ N )∗

(idN∗ ⊗r−1
N )⊗id(M⊗N )∗−−−−−−−−−−−−→ (N ∗ ⊗ N )⊗ (M ⊗ N )∗

evN⊗id(M⊗N )∗−−−−−−−−−−−−→ 1⊗ (M ⊗ N )∗
r−1
(M⊗N )∗−−−−−−−−−−−−→ (M ⊗ N )∗: (4.17)

The morphism I∗
N;M is an isomorphism. One can compute its inverse in the same

manner as above, see [2,29,5]. Hence, %∗
M;N is an isomorphism and %∗−1

M;N=cN∗ ;M∗ ◦I∗−1
N;M .

Also, following [18] for any morphism J :M → N in C, we can de8ne the transpose
of J as being

J∗:N ∗ lN∗−−−−−→N ∗ ⊗ 1 idN∗⊗coevM−−−−−−−→N ∗ ⊗ (M ⊗ M∗)
idN∗ ⊗(J⊗idM∗ )−−−−−−−−−−−−→N ∗ ⊗ (N ⊗ M∗)

a−1
N∗ ; N; M∗

−−−−−→ (N ∗ ⊗ N )⊗ M∗ evN⊗idM∗−−−−−→ 1⊗ M∗ r−1
M∗−−−−−→M∗: (4.18)

Let now (B;mB; �B; SB) be a braided Hopf algebra in C and B∗ the categorical left
dual of B in C. Then B∗ is also a braided Hopf algebra in C with multiplication
mB∗ , comultiplication �B∗ , antipode SB∗ , unit uB∗ and counit �B∗ de8ned by (sec [22],
p. 489)

mB∗ :B∗ ⊗ B∗ I∗
B;B−→ (B ⊗ B)∗

�∗
B−→B∗; (4.19)

�B∗ :B∗ m∗
B−→ (B ⊗ B)∗

I∗−1
B;B−→ B∗ ⊗ B∗; (4.20)
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SB∗ = S∗
B; uB∗ = �∗B; �B∗ = u∗

B: (4.21)

Suppose now that (H; R) is a QT quasi-Hopf algebra, and that M , N are two 8nite
dimensional left H -modules. Denote by {im}i=1;s and {im}i=1;s dual bases in M and
M∗, and by {jn}j=1; t and {jn}j=1; t dual bases in N and N ∗, respectively. By [5], in
this particular case we have that morphism (4.17) is given by

I∗
N;M (n

∗ ⊗ m∗)(m ⊗ n) = 〈m∗; f1 · m〉〈n∗; f2 · n〉 (4.22)

for all m∗ ∈M∗, n∗ ∈N ∗, m∈M and n∈N . Its inverse is de8ned by

I∗−1
N;M (B) = 〈B; g1 · im ⊗ g2 · jn〉jn ⊗ im (4.23)

for any B∈ (M ⊗N )∗. Also, the morphism J∗ de8ned by (4.18) coincide with the usual
transpose map of J, i.e. J∗(n∗) = n∗ ◦ J.
Therefore, if (H; R) is 8nite dimensional then the categorical left dual of H has a

braided Hopf algebra structure in HM. We denote H∗ with this dual Hopf algebra
structure by (H)∗. By the above, (H)∗ is a left H -module via

(h � �)(h′) = �(S(h) . h′); ∀h; h′ ∈H; �∈H∗: (4.24)

By (4.19)–(4.21) the structure of (H)∗ as a Hopf algebra in HM is given by the
formulas

(� ∗  )(h) = 〈�; f2 . h2〉〈 ; f1 . h1〉; (4.25)

1(H)∗ = �; (4.26)

�(H)∗(�) = 〈�; (g1 . ie) • (g2 . je)〉je ⊗ ie; (4.27)

�(H)∗(�) = �(�); (4.28)

S(H)∗(�) = � ◦ S; (4.29)

where {ie}i=1;n and {ie}i=1;n are dual bases in H and H∗.
Following [5], if (H; R) is a 8nite dimensional QT quasi-Hopf algebra then the usual

linear dual of H has in HM three braided Hopf algebra structures. Two of them are
the left and the right categorical dual of H in the sense of Takeuchi, [29] (in the Hopf
case, the same point of view was used in [2]), and the third one is obtained in [4] by
using the structure of a quasi-Hopf algebra with a projection given in [6]. Now, by
the above, H∗ has a fourth braided Hopf algebra structure in HM.

Proposition 4.2. Let (H; R) be a 8nite dimensional QT quasi-Hopf algebra, H the
associated enveloping algebra braided group of H , (H)∗ the dual Hopf algebra struc-
ture of H in HM, and H∗ the function algebra braided group associated to H∗. Then
the map E : (H)∗ → H∗ given for all �∈H∗ by

E(�) = S−1(g1)* � ◦ S ( g2 (4.30)

is a braided Hopf algebra isomorphism. Here g1 ⊗ g2 is the inverse of the Drinfeld
twist f, see (1.14).
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Proof. We can easily check that E is H -linear. Next, we show that E is an algebra
and coalgebra morphism, and that it is bijective. Firstly, for all �;  ∈H∗ and h∈H
we compute

E(� ∗  )(h) = 〈�; f2 . (g1S(g2h))2〉〈 ; f1g1 . (S(g2h))1〉;

(4:4; 4:3; 1:11) = 〈�; f2x3R1 . y1X 2g12G
2S(y2X 31 g

2
1h1)〉

×〈 ; f11 x
1X 1g11G

1S(f12 x
2R2y3X 32 g

2
1h2)〉;

(1:9; 1:16; 1:1; 1:11) = 〈�; f2x3R1 . G2(1;1)y
1g1S(G2(1;2)y

2g21S
1S(X 12 )F

1h1X 2)〉

×〈 ; f11 x
1G1S(f12 x

2R2G22y
3g22S

2S(X 11 )F
2h2X 3)〉;

(1:9; 1:16; 4:3; 1:27) = 〈�; f2x3G22R1S1 . g1S(g2S(X 12 y
2)F1h1X 2y3)〉

×〈 ; f11 x
1G1S(f12 x

2G21R
2S2S(X 11 y

1)F2h2X 3)〉;

(1:32; 1:9; 1:16; 4:3; 1:11) = 〈�; g1S(g2S(X 12 y2R11x11)F1h1X 2y3R12x12)〉
×〈 ; G1S(G2S(X 11 y

1R2x2)F2h2X 3x3)〉;
and, on the other hand, by (4.8) we have

(E(�) · E( ))(h) = 〈�; g1S(g2S(x1X 1)f2R1h1x31Y 2r1y1X 2)〉
×〈 ; G1S(G2S(x2Y 1r2y2X 31 )f

1R2h2x32Y
3y3X 32 )〉;

(1:32; 1:3; 1:27) = 〈�; g1S(g2S(Y 12 R1z1x1X 1)f1h1Y 2z3r1x21y1X 2〉
×〈 ; G1S(G2S(Y 11 R

2z2r2x22y
2X 31 )f

2h2Y 3x3y3X 32 )〉;

(1:3; 1:25) = 〈�; g1S(g2S(Y 12 z2R11x11)f1h1Y 2z3R12x12)〉
×〈 ; G1S(G2S(Y 11 z

1R2y2)f2h2Y 3y3)〉;
as needed. It is not hard to see that E(1(H)∗) = 1H∗ , so E is an algebra morphism. In
order to prove that E is a coalgebra map we need the following formula

S(g1)�g2 = S(�) (4.31)

which can be found in [6]. Now, E is a coalgebra morphism since

(E ⊗ E)(�(H)∗(�)) = 〈�; (g1 . ie) • (g2 . je)〉E(je)⊗ E(ie);

(4:30; 4:1; 4:3) = 〈�; X 1g11S1S(x1X 2g12S
2
ie)�x2X 31 g

2
1G

1S(x3X 32 g
2
2G

2
je)〉je ⊗ ie;

(1:9; 1:16; 1:1; 1:5) = 〈�;S1S(g1S(X 2x3)ieX 3)�g2S(S2S(X 11 x
1)jeX 12 x

2)〉je ⊗ ie;

(4:31; 4:30) = 〈E(�); S(X 11 x1)jeX 12 x2�S(X 2x3)ieX 3)〉je ⊗ ie;

(1:3; 1:5; 4:10) = E(�)1 ( S(X 11 x
1)⊗ X 3 * E(�)2 ( X 12 x

2�S(X 2x3) = �H∗(E(�))
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for all �∈H∗ and since the de8nitions of counits imply �H∗ ◦ E = �(H)∗ . It is easy to
see that E is bijective with inverse E−1(�) = S(f2) * � ◦ S−1 ( f1, for all �∈H∗

Thus, the proof is complete.

Summarizing the results of this Section we can give the true meaning of the map
Q :H∗ → H de8ned in (2.1). It is a morphism of braided groups from H∗, the function
algebra braided group associated to H∗, to H , the associated enveloping algebra braided
group of H . When H is factorizable in the sense that the map Q is bijective then
Q :H∗ ∼= H as braided Hopf algebras. In other words, the function algebra braided
group associated to H∗ and the associated enveloping algebra braided group of H are
categorical self dual, cf. Proposition 4.2.

5. D(H ) when H is factorizable

Schneider’s Theorem [27] asserts that the quantum double of a 8nite dimensional
factorizable Hopf algebra H is a 2-cocycle twist of the usual (componentwise) tensor
product Hopf algebra H ⊗ H . We note that this result also appears in [26] without
an explicit proof. The aim of this section is to give a proof of a similar result in the
quasi-Hopf case. Our approach is based on the methods developed in [27,3].
Throughout, (H; R) will be a 8nite dimensional QT quasi-Hopf algebra and D(H) its

quantum double. When there is no danger of confusion the elements � ./ h of D(H)
will be simply denoted by �h. Since H∗ can be viewed only as a k-linear subspace of
D(H) we will denote by

�(1) ⊗ �(2) :=�D(� ./ 1H )

(2:12) = (� ./ X 1Y 1)(p11x
1 * �2 ( Y 2S−1(p2) ./ p12x

2)⊗ X 21 * �1

( S−1(X 3) ./ X 22 Y
3x3:

In our notation, for all �∈H∗ and h∈H , the comultiplication �D of D(H) comes out
as

�D(�h) = �(1)h1 ⊗ �(2)h2:

By [4, Lemma 3.1], there exists a quasi-Hopf algebra projection K : D(H) → H
covering the canonical inclusion iD :H → D(H). More precisely, if R= R1 ⊗ R2 is the
R-matrix of H then K is de8ned by

K(� ./ h) = �(q2R1)q1 R2h; (5.1)

where qR = q1 ⊗ q2 is the element de8ned by (1.17). We have that K is a quasi-Hopf
algebra morphism and K ◦ iD = idH .
It is not hard to see that R̃ := R−1

21 =R2⊗R1 is another R-matrix for H . So, as in the
Hopf case, there is always a second projection K̃ : D(H) → H covering the canonical
inclusion iD. Explicitly, the morphism K̃ is given by

K̃(� ./ h) = �(q2R2)q1R1h (5.2)

for all �∈H∗ and h∈H .
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Let H and A be two quasi-bialgebras. Recall that a quasi-bialgebra map between H
and A is an algebra map J :H → A which intertwines the quasi-coalgebra structures,
respects the counits, and satis8es (J ⊗ J ⊗ J)(
) = 
A. Following [6], when H is a
quasi-Hopf algebra we de8ne

Hco(J) = {h∈H | h1 ⊗ J(h2) = x1hS(x32X
3)f1 ⊗ J(x2X 1�S(x31X

2)f2)} (5.3)

as being the set of coinvariants of H relative to J. Finally, if A is also a quasi-Hopf
algebra then J is a quasi-Hopf algebra morphism if, in addition, J(�) = �A; J(�) = �A

and SA ◦ J= J ◦ SA.

Lemma 5.1. Let (H; R) be a 8nite dimensional QT quasi-Hopf algebra, and K and
K̃ the quasi-Hopf algebra morphisms de8ned by (5.1) and (5.2), respectively. Let
j : D(H)co(K) → D(H) be the inclusion map and L :H∗ → D(H)co(K) de8ned by

L(�) = �(1)�S(K(�(2))) (5.4)

for all �∈H∗. Then the following assertions hold:

(1) L is well de8ned and bijective.
(2) If Q is the map de8ned by (2.4) then S ◦Q= K̃◦j◦L. In particular, Q is bijective

if and only if K̃ |D(H)co(K) is bijective.

Proof. (1) For all �∈H∗ we have

(id ⊗ K)�D(L(�)) = �((1); (1))�1S(K(�(2)))1 ⊗ �((1); (2))�2S(K(�(2)))2;

where we use the Sweedler type notation

(�D ⊗ id)(�D(�)) = �((1); (1)) ⊗ �((1); (2)) ⊗ �(2);

(id ⊗ �D)(�D(�)) = �(1) ⊗ �((2); (1)) ⊗ �((2); (2)):

Now, since H is a quasi-Hopf subalgebra of D(H) and K is a quasi-Hopf algebra
morphism such that K(h) = h for any h∈H , by similar computations as in [6, Lemma
4.2] or [3, Lemma 3.6], one can prove that L(�)∈D(H)co(K), so L is well de8ned.
We claim that the inverse of L, L−1:D(H)co(K) → H∗, is given for all D∈D(H)co(K)

by the formula

L−1(D) = (id ⊗ �)(D):

Indeed, L−1 is a left inverse since

(L−1 ◦ L)(�) = 〈id ⊗ �; �(1)�S(K(�(2)))〉= (id ⊗ �)(�(1))�D(�(2))

= (id ⊗ �)(� ⊗ 1) = �;

for all �∈H∗. It is also a right inverse. If D= i�ih∈D(H)co(K) then

i�(1)ih1 ⊗ K(i�(2))ih2 = x1[i�ih]S(x32X
3)f1 ⊗ x2X 1�S(x31X

2)f2
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in D(H)⊗ H . Therefore,

(L ◦ L−1)(D) = �(ih)L(i�) = �(ih)i�(1)�S(K(i�(2)))

= i�(1)ih1�S(K(i�(2))ih2)

= x1[i�ih]S(x32X
3)f1�S(x2X 1�S(x31X

2)f2)

= i�ih=D;

because of f1�S(f2) = S(�), and (1.5), (1.6).
(2) By (5.4, 2.12), (2.12) and (5.1), for any �∈H∗ we 8nd that

L(�) = (X 1Y 1)(1;1)p11x
1 * � ( S−1(X 3)q2R1X 21 Y

2S−1((X 1Y 1)2p2)

./ (X 1Y 1)(1;2)p12x
2�S(q1R2X 22 Y

3x3)

and, if we denote by Q1 ⊗ Q2 another copy of qR, and by r1 ⊗ r2 another copy of R,
then by (5.2) we compute that

(K̃ ◦ j ◦ L)(�) = 〈�; S−1(X 3)q2R1X 21 Y
2S−1((X 1Y 1)2p2)Q2R2(X 1Y 1)(1;1)p11x

1〉
Q1R1(X 1Y 1)(1;2)p12x

2�S(q1R2X 22 Y
3x3);

(1:27; 1:19) = 〈�; S−1(X 3)q2R1X 21 Y
2S−1(p2)Q2R2p11x

1〉
×X 1Y 1Q1R1p12x

2�S(q1R2X 22 Y
3x3);

(1:27; 1:21) = 〈�; S−1(X 3)q2R1X 21 Y
2R2x1〉X 1Y 1R1x2�S(q1R2X 22 Y 3x3);

(1:27; 1:25) = 〈�; S−1(X 3)q2X 22 R
1r2Y 3R2〉X 1Y 1R11�S(q1X 21 R2r1Y 2R12);

(1:5; 1:28; 1:27) = 〈�; S−1(X 3)q2R1r2X 22 Y
3〉S(q1R2r1X 21 Y 2S−1(X 1Y 1�));

(1:18; 2:4) = (S ◦ Q)(�);

as needed. Since H is 8nite dimensional the antipode S is bijective. So Q is bijective
if and only if K̃ ◦ j is bijective. Thus, the proof is complete.

For the next result we need the concept of right quasi-Hopf bimodule introduced in
[14], and the second Structure Theorem for right quasi-Hopf bimodules proved in [3].
Let H be a quasi-bialgebra, M and H -bimodule and > :M → M ⊗H an H -bimodule

map. Then (M; >) is called a right quasi-Hopf H -bimodule if the following relations
hold:

(id ⊗ �) ◦ >= id; (5.5)


(> ⊗ id)(>(m)) = (id ⊗ �)(>(m))
; ∀m∈M: (5.6)

A morphism between two right quasi-Hopf H -bimodules is an H -bimodule map which
is also right H -colinear (just like in the Hopf case). HM

H
H is the category of right

quasi-Hopf H -bimodules and morphisms of right quasi-Hopf H -bimodules.
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Let H be a quasi-Hopf algebra and M ∈ HM
H
H . Following [3], we de8ne

Mco(H) := {n∈M | >(n) = x1 · n · S(x32X 3)f1 ⊗ x2X 1�S(x31X
2)f2} (5.7)

and E : M → M , by

E(m) = m(0) · �S(m(1)); (5.8)

for all m∈M , where >(m) := m(0)⊗m(1). From [3, Lemma 3.6] we have that Im(E)=
Mco(H), and that Mco(H) is a left H -submodule of M , where M is considered a left
H -module via the left adjoint action, that is h . m = h1 · m · S(h2), for all h∈H and
m∈M . Moreover, if Mco(H) ⊗ H is viewed as a right quasi-Hopf H -bimodule via the
structure

h · (n ⊗ h′) · h′′ = h1 . n ⊗ h2h′h′′; >′(n ⊗ h) = x1 . n ⊗ x2h1 ⊗ x3h2;

then the map

QJM : Mco(H) ⊗ H → M; QJM (n ⊗ h) = X 1 · n · S(X 2)�X 3h
is an isomorphism of quasi-Hopf H -bimodules, cf. [3, Theorem 3.7]. The inverse of
QJM is given by the formula

QJ−1
M (m) = E(m(0))⊗ m(1):

Suppose now that H is a quasi-Hopf algebra and B :M → N is a morphism between two
right quasi-Hopf H -bimodules. It is not hard to see that the restriction of B de8nes a left
H -linear map between Mco(H) and Nco(H). Moreover, if we denote this (co)restriction
by B0 then the following diagram is commutative.

Mco(H) ⊗H QJM−−→ M

B0⊗id

� B

�
Nco(H) ⊗H

QJN−−→ N

Consequently, the map B is bijective if and only if the map B0 : Mco(H) → Nco(H) is
bijective.

Lemma 5.2. Let D; A and B three quasi-bialgebras and #; v; k three quasi-bialgebra
morphisms as in the diagram below

D A

D

ϑ

(�� : = �⊗

⊗

� �)
�

B B.A
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Suppose that v ◦ P = idB and de8ne Q as above. Then the following assertion hold:

(1) D and A ⊗ B are right quasi-Hopf B-bimodules via the following structures

D∈ BM
B
B :

{
b · d · b′ = P(b)dP(b′)

>D(d) = d1 ⊗ v(d2);

A ⊗ B∈ BM
B
B :

{
b′ · (a ⊗ b) · b′′ = #(P(b′

1))a#(P(b
′′
1 ))⊗ b′

2bb
′′
2

>A⊗B(a ⊗ b) = #(P(x1))a#(P(X 1))⊗ x2b1X 2 ⊗ x3b2X 3;

a∈A, b; b′; b′′ ∈B, d∈D, and Q becomes a quasi-Hopf B-bimodule morphism.
(2) If D, A and B are quasi-Hopf algebras and #; v and P are quasi-Hopf algebra

maps then Dco(B) = Dco(v) and

(A ⊗ B)co(B) = {#(P(x1))a#(P(S(x32X 3)f1))⊗ x2X 1�S(x31X
2)f2 | a∈A}:

Proof. Since no confusion is possible we will write without subscripts D; A or B in
the tensor components of the reassociators of D, A or B, respectively. The same thing
we will do when we write their inverses.
(1) It is straightforward to show that with the above structures D is an object of

BM
B
B , and that A ⊗ B is a B-bimodule. The map >A⊗B is a B-bimodule map since

>A⊗B(b′ · (a ⊗ b) · b′′) = >A⊗B(#(P(b′
1))a#(P(b

′′
1 ))⊗ b′

2bb
′′
2 )

= #(P(x1b′
1))a#(P(b

′′
1X

1))⊗ x2b′
(2;1)b1b

′′
(2;1)X

2

⊗ x3b′
(2:2)b2b

′′
(2;2)X

3;

(1:1) = b′
1 · (#(P(x1))a#(P(X 1))⊗ x2b1X 2) · b′′

1 ⊗ b′
2x
3b2X 3b′′

2

=�(b′)>A⊗B(a ⊗ b)�(b′′);

for all a∈A and b; b′; b′′ ∈B. Similar computations show that


−1(id ⊗ �)(>A⊗B(a ⊗ b))
= (>A⊗B ⊗ id)(>A⊗B(a ⊗ b));

for all a∈A and b∈B, so A ⊗ B∈ BM
B
B . Also, we can check directly that Q becomes

a morphism in BM
B
B , the details are left to the reader.

(2) By de8nitions we have

Dco(B) = {d∈D | >D(d) = x1 · d · S(x32X 3)f1 ⊗ x2X 1�S(x31X
2)f2}

= {d∈D |d1 ⊗ v(d2) = P(x1)dP(S(x32X
3)f1)⊗ v(P(x2X 1�S(x31X

2)f2))}
=Dco(v):

Observe now that a ⊗ b∈ (A ⊗ B)co(B) if and only if

#(P(x1))a#(P(X 1))⊗ x2b1X 2 ⊗ x3b2X 3

=#(P(x11))a#(P((S(x
3
2X

3)f1)1))⊗ x12b(S(x
3
2X

3)f1)2

⊗x2X 1�S(x31X
2)f2: (5.9)
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If a ⊗ b∈ (A ⊗ B)co(B) applying id ⊗ � ⊗ id to equality (5.9) we obtain

a ⊗ b= �(b)#(P(x1))a#(P(S(x32X
3)f1))⊗ x2X 1�S(x31X

2)f2;

so (A⊗B)co(B) ⊆ {#(P(x1))a#(P(S(x32X 3)f1))⊗ x2X 1�S(x31X
2)f2 | a∈A}. Conversely,

if #= #1 ⊗ #2 is the element de8ned by (1.12) and F1 ⊗F2 =F1 ⊗F2 are other copies
of f then for all a∈A we compute

#(P(y1))[#(P(x1))a#(P(S(x32X
3)f1))]#(P(Y 1))⊗ y2[x2X 1�S(x31X

2)f2]1Y
2

⊗y3[x2X 1�S(x31X
2)f2]2Y

3

(1:15; 1:11) = #(P(y1x1))a#(P(S(x32X
3)f1Y 1))

⊗y2x21X
1
1 z
1�S(x3(1;2)X

2
2 z
3
2Z
3)F1f21 Y

2

⊗y3x22X
1
2 z
2Z1�S(x3(1;1)X

2
1 z
3
1Z
2)F2f22 Y

3;

(twice 1:3) = #(P(x11y
1))a#(P(S((x3y32)2X

3T 3)f1Y 1))

⊗x12y
2T 1�S((x3y32)(1;2)X

2
2 Z

3T 2)F1f21 Y
2

⊗x2y31X
1Z1�S((x3y32)(1;1)X

2
1 Z

2)F2f22 Y
3;

(1:3; 1:5; 1:1) = #(P(x11y
1))a#(P(S(x32z

3(y3(2;2)X
3)2T 3f1Y 1))

⊗x12y
2T 1�S(x3(1;2)z

2(y3(2;2)X
3)1T 2)F1f21 Y

2

⊗x2y31X
1�S(x3(1;1)z

1y3(2;1)X
2)F2f22 Y

3;

(1:1; 1:5) = #(P(x11y
1))a#(P(S(x32z

3X 32 y
3
2T

3)f1Y 1))

⊗x12y
2T 1�S(x3(1;2)z

2X 31 z
2X 31 y

3
1T

2)F1f21 Y
2

⊗x2X 1�S(x3(1;1)z
1X 2)F2f22 Y

3;

(1:1; 1:9; 1:16) = #(P(x11))[#(P(y
1))a#(P(S(y32T

3)F1))]#(P(g1S(x3(2;2)X
3
2 )F

1f11 ))

⊗x12[y
2T 1�S(y31T

2)F2]g2S(x3(2;1)X
3
1 )F

2f12 ⊗ x2X 1�S(x31X
2)f2;

(1:11) = #(P(x11))[#(P(y
1))a#(P(S(y32T

3)F1))]#(P((S(x32X
3)f1)1))

⊗x12[y
2T 1�S(y31T

2)F2](S(x32X
3
1 )f

1)2 ⊗ x2X 1�S(x31X
2)f2;

as needed. Therefore, {#(P(x1))a#(P(S(x32X 3)f1)) ⊗ x2X 1�S(x31X
2)f2 | a∈A} ⊆

(A ⊗ B)co(B), and this 8nishes our proof.

Proposition 5.3. Let D be a quasi-Hopf algebra, A and B two quasi-bialgebras and
# : D → A, v : D → B two quasi-bialgebra maps. Consider Q : D → A ⊗ B given by
Q(d) = #(d1)⊗ v(d2), for all d∈D.
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(1) Suppose that (D; R) is quasitriangular and de8ne F= F1 ⊗ F2 ∈ (A ⊗ B)⊗2, by

F= #(Y 11 x
1X 1y11)⊗ v(Y 12 x

2R1X 3y2)⊗ #(Y 2x3R2X 2y12)⊗ v(Y 3y3); (5.10)

where, as usual, R1 ⊗ R2 is the inverse of the R-matrix R of D. Then F is a
twist on A ⊗ B (here A ⊗ B has the componentwise quasi-bialgebra structure)
and Q : D → (A ⊗ B)F is a quasi-bialgebra morphism. Moreover, if A and B
are quasi-Hopf algebras and # and v are quasi-Hopf algebra morphisms, then
Q : D → (A⊗B)UF is a quasi-Hopf algebra morphism, where U=#(R2g2)⊗v(R1g1).

(2) Suppose that A and B are quasi-Hopf algebras, # and v are quasi-Hopf algebra
morphisms, and that there exists a quasi-Hopf algebra map P : B → D such
that v ◦ P = idB. Then Q is a bijective map if and only if the restriction of #
provides a bijection from Dco(v) to A.

Proof. (1) We have that Q=(#⊗v)◦�D, so clearly Q is an algebra map. It also respects
the comultiplications. Indeed, applying (1.8), twice (1.1), (1.27), and then again (1.1)
two times, it is not hard to see that

(�(A⊗B)F ◦ Q)(d) = ((Q ⊗ Q) ◦ �D)(d)

for all d∈D. Obviously, �A⊗B ◦ Q = �D, so Q respects the counits. It remains to show
that

(Q ⊗ Q ⊗ Q)(
D) = 
(A⊗B)F :

This follows from a long, technical but straightforward computation, we leave the
details to the reader. Suppose now that A and B are quasi-Hopf algebras and that #
and v are quasi-Hopf algebra morphisms. In this case, Q : D → (A ⊗ B)UF is also a
quasi-bialgebra morphism since (A⊗B)UF =(A⊗B)F as quasi-bialgebras. Thus, we are
left to show that

Q(�) = U�(A⊗B)F ; Q(�) = �(A⊗B)FU−1; (Q ◦ SD)(d) = USA⊗B(Q(d))U−1

for all d∈D. Take F−1 =S1 ⊗ S2 as being the inverse of the twist F. By (1.10) and
(5.10) we compute:

�(A⊗B)F = SA⊗B(S1)�A⊗BS
2

= #(S(Y 11 x
1X 1y11)�Y

1
2 x
2R2X 3y2)⊗ v(S(Y 2x3R1X 2y12)�Y

3y3);

(1:5; 1:26) = #(S(R21X
2R2y11)�R

2
2X

3y2)⊗ v(S(R1X 1R1y12)�y
3);

(1:5; 1:28; 1:27) = #(S(X 2y12R
2)�X 3y2)⊗ v(S(X 1y11R

1)�y3);

(1:12; 1:15) = #(S(R2)"1)⊗ v(S(R1)"2) = #(S(R2)f1�1)⊗ v(S(R1)f2�2);

(1:32) = #(f2R2�1)⊗ v(f1R1�2) = U−1Q(�);

as needed. In a similar manner one can prove that �(A⊗B)F = Q(�)U, the details are left
to the reader. Finally, for all d∈D we have

USA⊗B)Q(d))U−1 = #(R2g2S(d1)f2R2)⊗ v(R1g1S(d2)f1R1);

(1:11; 1:27) = #(S(d)1)⊗ v(S(d)2) = Q(S(d)):
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(2) We are in the same hypothesis as in the Lemma 5.2, so Q : D → A ⊗ B is a
right quasi-Hopf B-bimodule morphism. As we have already explained before Lemma
5.2, the morphism Q is bijective if and only if Q0, the restriction of Q, de8nes an
isomorphism between Dco(B) and (A⊗B)co(B). But Dco(B) =Dco(v), so if d∈Dco(B) then

Q(d) = #(d1)⊗ v(d2)

= #(P(x1))#(d)#(P(S(x32X
3)f1))⊗ x2X 1�S(x31X

2)f2;

because of v ◦ P = idB. Hence, by Lemma 5.2, Q is bijective if and only if the map

Q0 : Dco(v) → {#(P(x1))a#(P(S(x32X 3)f1))⊗ x2X 1�S(x31X
2)f2 | a∈A};

Q0(d) = #(P(x1))#(d)#(P(S(x32X
3)f1))⊗ x2X 1�S(x31X

2)f2

is bijective. Now, it follows that Q is bijective if and only if the restriction of # de8nes
a bijection between Dco(v) and A.

We can now state the structure theorem of D(H) when H is factorizable. The next
result generalizes [27, Theorem 4.3].

Theorem 5.4. Let (H; R) be a 8nite dimensional QT quasi-Hopf algebra, D(H) K→̃
K
H

the quasi-Hopf algebra morphisms de8ned by (5.1) and (5.2), respectively, and de8ne
Q : D(H) → H ⊗ H , given by Q(D) = K̃(D1)⊗ K(D2), for all D∈D(H), and

F= Y 11 x
1X 1y11 ⊗ Y 12 x

2R2X 3y2 ⊗ Y 2x3R1X 2y12 ⊗ Y 3y3; (5.11)

where R1 ⊗ R2 is the R-matrix R of H . Then the following assertions hold:

(1) Q : D(H) → (H ⊗ H)UF is a quasi-Hopf algebra morphism, where U := R1g2 ⊗
R2g1.

(2) Q is bijective if and only if (H; R) is factorizable.

Proof. We consider in Proposition 5.3 D=D(H), A=B=H , #= K̃, v=K and P= iD.
So the map Q in the statement is the map Q in Proposition 5.3 specialized for our case.
Moreover, from de8nition (2.17) of the R-matrix R of D(H) we have

K(R1)⊗ K̃(R2) = S−1(p2)iep11 ⊗ 〈ie; q2R2〉q1R1p12
= S−1(p2)q2R2p11 ⊗ q1R1p12;

(1:27; 1:21) = S−1(p2)q2p12R
2 ⊗ q1p11R

1 = R2 ⊗ R1:

Since K and K̃ are algebra maps we obtain that K(R
1
)⊗ K̃(R

2
) =R2 ⊗R1, so the twist

(5.11) is the twist F de8ned in (5.10) specialized for our situation. Also, the element
U is the element U de8ned in Proposition 5.3 specialized for our context and this prove
the 8rst assertion.
Applying again Proposition 5.3 we have that Q is bijective if and only if the restriction

of K̃ provides a bijection from D(H)co(K) to H . By Lemma 5.1 this is equivalent to Q
bijective. Finally, by Proposition 2.2 we obtain that Q is bijective if and only if (H; R)
is factorizable, and this 8nishes our proof.
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6. Factorizable implies unimodular

In [25] it is proved that a 8nite dimensional factorizable Hopf algebra is unimodular.
In this section we will show that this also holds for a 8nite dimensional factorizable
quasi-Hopf algebra. In particular, we obtain that for any 8nite dimensional quasi-Hopf
algebra H its Drinfeld double D(H) is always a unimodular quasi-Hopf algebra.
Throughout, H will be a 8nite dimensional quasi-Hopf algebra. Recall that t ∈H is

called a left (respectively right) integral in H if ht= �(h)t (respectively th= �(h)t) for
all h∈H . We denote by

∫ H
l (
∫ H
r ) the space of left (right) integrals in H . It follows

from the bijectivity of the antipode with S(
∫ H
l ) =

∫ H
r and S(

∫ H
r ) =

∫ H
l . If there is a

non-zero left integral in H which is at the same time a right integral, then H is called
unimodular. Hausser and Nill [14] proved that for a 8nite dimensional quasi-Hopf
algebra the space of left or right integrals has dimension 1.
Let t be a non-zero integral in H . Since the space of left integrals is a two-sided

ideal it follows from the uniqueness of integrals in H that there exists B∈H∗ such
that

th= B(h)t; ∀ t ∈
∫ H

l
and h∈H: (6.1)

It was noted in [14] that B is an element of Alg(H; k), i.e. B is an algebra morphism
from H to k. Moreover, Alg(H; k) is a group with multiplication given by % ◦ & =
(% ⊗ &) ◦ �, unit �, and inverse %−1 = % ◦ S = % ◦ S−1. Observe that B = � if and only
if H is unimodular. As in the case of a Hopf algebra we will call B the distinguished
group-like element of H∗.
Hasser and Nill [14] also introduced left cointegrals on a 8nite dimensional quasi-

Hopf algebra. These cointegrals are the elements E of the dual space H∗ which satisfy
for all h∈H ,

E(V 2h2U 2)V 1h1U 1 = B(x1)E(hS(x2))x3: (6.2)

Here U = U 1 ⊗ U 2 is the element de8ned by (2.2), B is the distinguished group-like
element of H∗, and if pR = p1 ⊗ p2 and f = f1 ⊗ f2 are the elements de8ned by
(1.17) and (1.13), respectively, then V = V 1 ⊗ V 2 is given by

V = S−1(f2p2)⊗ S−1(f1p1): (6.3)

Using another structure theorem for right quasi-Hopf H -bimodules, Hausser and Nill
prove that the space of left cointegrals L is one dimensional, and that the dual paring
L ⊗ ∫ H

r � E ⊗ r �→ 〈E; r〉 ∈ k is non-degenerated. Let E be a non-zero left cointegral
and r a non-zero right integral in H such that E(r) = 1. Following [14], we call

g := E(V 1r1U 1)V 2r2U 2 (6.4)

the comodulus of H . It was proved in [14] that g is invertible, and that its inverse is
given by

g−1 = E(S(V 2r2U 2))S2(V 1r1U 1): (6.5)
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The results in the next two Lemmas also appear in a recent preprint of Kadison [17].
We prefer here to give direct proofs because they provide new formulas, which are of
independent interest.
The following result expresses g and g−1 in terms of left integrals.

Lemma 6.1. Let H be a 8nite dimensional quasi-Hopf algebra, E a left cointegral on
H and 0 �= r ∈ ∫ H

r such that E(r) = 1. If we set r = S−1(t) for a certain left integral
t in H , then

g= E(S−1(q2t2p2))S−1(q1t1p1); (6.6)

g−1 = E(q1t1p1)S(q2t2p2); (6.7)

where pR = p1 ⊗ p2 and qR = q1 ⊗ q2 are the elements de8ned by (1.17).

Proof. Let qL = q̃1 ⊗ q̃2 be the element de8ned by (1.18). We prove 8rst that

q1t1 ⊗ q2t2 = q̃1t1 ⊗ q̃2t2; (6.8)

for all t ∈ ∫ H
l . To this end, we need the following relations

qR = (q̃2 ⊗ 1)V�(S−1(q̃1)); (6.9)

pR = �(S(p̃1))U (p̃2 ⊗ 1); (6.10)

U 1 ⊗ U 2S(h) = �(S(h1))U (h2 ⊗ 1); ∀ h∈H; (6.11)

which can be found in [14] (here p̃1⊗ p̃2 is the element pL de8ned by (1.18)). Now,
t ∈ ∫ H

l and (6.9) imply that

q1t1 ⊗ q2t2 = V 1t1 ⊗ V 2t2: (6.12)

Together with a quasi-Hopf algebra H = (H;�; �; 
; S; �; �) we also have H cop as
quasi-Hopf algebra, where cop means opposite comultiplication. The quasi-Hopf algebra
structure is obtained by putting 
cop=(
−1)321=x3⊗x2⊗x1, Scop=S−1, �cop=S−1(�)
and �cop = S−1(�). It is not hard to see that in H cop we have (qR)cop = q̃2 ⊗ q̃1,
(pR)cop = p̃2⊗ p̃1 and fcop = (S−1⊗S−1)(f), and therefore Vcop =S(p̃1)f2⊗S(p̃2)f1.
Specializing (6.12) for H cop, we obtain

q̃1t1 ⊗ q̃2t2 = S(p̃2)f1t1 ⊗ S(p̃1)f2t2:

On the other hand, one can easily check that (1.18, 1.9, 1.16) and S−1(f2)�f1=S−1(�)
imply

S(p̃2)f1 ⊗ S(p̃1)f2 = q1g11 ⊗ S−1(g2)q2q12;

where, as usual, we denote f−1 = g1 ⊗ g2. From the above, we conclude that

q̃1t1 ⊗ q̃2t2 = q1g11t1 ⊗ S−1(g2)q2g12t2;(
t ∈
∫ H

l

)
= q1t1 ⊗ q2t2;
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as needed. We claim now that

U 1 ⊗ U 2 = q̃11p
1 ⊗ q̃12p

2S(q̃2): (6.13)

Indeed, by (6.10) we have

q̃11p
1 ⊗ q̃12p

2S(q̃2) = [q̃1S(p̃1)]1U
1p̃2 ⊗ [q̃1S(p̃1)]2U 2S(q̃2);

(6:11) = [q̃1S(q̃21p̃
1)]1U

1q̃22p̃
2 ⊗ [q̃1S(q̃21p̃1)]2U 2;

(1:22) =U 1 ⊗ U 2:

We write pR=p1 ⊗p2 =P1 ⊗P2, f=f1 ⊗f2 =F1 ⊗F2 and f−1 = g1 ⊗ g2. Then
the above relations allow us to compute

V 1r1U 1 ⊗ V 2r2U 2 = V 1r1q̃11p
1 ⊗ V 2r2q̃12p

2S(q̃2);(
r ∈
∫ H

r
; 6:3

)
= S−1(f2P2)S−1(t)1p1 ⊗ S−1(f1P1)S−1(t)2p2;

(1:11; 1:17) = S−1(S(x1)f2t2P2)⊗ S−1(S(x2)f1t1P1)�S(x3);

(1:9; 1:16) = S−1(F2x3g22t2P
2)⊗ S−1(f2F12 x

2g21t1P
1)�f1F11 x

1;(
S−1(f2)�f1 = S−1(�); 1:5; t ∈

∫ H

l

)
= S−1(x3t2P2)⊗ S−1(S(x1)�x2t1P1);

(1:18; 6:8) = S−1(q̃2t2P2)⊗ S−1(q̃1t1P1) = S−1(q2t2P2)⊗ S−1(q1t1P1):

Thus, we have proved that

V 1r1U 1 ⊗ V 2r2U 2 = S−1(q2t2P2)⊗ S−1(q1t1P1):

It follows now that the above equality and (6.4), (6.5) imply (6.6) and (6.7), so our
proof is complete.

Recall from [3, Remarks 2.6] that the map

QA : H∗ → H; QA(�) = �(q2t2p2)q1t1p1 ∀ �∈H∗;

is bijective. Thus there is an unique E∈H∗ such that

E(q2t2p2)q1t1p1 = 1: (6.14)

Lemma 6.2. The linear map E de8ned above is a non-zero left cointegral on H .

Proof. The fact that E is non-zero follows from QA(E) = 1. Let E0 be a non-zero left
cointegral on H . Then

QA(E0) = E0(q2t2p2)q1t1p1;

(6:9; 6:10) = E0(V 2[S−1(q̃1)tS(p̃1)]2U
2)q̃2V 1[S−1(q̃1)tS(p̃1)]1U

1p̃2;
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(
t ∈
∫ H

l
; 6:1

)
= B−1(p̃1)E0(V 2t2U 2)V 1t1U 1p̃2;

(6:2) = B(x1)B−1(p̃1)E0(tS(x2))x3p̃2;

(6:1; 1:18) = B(x1)B(X 1�S(X 2))B(S(x2))E0(t)x3X 3 = QA(B(�)E0(t)E):

Since QA is bijective we deduce that E0 = B(�)E0(t)E, and since 0 �= E0 ∈L, by the
uniqueness of left cointegrals on H we conclude that E is a non-zero left cointegral
on H .

We 8nally need the following result.

Lemma 6.3. Let H be a 8nite dimensional quasi-Hopf algebra, t a non-zero left
integral in H and B the distinguished group-like element of H∗. Then for any h∈H
the following relations hold:

q1t1 ⊗ S−1(h)q2t2 = hq1t1 ⊗ q2t2; (6.15)

t1 ⊗ t2 = �q1t1 ⊗ q2t2 = q1t1 ⊗ S−1(�)q2t2; (6.16)

t1p1 ⊗ t2p2S(h ( B) = t1p1h ⊗ t2p2; (6.17)

where for all h∈H and �∈H∗ we de8ne h ( � = �(h1)h2.

Proof. The relations (6.15, 6.16) are proved in [3, Lemma 2.1]. The equality (6.17)
follows from the following computation

t1p1 ⊗ t2p2S(h ( B) = B(h1)t1p1 ⊗ t2p2S(h2);

(6:1) = t1h(1;1)p1 ⊗ t2h(1;2)p2S(h2);

(1:19) = t1p1h ⊗ t2p2;

for all h∈H , and this 8nishes the proof.

Theorem 6.4. Let (H; R) be a 8nite dimensional QT quasi-Hopf algebra and B the
distinguished group-like element of H∗. Then the following assertion hold.

(1) If qR = q1 ⊗ q2 =Q1 ⊗ Q2 and pR =p1 ⊗ p2 = P1 ⊗ P2 are the elements de8ned
by (1.17) then

B(Q1)q2t2p2S(Q2(R2P2 ( B))R1P1 ⊗ q1t1p1 = S(u)q1t1p1 ⊗ q2t2p2;
(6.18)

where R= R1 ⊗ R2 is the R-matrix of H and u is the element de8ned in (1.29).
(2) If (H; R) is factorizable then H is unimodular.

Proof. (1) Let us start by nothing that g1S(g2�) = �, (1.32, 1.33) and (1.31) imply

R1�S(R2) = S(�u): (6.19)
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Now, from (6.17) we have

B(Q1)q2t2p2S(Q2(R2P2 ( B))R1P1 ⊗ q1t1p1

= B(Q1)q2t2p2S(Q2)R1P1 ⊗ q1t1p1R2P2;

(6:1) = q2t2Q12p
2S(Q2)R1P1 ⊗ q1t1Q11p

1R2P2;

(1:21) = q2t2R1P1 ⊗ q1t1R2P2;

(1:27) = q2R1t1P1 ⊗ q1R2t2P2;

(6:16) = q2R1�Q1t1P1 ⊗ q1R2Q2t2P2;

(6:15) = q2R1�S(q1R2)Q1t1P1 ⊗ Q2t2P2;

(6:19) = S(q1�uS−1(q2))Q1t1P1 ⊗ Q2t2P2;

(1:31; 1:17; 1:16) = S(u)Q1t1P1 ⊗ Q2t2P2;

and this proves the 8rst assertion.
(2) Let E∈H∗ be the element de8ned by (6.14). By Lemma 6.2 we know that E is

a non-zero left cointegral on H . Consider now r a non-zero right integral in H such
that E(r) = 1, and take r = S−1(t) for some non-zero left integral t in H . Then, by
Lemma 6.1 we have

S−1(g−1) = E(q1t1p1)q2t2p2:

Applying id ⊗ E to equality (6.18) we obtain

B(Q1)S−1(g−1)S(Q2(R2P2 ( B))R1P1 = S(u);

and since S−1(g)S(u) = S(uS−2(g)) = S(gu), it follows that the above relation to
equivalent to

B(Q1)S(Q2(R2P2 ( B))R1P1 = S(u)S(g): (6.20)

On the other hand, if we denote by r1 ⊗ r2 another copy of R, we then have

B(Q1)S(Q2(R2P2 ( B))R1P1

(1:17) = B(X 1R21P
2
1)S(X

2R22P
2
2)�X

3R1P1;

(1:26) = B(X 1R2y2P21)S(r
2X 3y3P22)�r

1X 2R1y1P1;

(1:33; 1:31; 1:17) = B(q1R2y2P21)S(S(q
2)y3P22)uR

1y1P1;

(1:23; 1:27) = B(q1X 1(1;1)p
1
1R
2P2S(X 3)f1)S(S(q2)X 12 p

2S(X 2)f2)uX 1(1;2)p
1
2R
1P1;

(1:31; 1:19) = B(X 1q1p11R
2P2S(X 3)f1)S(S(q2p12)p

2S(X 2)f2)uR1P1;

(1:21; 1:31) = B(X 1R2P2S(X 3)f1)uS−1(S(X 2)f2)R1P1:
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From the above computation and (6.20) we obtain

B(X 1R2P2S(X 3)f1)S−1(S(X 2)f2)R1P1 = u−1S(u)S(g): (6.21)

But, as we have already seen, if (H; R) is QT then R̃ = R−1
21 = R2 ⊗ R1 is another

R-matrix for H . Repeating the above computations for (H; R̃) instead of (H; R), we
8nd that

B(X 1 Qr1P2S(X 3)f1)S−1(S(X 2)f2) Qr2P1 = ũ −1S(ũ)S(g); (6.22)

where we denote by ũ the element de8ned as in (1.29) for (H; R̃) instead of (H; R),
and where Qr1 ⊗ Qr2 is another copy of R−1. More precisely, we have that

ũ= S(u−1): (6.23)

Indeed, one can easily see that (6.19) and (1.31) imply

Qr2�S( Qr1) = S−1(�)u−1 = u−1S(�): (6.24)

Now, we compute

ũ= S( Qr1x2�S(x3))� Qr2x1;

(S(�f1)f2 = �) = S(�f1 Qr1x2�S(x3))f2 Qr2x1;

(1:32; 1:17) = S( Qr2�S( Qr1)f2p2)f1p1;

(6:24) = S(S−1(f1p1)u−1S(�)f2p2);

(1:31; S(�f1)f2 = �; 1:17; 1:6) = S(u−1S(p1)�p2) = S(u−1):

Now, since S2(u) = u the relation (6.22) becomes

B(X 1 Qr1P2S(X 3)f1)S−1(S(X 2)f2) Qr2P1 = S(u)u−1S(g): (6.25)

From (1.31) it follows that uS−1(u) = S(u)u, and since S2(u) = u we conclude that
uS(u) = S(u)u, so u−1S(u) = S(u)u−1. Hence, by (6.21) and (6.25) we obtain

B(X 1R2P2S(X 3)f1)S−1(S(X 2)f2)R1P1 = B(X 1 Qr1P2S(X 3)f1)S−1(S(X 2)f2) Qr2P1:

This comes out explicitly as

B(R2P2)R1P1 = B( Qr1P2) Qr2P1

and implies

B(Q11R
2P2S(Q2))Q12R

1P1 = B(Q11 Qr
1P2S(Q2))Q12 Qr

2P1:

From (1.27) and (1.21) we deduce that

B(R2)R1 = B( Qr1) Qr2 ⇔ B(R2r1)R1r2 = 1: (6.26)

Finally, the above relation allows us to compute

Q(B) = B(q̃1X 1R2r1p1)q̃21X
2R1r2p2S(q̃22X

3);

(6:26; 1:17) = B(q̃1X 1x1)q̃21X
2x2�S(q̃22X

3x3);

(1:5; 1:18) = B(�)� = Q(B(�)�):
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If (H; R) is factorizable then Q is bijective, so B = B(�)�. In particular, 1 = B(1) =
B(�)�(1) = B(�). Hence B = �, and this means that H is unimodular.

Theorem 6.5. Let H be a 8nite dimensional quasi-Hopf algebra. Then the Drinfeld
double D(H) of H is a unimodular quasi-Hopf algebra.

Proof. It is an immediate consequence of Proposition 2.3 and Theorem 6.4
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