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We consider the non-supersymmetric models of chaotic (driven by a quadratic potential) and hybrid
inflation, taking into account the minimal possible radiative corrections to the inflationary potential. We
show that two simple coupling functions f (σ ) (with a parameter cR involved) between the inflaton field
σ and the Ricci scalar curvature ensure, for sub-Planckian values of the inflaton field, observationally
acceptable values for the spectral index, ns, and sufficient reheating after inflation. In the case of
chaotic inflation we consider two models with large cR ’s resulting to ns � 0.955 or 0.967 and tensor-
to-scalar ratio r � 0.2 or 0.003, respectively. In the case of hybrid inflation, the selected f (σ ) assists
us to obtain hilltop-type inflation. For values of the relevant mass parameter, m, less than 106 TeV
and the observationally central value of ns, we find cR � (0.015–0.078) with the relevant coupling
constants λ = κ and the symmetry breaking scale, M , confined in the ranges (2 · 10−7–0.001) and
(1–16.8) · 1017 GeV, respectively.
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1. Introduction

Non-minimal inflation (non-MI) [1] i.e. inflation constructed in
the presence of a non-minimal coupling between the inflaton field
and the Ricci scalar curvature, R, has gained a fair amount of re-
cent attention [2–4]. In particular, it is shown that non-MI can be
realized within the Standard Model (SM) — or minimal extensions
[5] of it — provided the inflaton couples strongly enough to R.
The role of inflaton can be played either by the Higgs doublet ei-
ther by a SM singlet coupled to Higgs. Although quite compelling,
non-MI within SM suffers from (i) several computational uncer-
tainties regarding the impact of the quantum corrections in the
presence of such a strong non-minimal gravitational coupling and
(ii) the ambiguity about the hierarchy between the cutoff scale
of the effective theory and the energy scale of the inflationary
plateau [6,7]. Be that as it may, it would be interesting to exam-
ine if appropriately selected non-minimal gravitational couplings
can have beneficial consequences — as for the reconstruction of
the cosmic expansion history [8] — for other well-motivated and
rather natural models of inflation (for a survey see, e.g., Ref. [9]).

Two such models are undoubtedly Chaotic (CI) [10] and Hy-
brid Inflation (HI) [11]. In this Letter we focus on the non-
supersymmetric version of these models. CI driven by a quadratic
potential provides the simplest realization of inflation without
initial-value problem and with quite interesting predictions for the
(scalar) spectral index, ns, and the scalar-to-tensor ratio, r. How-
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ever, trans-Planckian inflaton-field values are typically required
to allow for a sufficiently long period of inflation. Thus non-
renormalizable corrections from quantum gravity are expected to
destroy the flatness of the potential, invalidating thereby CI. On
the other hand, HI — although can be accommodated with sub-
Planckian values for the inflaton — suffers from the problem of the
enhanced ns which turns out to be, mostly, well above the predic-
tion of the fitting [12] of the five-year results from the Wilkinson
Microwave Anisotropy Probe Satellite (WMAP5) plus baryon-acoustic-
oscillations (BAO) and supernovae (SN) data – for an up-to-date
analysis of the problem of initial conditions within HI, see Ref. [13].

Note, in passing, that the introduction of supersymmetry (SUSY)
and its local extension — supergravity (SUGRA) — can alleviate the
shortcomings of both models — see Ref. [14] for several resolutions
to the problem of CI and Refs. [15–19] for proposals related to the
disadvantage of HI. However, we have to accept that there is no di-
rect experimental confirmation of SUSY until now. On the contrary,
there is a strong observational evidence in favor of the inflationary
paradigm. Consequently, it is worthwhile to build models of CI and
HI consistently with the observations, even without the presence
of SUSY — for similar recent attempts, see Refs. [20,21].

In this Letter, we propose two types of non-minimal coupling
functions f (σ ) between the inflaton and R which support a reso-
lution to the aforementioned problems of CI and HI. After the end
of non-MI, both f (σ )’s shrink to unit assuring thereby, a safe tran-
sition to the Einstein gravity in time. In the case of non-minimal
CI (non-MCI), two models with clearly distinctive results are inves-
tigated. In the case of non-minimal HI (non-MHI), the inflationary
trajectory is concave downwards and so, inflation turns out to be
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of hilltop-type [22]. In both cases, the minimal possible radiative
corrections [23] to the inflationary potential are considered, sub-
Planckian values of the inflaton field are required and adequate
reheating of the universe is accomplished via curvature-induced
[24] couplings of the inflaton to matter fields. Comparisons with
the results obtained for the minimal version of both inflationary
models are also displayed.

Below, we describe the generic formulation of non-MI (Sec-
tion 2) and then apply the relevant results, for appropriate choices
of f (σ ), in the case of non-MCI and non-MHI in Sections 3
and 4 respectively. Finally, Section 5 summarizes our conclusions.
Throughout the text, we set natural units for the Planck’s constant,
Boltzmann’s constant and the velocity of light (h̄ = c = kB = 1) the
subscript ,χ denotes derivation with respect to (w.r.t.) the field χ

(e.g., ,χχ = d2/dχ2) and a bar over a field χ denotes normal-
ization w.r.t. the reduced Planck mass, mP = 2.44 · 1018 GeV, i.e.,
χ̄ = χ/mP. Finally, we follow the conventions of Ref. [25] for the
quantities related to the gravitational sector of our set-up.

2. Inflation with non-minimal gravitational coupling

Non-MI, by its definition, can be realized by a scalar field non-
minimally coupled to Ricci scalar curvature. The formulation of a
such theory is described in Section 2.1. Based on it, we then derive
the inflationary observables and impose observational constraints
in Section 2.2.

2.1. Non-minimally curvature-coupled scalar theory

The dynamics of a scalar field σ non-minimally coupled to R
through a coupling function f (σ ) is controlled, in the Jordan
frame, by the following action — see, e.g., Ref. [4]:

S =
∫

d4x
√−g

(
−1

2
m2

P f (σ )R + 1

2
gμν∂μσ∂νσ − V (σ )

)
,

(2.1)

where g is the determinant of the background Friedmann–Robert-
son–Walker metric [25]. To guarantee the validity of the ordinary
Einstein gravity at low energy, we require f (〈σ 〉) = 1, where 〈σ 〉
is the vacuum expectation value (v.e.v.) of σ at the end of non-MI.

The action in Eq. (2.1) can be brought in a simpler form by per-
forming a conformal transformation [26] to the so-called Einstein
frame where the gravitational sector of our model becomes mini-
mal. Indeed, if we define the Einstein-frame metric

ĝμν = f gμν ⇒
{√−ĝ = f 2√−g and ĝμν = gμν/ f ,

R̂ = (
R + 3� ln f + 3gμν∂μ f ∂ν f /2 f 2

)
/ f

(2.2)

— where � = (−g)−1/2∂μ(
√−g∂μ) and hat is used to denote

quantities defined in the Einstein frame — and introduce the
Einstein-frame canonically normalized field, σ̂ , and potential, V̂ ,
defined as follows:(

dσ̂

dσ

)2

= J 2 = 1

f
+ 3

2
m2

P

(
f,σ
f

)2

and V̂ (σ̂ ) = V (σ̂ (σ ))

f (σ̂ (σ ))2
,

(2.3)

the action in Eq. (2.1) can be simplified, taking the form

S =
∫

d4x
√

−ĝ

(
−1

2
m2

P R̂ + 1

2
ĝμν∂μσ̂ ∂νσ̂ − V̂ (σ̂ )

)
. (2.4)

Based on the action above, we can proceed readily to the analy-
sis of non-MI in the Einstein frame using the standard slow-roll
approximation [9,27] — see below. It can be shown [28] that the
results calculated this way are the same as if we had calculated
them with the non-minimally coupled scalar field in the Jordan
frame.

One of the outstanding features of the scalar theories with
non-minimal f (σ ) is that σ can decay via gravitational effects
[24] even without explicit couplings between σ and matter fields.
This is, because couplings arise spontaneously when σ settles
in its v.e.v. 〈σ 〉, and oscillates, with coupling constants involv-
ing derivatives of f (σ ) calculated for σ = 〈σ 〉. If we identify σ
as the inflaton, these couplings can ensure the reheating of the
universe. Assuming the existence of a bosonic field minimally cou-
pled to gravity, with negligible mass compared to the mass of σ ,
mσ = V ,σσ (〈σ 〉)1/2, we get [24,29] for the reheat temperature

Trh �
(

5π2 gρ∗(Trh)

72

)−1/4√
Γσ mP, where

Γσ � f,σ (〈σ 〉)2m3
σ

128π

(
1 + 3

2
m2

P f,σ
(〈σ 〉)2

)−1

(2.5)

is the decay rate of σ , in the regime T � mσ which is valid in our
applications. Clearly, this construction is applicable if f,σ (〈σ 〉) 	= 0
(and this is valid for the f (σ )’s considered in Sections 3 and 4).
Also, assuming the particle spectrum of SM, we set gρ∗ = 106.75
for the relativistic degrees of freedom.

2.2. Inflationary observables — constraints

Under the assumption that (i) the curvature perturbations gen-
erated by σ is solely responsible for the observed curvature pertur-
bation and (ii) there is a conventional cosmological evolution (see
below) after inflation, the inflationary parameters can be restricted
imposing the following requirements:

(a) The power spectrum P R of the curvature perturbations gen-
erated by σ at the pivot scale k∗ = 0.002/Mpc is to be confronted
with the WMAP5 data [12],

P 1/2
R = 1

2
√

3πm3
P

V̂ (σ̂∗)3/2

|V̂ ,σ̂ (σ̂∗)|

= | J (σ∗)|
2
√

3πm3
P

V̂ (σ∗)3/2

|V̂ ,σ (σ∗)|
� 4.91 · 10−5, (2.6)

where σ∗ [σ̂∗] is the value of σ [σ̂ ] when k∗ crosses outside the
inflationary horizon.

(b) The number of e-foldings, N̂∗ , that the scale k∗ suffers
during FHI is to account for the total number of e-foldings N̂tot
required for solving the horizon and flatness problems of stan-
dard big bag cosmology, i.e., N̂∗ = N̂tot. Specifically, we calculate
N̂∗ through the relation

N̂∗ = 1

m2
P

σ̂∗∫
σ̂f

dσ̂
V̂

V̂ ,σ̂

= 1

m2
P

σ∗∫
σf

dσ J 2 V̂

V̂ ,σ

, (2.7)

where σf [σ̂f] is the value of σ [σ̂ ] at the end of inflation, which
can be found, in the slow-roll approximation and for the consid-
ered in this Letter models, from the condition

max
{
ε̂(σf),

∣∣η̂(σf)
∣∣} = 1, where

ε̂ = m2
P

2

(
V̂ ,σ̂

V̂

)2

= m2
P

2 J 2

(
V̂ ,σ

V̂

)2

and

η̂ = m2
P

V̂ ,σ̂ σ̂

ˆ = m2
P
2

(
V̂ ,σσ

ˆ − V̂ ,σ

ˆ
J ,σ

)
. (2.8)
V J V V J
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The required N̂tot at k∗ can be easily derived [19] consistently
with our assumption of a conventional post-inflationary evolution.
In particular, we assume that inflation is followed successively by
the following three epochs: (i) the decaying-inflaton dominated
era which lasts at a reheat temperature Trh, (ii) a radiation domi-
nated epoch, with initial temperature Trh, which terminates at the
matter–radiation equality, (iii) the matter dominated era until to-
day. In particular, we obtain — cf. Ref. [19]

N̂tot � 22.4 + 2 ln
V (σ∗)1/4

1 GeV
− 4

3
ln

V (σf)
1/4

1 GeV

+ 1

3
ln

Trh

1 GeV
+ 1

2
ln

f (σf)

f (σ∗)
, (2.9)

where the last term emerges [7] from the transition from the Jor-
dan to Einstein frame. Note that R̂ = √

f R with R being the scale
factor of the universe.

(c) The (scalar) spectral index, ns, its running, as, and the scalar-
to-tensor ratio r are to be consistent with the fitting [12] of the
WMAP5 plus BAO and SN data, i.e.,

(a) ns = 0.96 ± 0.026, (b) − 0.068 � as � 0.012 and

(c) r < 0.22, (2.10)

at 95% confidence level (c.l.). The observable quantities above can be
estimated through the relations:

ns = 1 − 6ε̂∗ + 2η̂∗,

αs = 2

3

(
4η̂2∗ − (ns − 1)2) − 2ξ̂∗ and r = 16ε̂, (2.11)

where ξ̂ = m4
P V̂ ,σ̂ V̂ ,σ̂ σ̂ σ̂ /V̂ 2 = m2

P V̂ ,σ η̂,σ /V̂ J 2 + 2η̂ε̂ and the vari-
ables with subscript ∗ are evaluated at σ = σ∗ . Note, in passing,
that the utilized here non-minimal f (σ )’s do not produce [30]
observationally interesting non-gaussianity — for reviews see, e.g.,
Ref. [31].

(d) To avoid corrections from quantum gravity, we impose two
additional theoretical constraints on our models — keeping in mind
that V̂ (σf) � V̂ (σ∗):

(a) V̂ (σ∗)1/4 � mP and (b) σ∗ � mP. (2.12)

Although it is argued [20,32] that violation of Eq. (2.12)(b) may not
be necessarily fatal, we insist on imposing this condition in order
to deliberate our proposal from our ignorance about the Planck-
scale physics. To be even more conservative, we have to check the
hierarchy between the ultraviolet cut-off, Λ, of the effective the-
ory and the inflationary scale. The former can be found from the
non-renormalizable terms arising in Eq. (2.4), whereas the latter is
represented by V̂ (σ∗)1/4 or, less restrictively, by the corresponding
Hubble parameter, Ĥ∗ = V̂ (σ∗)1/2/

√
3mP. In particular, the validity

of the effective theory implies [6]

(a) V̂ (σ∗)1/4 � Λ or (b) Ĥ∗ � Λ. (2.13)

This requirement applies mainly in cases where the involved in
f (σ ) constant cR takes relatively large values — as for SM non-MI
[2–4] — jeopardizing, thereby, the validity of the classical approx-
imation, on which the analysis of the inflationary behavior in this
section is based.

3. Non-minimal chaotic inflation

We focus on CI driven primarily by a quadratic potential of the
form

V = 1
m2σ 2 + V rc where V rc = 1

2
m4 ln

m2

2
(3.1)
2 64π Q
Table 1
Values of parameters allowed by Eqs. (2.6), (2.7) and (2.9) for MCI with several
Trh ’s.

Trh (GeV) σ∗/mP m(1013 GeV) ns αs(10−4) r

1010 15.13 1.6 0.965 6.1 0.139
106 14.73 1.69 0.963 6.7 0.147
105 14.61 1.72 0.962 7 0.15
104 14.5 1.74 0.962 7.2 0.152

are radiative corrections [23] to the inflationary potential. The bulk
of our results — see Section 3.2 — are independent of the renor-
malization scale, Q , which is set equal to mP. We below recall
(Section 3.1) the results for MCI (with f (σ ) = 1) and describe (Sec-
tion 3.2) our findings for non-MCI, adopting the following coupling
function — recall that σ̄ = σ/mP:

f (σ ) = (1 + cRσ̄ )−n with n = ±1. (3.2)

Note, in passing, that results for non-MCI with quartic poten-
tial (V = λσ 4/4!) are presented in Refs. [1,33,34]. The inflationary
scenario based on this potential with f (σ ) = 1 seems to be ex-
cluded [12,20] due to the enhanced predicted r. As we explicitly
verified, if we employ the standard non-minimal coupling func-
tion, f (σ ) = 1 + cRσ̄ 2, with 80 � cR � 300 and 0.2 � λ/10−4 � 3
— cf. Refs. [33,34] — we can rescue the model consistently with the
constraints of Section 2.2 for an indicative Trh = 1010 GeV. In par-
ticular the lower [upper] bound of the allowed regions of cR and
λ comes from Eq. (2.12)(b) [Eq. (2.13)(a) with Λ = mP/cR ]. Note,
however, that the standard non-trivial f (σ ) does not support re-
heating along the lines of Eq. (2.5).

3.1. Results for MCI

For MCI the slow-roll parameters and the number of e-foldings
suffered from k∗ can be calculated applying Eq. (2.8) and Eq. (2.7)
— after removing hats and setting J = 1 — with results

ε = η = 2/σ̄ 2 and N∗ = (
σ̄ 2∗ − σ̄ 2

f

)
/4. (3.3)

Using these results, imposing the condition of Eq. (2.8) and em-
ploying Eq. (2.11) we can derive

σ̄f = √
2, σ̄∗ � 2

√
N∗, ns � 1 − 2/N∗ and r � 8/N∗.

(3.4)

Clearly trans-Planckian values of σ are required and observation-
ally favored ns and r are obtained. More precisely, imposing the
requirements (a) and (b) of Section 2.2 for several Trh’s we get nu-
merically the values of σ∗ , m, ns, αs and r listed in Table 1 —
cf. Ref. [20]. As Trh decreases, N∗ decreases too — see Eq. (2.9)
— and so, σ∗ and ns slightly decrease whereas r increases —
see Eq. (3.4). The resulting ns, αs and r lie within the range of
Eq. (2.10). In all cases, Eq. (2.12)(a) is valid whereas the upper
bound of Eq. (2.12)(b) is surpassed.

3.2. Results for non-MCI

From Eqs. (2.8), (3.3) and (3.4) we can infer that the amplitude
of the inflaton field within non-MCI can become sub-Planckian if
J � 1/ f (σ ) 
 1 and V̂ ,σ /V̂ � V ,σ /V . These two objectives can
be achieved if we employ f (σ ) given by Eq. (3.2) with n > 0 and
cR 
 1. Another possibility would be to take f (σ ) = exp (−cRσ̄ )

with cR ∼ 10. However, in the latter case the resulting r violates
Eq. (2.10c) and therefore, this option can be declined. Similar prob-
lem arises also if we use n > 1 — see Section 3.2.1. On the other
hand, for n = −1, V̂ in Eq. (2.3) becomes very flat for sufficiently
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Fig. 1. The allowed by Eqs. (2.5), (2.6), (2.7) and (2.9) values of m (solid line) and Trh (dashed line) [σf (solid line) and σ∗ (dashed line)] versus cR for non-MCI with n = −1
(a) [(b)]. The gray segments denote values of the various quantities fulfilling Eq. (2.13)(b) too.

Fig. 2. The same as in Fig. 1 but for n = −1. The gray segments here denote values of the various quantities fulfilling Eq. (2.13)(a) too.
large σ̄ ’s and so, a new type of non-MCI can takes place. Decreas-
ing n for n < 0 we find inflationary solutions, only for cR < 0.001,
which break Eq. (2.12)(b). Similar conclusions are also drawn for
the standard non-minimal f (σ ) — see Ref. [33].

In our numerical code we use as input parameters m, σ∗ , cR
and n. For every chosen n and cR we restrict m and σ∗ so as the
conditions (a) and (b) of Section 2.2 — with Trh evaluated con-
sistently with Eq. (2.5) — are fulfilled. Our results for n = +1 and
n = −1 are presented respectively in Fig. 1 and Fig. 2, where we
draw the allowed values of m (solid line) and Trh (dashed line)
[σf (solid line) and σ∗ (dashed line)] versus cR for non-MCI (a)
[(b)]. For both n = ±1, satisfying Eq. (2.12)(b) gives a lower bound
on cR — see Fig. 1(b) and Fig. 2(b). On the other hand, the up-
per bound on cR comes from Eq. (2.10)(c) for n = +1 and from
the fact that the enhanced resulting m’s destabilize the inflationary
path through the radiative corrections in Eq. (3.1) for n = −1. From
our data we also remark that the resulting m’s are almost two or-
ders of magnitude lower [larger] than those obtained within MCI
for n = +1 [n = −1]. These results depend, though very weakly, on
N̂tot and therefore, on the reheating mechanism — see Eq. (2.9). All
in all, we obtain

625 � cR � 2.1 · 107, 47 � m

107 TeV
� 1.6 and

52 � N̂∗ � 47.9, for n = −1, (3.5)

83 � cR � 3120, 3 � m

1012 TeV
� 8.6 and

58.8 � N̂∗ � 59.9, for n = +1. (3.6)
In both cases, the predicted ns and r lie within the allowed ranges
of Eq. (2.10)(a) and Eq. (2.10)(c) respectively, whereas αs remains
quite small. Our numerical results can be interpreted through some
simple analytical expressions which are presented in Section 3.2.1
[Section 3.2.2] for n = +1 [n = −1]. There, we also comment
on the naturalness of our models, following the arguments of
Refs. [6,7].

3.2.1. Non-MCI with n = +1
To justify our choice for the negative exponent in Eq. (3.2)

we present our formulae below for a general n > 0. Substituting
Eq. (3.2) into Eqs. (2.3) and (2.5) and taking into account that
cR 
 1, we obtain

J �
√

cn
Rσ̄ n,

V̂ = 1

2
m2σ 2

(
1 + cR

σ

mP

)2n

� m2c2n
R σ 2(1+n)

2m2n
P

and

Γσ � 1

192π

m3
σ

m2
P

, (3.7)

where mσ = m and obviously 〈σ 〉 = 0. Upon use of Eqs. (2.8), (2.7)
and (3.7), the slow roll parameters and N̂∗ read

(a) ε̂ � 2(1 + n)2

cn
Rσ̄ n+2

,

η̂ � 2(1 + n)(1 + 2n)

cn σ̄ n+2
= (1 + 2n)

(1 + n)
ε̂ and
R
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(b) N̂∗ � cn
R(σ̄ n+2∗ − σ̄ n+2

f )

2(1 + n)(2 + n)
. (3.8)

Imposing the condition of Eq. (2.8) and solving then Eq. (3.8)(b)
w.r.t. σ∗ we arrive at

σ̄f � (
2(1 + 2n)(1 + n)/cn

R
)1/(n+2)

and

σ̄∗ � (
2(1 + n)(2 + n)N̂∗/cn

R
)1/(n+2)

. (3.9)

Inserting the last results into Eq. (3.8)(a), we find through Eq. (2.11)

(a) ns � 1 − 3ε̂∗ = 1 − 3(1 + n)/(2 + n)N̂∗ and

(b) r � 16(1 + n)/(2 + n)N̂∗. (3.10)

Letting cR vary within its allowed region for n = +1 — see Fig. 1 —
we find ns � (0.952–0.955) and r � (0.2–0.22). Clearly, increasing
n leads r above the range of Eq. (2.10)(c). Therefore, we hereafter
concentrate on n = +1 which assures an observationally safe and,
at the same time, exciting r.

Comparing our findings with those obtained for MCI — see Ta-
ble 1 — we notice that the resulting here ns’s are a little lower,
whereas r is significantly elevated and can be probed in the near
future from the measurements of PLANCK satellite [35]. Note, in
passing, that the so-called Lyth bound [36] on the σ variation,
�σ , gets modified within non-MI. Namely, combining Eqs. (2.7)
and (2.8) we find

dσ

dN̂
=

√
r

8

mP

J
⇒ �σ =

√
r

8

mP

J
�N̂

⇒ �σ �
√

2r
mP

J
� (2.5–0.083)mP/100, (3.11)

taking [36] �N̂ � �N = 4 and assuming negligible variation of
f (σ ) from its value at σ = σ∗ . Therefore, large r’s do not corre-
late necessarily with trans-Planckian �σ ’s within non-MI. On the
other hand, σ̂ as evaluated from Eq. (2.3), σ̂ � √

cRσ 3/mP, re-
mains trans-Planckian.

The resulting V̂ in Eq. (3.7) is non-renormalizable and suggests
that the theory breaks down for energies of the order Λ = mP/cR .
Checking the consistency with Eq. (2.13)(a) we find numerically:

0.03 � Ĥ∗/Λ � 1

for 625 � cR � 2.26 · 104 and 1 � σ̄∗ � 0.3, (3.12)

where the corresponding ranges of values are depicted by the
gray segments of the lines in Fig. 1. The range in Eq. (3.12) turns
out to be a little more comfortable than the one we get within
SM non-MI — cf. Ref. [6]. However, Eq. (2.13)(a) is violated, since
V̂ (σ∗)1/4/Λ � 5.8.

On the other hand, non-renormalizable terms in the action of
Eqs. (2.1) and (2.4) indicate that Λ = mP. In fact, such terms arise
from the first term in Eq. (2.1) and the second one in Eq. (2.3).
The form of these terms is generated expanding the relevant co-
efficients in series around σ = σ∗ with the following result — an
expansion in the small field limit, cRσ̄ � 1, fails to reproduce the
exact results:

m2
P f R � mP

cRσ̄∗

(
1 − 3

σ̄

σ̄∗
+ 10

(
σ̄

σ̄∗

)2

+ · · ·
)

∂μ̄∂μ̄hμν (3.13a)

and

m2
P

f 2
,σ

f 2
ĝμν∂μσ∂νσ

� 1

σ̄ 2

(
1 − 8

σ̄

σ̄
+ 45

(
σ̄

σ̄

)2

+ · · ·
)

ĝμν∂μσ∂νσ , (3.13b)

∗ ∗ ∗
where hμν denotes the graviton field involved in the expansion
[6,7] of the metric gμν � ημν + hμν/mP around the Minkowski
space with metric ημν and R is approximated linearly. Given these
ambiguities, we do not consider Eq. (3.12) as absolute constraint.

3.2.2. Non-MCI with n = −1
A completely different situation from that studied in Sec-

tion 3.2.1 emerges for n = −1 in Eq. (3.2). Indeed, substituting
Eq. (3.2) into Eqs. (2.3) and (2.5) and taking into account that
cR 
 1, we obtain

J � √
3/2 σ̄−1,

V̂ � m2m2
P

2c2
R

and Γσ � 1

192π

m3
σ

m2
P

, (3.14)

where mσ = m and obviously 〈σ 〉 = 0. We observe that V̂ exhibits
a flat plateau as we obtain for the quatric potential with the stan-
dard non-minimal f (σ ) — cf. Refs. [2–4,34]. Employing Eqs. (2.8),
(2.7) and (3.14), the slow roll parameters and N̂∗ read

(a) ε̂ � 4

3c2
Rσ̄ 2

, η̂ � − 4

3cRσ̄
= −ε̂cRσ̄ 
 −ε and

(b) N̂∗ � 3cR
4

(σ̄∗ − σ̄f). (3.15)

As opposed to our findings in Eqs. (3.3) and (3.8), notice that
η < 0 here. Imposing the condition of Eq. (2.8) and solving then
Eq. (3.15)(b) w.r.t. σ∗ we arrive at

σ̄f � 2/
√

3cR and σ̄∗ � 4 N̂∗/3cR· (3.16)

Inserting the last results into Eq. (3.15)(a), we find through
Eq. (2.11)

(a) ns � 1 + 2η̂∗ = 1 − 2/N̂∗ � (0.967–0.97) and

(b) r � 12/N̂2∗ � (0.002–0.003), (3.17)

where the ranges above are derived numerically letting cR vary
within its allowed region — see Fig. 2. Notice that the resulting
ns’s and r’s are identical to those derived in Refs. [2,4]. Comparing
them with those listed in Table 1 or given in the paragraph below
Eq. (3.10) we remark that r is significantly reduced, whereas ns is
close to the value obtained in MCI and a bit larger than the one
extracted for non-MCI with n = +1.

As for the latter case, non-renormalizable terms in the action of
Eq. (2.1) indicate an effective cutoff Λ = mP/cR , since

m2
P f R � cR

mP
σ

(
∂μhμμ̄∂νhμ̄

ν + ∂μ̄hμν∂μhμ̄ν + ∂μh∂μh
)

(3.18)

with h = hμ
μ = hμμ . On the other hand, the second term in Eq. (2.3)

gives exactly the same result as in Eq. (2.13)(b) since f,σ / f is iden-
tical for both n = ±1 in Eq. (3.2). Checking the consistency with
Eq. (2.13)(a) we find numerically

0.3 � V̂ (σ∗)1/4/Λ � 1

for 83 � cR � 313 and 1 � σ̄∗ � 0.27, (3.19)

where the corresponding ranges of values are depicted by the gray
segments of the lines in Fig. 2. On the other hand, Eq. (2.13)(b)
is satisfied in the whole parameter space of these figures. Con-
sequently, non-MCI with n = −1 can be characterized as more
natural than the one with n = +1.

Concluding this section, let us emphasize that, in contrast to
the models suggested in Ref. [20], non-MCI is not of hilltop type
and so, complications related to the initial conditions are avoided.
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Indeed, for non-MCI with n = +1, V̂ remains concave upwards,
whereas with n = −1, V̂ develops a plateau without distinguished
maximum. As we explicitly checked, possible inclusion of extra ra-
diative corrections in Eq. (3.1) due to a coupling of σ to fermions
— considered in Ref. [20] — do not affect our proposal for values of
the relevant Yukawa coupling constant, h, lower than about 10−3.
For such h’s, the decay width of the inflaton due to this channel
dominates over the one given by Eq. (2.5).

4. Non-minimal hybrid inflation

Hybrid inflation can be realized in the presence of two real
scalar fields, σ and φ, involved in the following potential [11]

V (φ,σ ) = κ2
(

M2 − φ2

4

)2

+ m2σ 2

2
+ λ2φ2σ 2

4
, (4.1)

where M , m are mass parameters and κ , λ are dimensionless
coupling constants. The global minima of V lie at (〈σ 〉, 〈φ〉) =
(0,±2M). Therefore, V leads to a spontaneous symmetry break-
ing of a global or local symmetry depending on the nature of the
waterfall field φ. In the latter case, topological defects may be also
produced via the Kibble mechanism [37]. Trying to keep our ap-
proach as simple as possible we below assume that this is not the
case.

In addition, V in Eq. (4.1) gives rise to HI. This is because V
possesses an almost σ -flat direction at φ = 0 with constant po-
tential density equal to V 0 = V (φ = 0, σ ) = κ2M4, for m = 0. The
effective mass squared of the field φ along this direction is

m2
φ = −κ2M2 + λ2σ 2/2 > 0 ⇔ σ > σc = √

2κM/λ. (4.2)

Thus, for σ > σc the φ = 0 direction represents a valley of minima
which can serve as inflationary trajectory. On this path the poten-
tial of HI takes the form

V = V 0 + 1

2
m2σ 2 + V rc (4.3)

where V rc is the one-loop correction (to the tree-level potential)
which can be written as [21,23]

V rc = 1

64π2

(
m4 ln

m2

Q 2
+ κ2 V 0(x − 1)2 ln

κ2M2

Q 2
(x − 1)

)
with

x =
(

σ

σc

)2

(4.4a)

� κ2 V 0

64π2

(
x2 ln

κ2M2

Q 2
+ 3

2

)
for x 
 1. (4.4b)

Here, Q is a renormalization scale which can be conveniently
chosen [21] equal to σc which practically coincides with the value
of σ at the end of HI, σf , for both MHI and non-MHI.

We below review (Section 4.1) the results for MHI (with
f (σ ) = 1) and describe (Section 4.2) our findings for non-MHI,
seeking the following non-minimal coupling function for the infla-
ton — for earlier attempts on non-MHI, see Ref. [38]:

f (σ ) = 1 − cRσ̄ /(1 + σ̄ )2 (4.5)

where we use, as usually, the shorthand σ̄ = σ/mP. As regards
the waterfall field we can assume that it is either minimally cou-
pled to gravity or its coupling function is f (φ) since f (0) = 1 and
f (2M) � 1 for cR � 1 and M � mP.
4.1. Results for MHI

We can get an impression of the expected results for MHI, if
we calculate the involved in the inflationary dynamics derivatives
of V in Eq. (4.3). Namely we have

V ,σ = m2σ + xκ2 V 0

32π2σ
(x − 1)

(
2 ln

κ2M2

Q 2
(x − 1) + 1

)
. (4.6)

We observe that there are two contributions in V ,σ . The first one
arises from the tree-level potential whereas the second one comes
from the radiative corrections in Eq. (4.4a). When the first contri-
bution dominates over the second one, we obtain the well-known
tree-level [11] results, Ntr∗ and ηtr, for N∗ and η respectively —
note that we identify σf with σc:

Ntr∗ = 1

ηtr
ln

σ∗
σc

with ηtr = m2
P

m2

V 0

 ε. (4.7)

In this regime, the resulting ns clearly — see Eq. (2.11) — exceeds
slightly unity in contrast to the observationally favored results of
Eq. (2.10)(a). Moreover, as we find numerically, the lower κ and/or
m we use, the closer σ∗ is set to σc. This is the first kind of tuning
occurred within MHI.

Nonetheless, taking into account that the logarithm in Eq. (4.6)
turns out to be negative, we can show that, for every m, there is
κ such that V develops a maximum at σ = σmax, which can be
estimated by numerically solving the condition V ,σ (σmax) = 0. At
σ = σmax, V ,σσ given by

V ,σσ = V ,σ

σ
+ x2κ2 V 0

16π2σ 2

(
2 ln

κ2M2

Q 2
(x − 1) + 3

)
, (4.8)

becomes negative and so, η and ns start decreasing for σ∗ close
σmax — see Eqs. (2.8) and (2.11). As for any model of hilltop in-
flation, the lower ns we obtain, the closer σ∗ is located to σmax.
This is a second kind of tuning which remains even for non-MHI
— see Section 4.2. To quantify somehow the amount of the tunings
encountered in the considered model, we define the quantities:

(a) Δm∗ = σmax − σ∗
σmax

and (b) Δc∗ = σ∗ − σc

σc
· (4.9)

The above rough estimations can be verified by our numeri-
cal computations. In our code, we use as input parameters κ , λ,
m, M , σ∗ and Trh. In our analysis for MHI, we fix Trh = 1010 GeV
and κ = λ — possible variation of these two choices do not mod-
ify our conclusions in any essential way. For any chosen κ and
m we then restrict M and σ∗ so as the restrictions (a), (b) and
(d) of Section 2.2 and Eq. (4.2) are fulfilled. Using Eq. (2.11) we
can extract ns, αs and r. Our results are presented in Fig. 3(a)
[Fig. 3(b)] where we design the allowed values of ns [M] ver-
sus κ for m = 1 TeV (solid line) or m = 103 TeV (dashed line) or
m = 106 TeV (dot-dashed line) or m = 109 TeV (dotted line). The
region of Eq. (2.10)(a) is also limited by thin lines. The various lines
terminate at low κ ’s due to the saturation of Eq. (2.12)(b) and at
large κ ’s since the imposed conditions cannot be fulfilled.

Clearly, the almost horizontal part of the various lines, which
exceeds the observational limits of Eq. (2.10)(a), in the κ–ns plane
corresponds to the dominance of the tree-level potential. However,
for any m and relatively large κ ’s we can obtain acceptable ns’s
even without inclusion of extra radiative corrections due to a pos-
sible coupling of the inflaton to fermions — cf. Ref. [21]. On the
other hand, it is worth emphasizing that the allowed range of κ ’s
for each m is severely tuned. Indeed, confining ns within the range
of Eq. (2.10)(a) we find the ranges of the parameters listed in the
table of Fig. 3. From the outputs there, we also remark that κ ’s,
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m (TeV) κ (10−3) M (1016 GeV) Δc∗ Δm∗
1 0.02–0.028 0.025–0.015 0.00016–0.00029 0.0004–0.00007
103 0.12–0.17 0.13–0.083 0.0053–0.01 0.013–0.0023
106 0.8–1 0.69–0.49 0.18–0.31 0.19–0.054
109 3.55–3.72 5.98–5.5 4.4–5.7 0.38–0.24

Fig. 3. The allowed by Eqs. (2.6), (2.7) and (2.9) values of ns (a) and M (b) versus κ for MHI with Trh = 1010 GeV, κ = λ and several m’s indicated in the graphs. Shown are
also in the table the allowed ranges of the various parameters for ns in the range of Eq. (2.10)(a) limited by thin lines (a).
M ’s, Δc∗ ’s and Δm∗ ’s increase with m. Therefore, the natural real-
ization of MHI requires large m’s. In this case too, M turns out to
be well above its value within the SUSY version HI — cf. Refs. [15,
16]. Needless to say, finally, that the resulting αs’s and r’s turn out
to be vanishingly small and so, uninteresting. In conclusion, MHI
(with the minimal possible radiative corrections) is rather disfa-
vored by the current observational data.

4.2. Results for non-MHI

From the analysis of MHI we can deduce that reduction of ns
for a wider range of κ ’s can be achieved if the slope of V be-
comes steeper. This objective can be achieved if we employ f (σ )

given by Eq. (4.5) with cR � 1. Another possibility would be
f (σ ) = exp(−cRσ̄ ) or that of Eq. (3.2) with n > 0 and cR ∼ 0.1.
However, in these cases the resulting σ∗ violates the bound of
Eq. (2.12)(b) and therefore, these options are not adoptable. More-
over, imposing on non-MHI with the standard non-minimal f (σ )

the constraints (a), (b) and (d) of Section 2.2 and Eq. (4.2), we are
obliged to use a tiny cR ∼ −10−3, which has no sizable impact on
reducing ns. Consequently, this last choice cannot become observa-
tionally viable, too.

Differentiating Eq. (4.5) w.r.t. σ , substituting into Eqs. (2.3) and
(2.5) and taking into account that cR � 1, we obtain

f,σ = cR(−1 + σ̄ )

mP(1 + σ̄ )3
, f,σσ = 2cR(2 − σ̄ )

m2
P(1 + σ̄ )4

,

V̂ � V 0, J � 1 and Γσ = c2
R

128π

m3
σ

m2
P

, (4.10)

where mσ = √
2λ2M2 + m2. Despite the fact that V̂ given by

Eqs. (2.3) and (4.3) is practically equal to V 0 — since f (σ̄ ) � 1 for
σ̄ � 1, — its inclination is mostly dominated by the term −2V 0 f,σ
of V ,σ . Indeed, upon use of Eqs. (2.8), (4.4b) and (4.10) we find

ε̂ = m2
P

2

(
−2 f,σ + m2σ

V 0
+ κ2x2

16π2σ
ln

κ2M2

Q 2

)2

· (4.11)

In a sizable portion of the parameter space, the first contribution
to ε̂ in Eq. (4.11) overshadows the others two. As a consequence,
V̂ develops a maximum at σ̄ = σ̄max for f,σ (σ̄max) = 0 ⇔ σ̄max � 1
with V̂ ,σσ (σmax) < 0. In fact, inserting Eqs. (2.3) and (4.3) into
Eq. (2.8) we end up with

η̂ = m2
P

(
−2 f,σσ + m2

V 0
+ 3κ2x2

16π2σ 2
ln

κ2M2

Q 2

)
, (4.12)

which is negative for dominant f,σσ with σ̄ < 2. Combining
Eqs. (4.12) with (2.11)(a) we can easily infer that cR > 0 for
σ̄ < σ̄max strengthens significantly the reduction of ns. Neglecting
the two last terms in the right-hand side of Eq. (4.11), we can es-
timate N̂∗ via Eq. (2.7) with result

N̂∗ � 1

2m2
P

σc∫
σ∗

dσ

f,σ
= 1

6cR

((
21 + 6σ̄∗ + σ̄ 2∗

)
σ̄∗

− (
21 + 6σ̄c + σ̄ 2

c

)
σ̄c + 24 ln

1 − σ̄∗
1 − σ̄c

)
· (4.13)

As we verify numerically, the formula above gives accurate results
for m � 106 TeV and sufficiently low κ ’s. However, since σ∗ de-
pends on N̂∗ in a rather complicate way, it is not doable to find
an analytical result for ns as a function of N̂∗ — cf. Eq. (3.9) and
Eq. (3.9). Therefore, our last resort is the numerical computation,
whose the results are presented in the following.

In our code, we use as input parameters κ , λ, m, M , σ∗ and
cR . Note that Trh is calculated via Eq. (2.5). For every chosen κ , λ,
m and cR , we can restrict M and σ∗ so as the conditions (a), (b)
and (d) of Section 2.2 and Eq. (4.2) are fulfilled. Through Eq. (2.11)
we can then extract ns and αs. Following this strategy, in Fig. 4(a)
[Fig. 4(b)] we display the allowed values of ns [M] versus cR with
m � 106 TeV, κ = 10−5 and λ = κ (solid lines) λ = 5κ (dashed
lines) and λ = 0.5κ (dotted lines). The region of Eq. (2.10)(a) is also
limited by thin lines. We observe that as cR increases, ns decreases
entering the observationally favored region of Eq. (2.10)(a). On the
other hand, M increases with cR until a certain cR � 0.03–0.05
and then decreases. Surprisingly the value of cR , at which the
maximum M is encountered, corresponds more or less to the cen-
tral observational ns � 0.96. We also observe that increasing λ

above κ with fixed cR , ns drops but M raises. These results can be
understood as follows: As λ/κ elevates σc decreases — see Eq. (4.2)
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Fig. 4. The allowed by Eqs. (2.6), (2.7) and (2.9) — with Trh given by Eq. (2.5) — values of ns (a) and M (b) versus cR for non-MHI with m � 106 TeV, κ = 10−5 and several
λ’s indicated in the graphs. The region of Eq. (2.10)(a) is also limited by thin lines.
— and therefore, σ∗ decreases, with fixed N̂∗ . This effect causes an
increase of | f,σ (σ∗)| and f,σσ (σ∗) — see Eq. (4.10). As a conse-

quence, M increases too, since M is proportional to f 1/2
,σ due to

Eq. (2.6). Also, |η| increases — according to Eq. (4.12) — and so, ns
drops efficiently — see Eq. (2.11).

Confronting non-MHI with all the constraints of Section 2.2
consistently with Eq. (4.2), we can delineate the allowed (lightly
gray shaded) regions in the κ–cR [κ–M] plane as in Fig. 5(a1),
(b1) and (c1) [Fig. 5(a2), (b2) and (c2)]. In Fig. 5(a1) and (a2) we
take λ = κ . Our results for this choice are m-independent for any
κ and m � 106 TeV. On the other hand, in Fig. 5(b1) and (b2)
[Fig. 5(c1) and (c2)] we set λ = 5κ and m = 108 TeV and [λ = 0.5κ
and m = 107 TeV]. The conventions adopted for the various lines
are also shown in the left-hand side of each graph. In particu-
lar, the gray dot-dashed [dashed] lines correspond to ns = 0.986
[ns = 0.934], whereas the gray solid lines have been obtained by
fixing ns = 0.96 — see Eq. (2.10). For κ ’s below the solid black
line, our initial requirement in Eq. (2.12)(b) is violated. For κ ’s
larger than those depicted in the graphs we do not find solutions
consistent with the imposed restrictions of Section 2.2. The up-
per bounds of the allowed regions in the κ − M plane come from
cR leading to ns = 0.96 — see Fig. 4(b). Although this result may
not rigorously correct, it is accurate enough for our pictorial pur-
poses. In all cases, the allowed ranges of κ ’s — although restricted
to values lower than 0.001 — are much more wide and natural
than the ones obtained for MHI — cf. table of Fig. 3. Confining ns
to its central observational value, we obtain the ranges of the var-
ious parameters arranged in the Table of Fig. 5. We observe there
that, for fixed ns and increasing κ , cR and M decrease whereas
Δc∗ and Δm∗ increase. As a consequence, for any m, the tuning re-
garding Δc∗ is greatly alleviated compared to the outputs of MHI,
whereas we are let with the usual mild tuning required for Δm∗ .
This is present to any inflationary hilltop model — cf. Ref. [16].
The allowed M ’s mostly exceed the SUSY grand unification scale,
MGUT � 2.86 · 1016 GeV, whereas Trh mostly increases with κ , as
can be noticed via Eqs. (2.5) and (4.10).

From our findings, we can conclude that: (i) the required cR ’s
are rather low and so, complications related to the hierarchy be-
tween the inflationary scale and the effective cutoff of the theory
are avoided; (ii) our results depend rather weakly on the variation
of m, for m � 5 · 108 TeV; (iii) as m raises above 5 · 108 TeV and κ
drops below 0.001, Eq. (2.12)(b) is eventually violated and so, our
scheme becomes unapplicable; (iv) similarly to MHI, αs and r turn
out to be negligibly small.

As in the case of non-MCI, our proposal remains intact even
if we add fermion-dominated one-loop radiative corrections in
Eq. (4.3) — cf. Ref. [21] — provided the values of the relevant
Yukawa coupling constant, h, remains lower than about 10−4. For
h’s close to this value, the decay width of the inflaton, due to this
channel dominates over the one given by Eq. (2.5).

5. Conclusions

We considered the non-SUSY version of CI (driven by quadratic
potential) and HI, assuming a non-minimal coupling function,
f (σ ), between the inflaton field and the Ricci scalar curvature.
Using the freedom of choosing this scalar function, we deliber-
ated CI from the problem of trans-Planckian inflaton values and
achieved observationally acceptable ns’s for a wide range of the
parameters of HI. As a bonus, the selected f (σ )’s give rise to
Yukawa-type interactions between the inflaton and matter fields
leading to a successful post-inflationary reheating. Afterwards, the
proposed f (σ )’s reduce to unity and so, the Einstein gravity is nat-
urally recovered.

Specifically, the adopted forms of f (σ ) are given by Eq. (3.2)
and Eq. (4.5) for non-MCI and non-MHI, respectively. In both cases,
the parameter cR involved in f (σ ) can be constrained so as the
results of the inflationary models can be reconciled with a num-
ber of theoretical and observational restrictions. Our results are as
follows:

• In the case of non-MCI, we find 625 � cR � 2.1 · 107 result-
ing to ns � 0.955 and r � (0.2–0.22) for n = +1 and 83 �
cR � 3120 resulting to ns � 0.967 and r � (0.002–0.003) for
n = −1. In sharp contrast to MCI, only sub-Planckian values
of the inflaton field in the Jordan frame are utilized avoiding,
thereby, destabilization of the inflationary scenarios from pos-
sible corrections caused by quantum gravity. Comments on the
naturalness of the models are also given.

• In the case of non-MHI, the chosen f (σ ) leads to hilltop-
type inflation for a wide range for κ ’s. As a consequence,
observationally acceptable results require a proximity between
the values of the inflaton field at the maximum of the po-
tential and at the horizon crossing of the pivot scale. The
amount of this tuning was measured by the quantity Δm∗
defined in Eq. (4.9)(b). E.g., for m � 106 TeV and the obser-
vationally central value of ns, we find cR � (0.015–0.078)

with M � (1–16.8) · 1017 GeV, λ = κ � (2 · 10−7–0.001) and
Δm∗ � (0.91–32)%. Compared to MHI, we find that the obser-
vational requirements can be satisfied without tuning severely
neither κ nor Δc∗ defined in Eq. (4.9a) even for low m’s – see
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Fig. κ/10−3 cR/10−2 M/1016 GeV Trh/108 GeV Δc∗ Δm∗/10−2

(a1), (a2) 0.0002–1 7.8–1.5 168–10 0.0028–3.5 0.016–7 0.91–31
(b1), (b2) 0.00011–0.2 8.8–1.8 711–25 0.12–13 0.21–18 9.6–32
(c1), (c2) 0.0013–1 8.6–2.7 85–11 0.006–2.1 0.03–4 1.5–32

Fig. 5. Allowed (lightly gray shaded) by the restrictions of Section 2.2 consistently with Eq. (4.2) areas in the κ–cR [κ–M] plane (a1), (b1) and (c1) [(a2), (b2) and (c2)] for
non-MHI. We take κ = λ and m � 106 TeV (a1) and (a2) or m = 108 TeV and λ = 5κ (b1) and (b2) or m = 107 TeV and λ = 0.5κ (c1) and (c2). The conventions adopted for
the various lines are also shown. The allowed ranges of the various parameters for ns = 0.96 are listed in the table.
Tables of Figs. 3 and 5. Therefore, the proposed non-MHI is
more favored by the current data.

We explicitly checked that, for both models of non-MI, the
proposed scheme remains valid even if an extra coupling of the
inflaton to fermions exists, provided that the relevant coupling
constant is somewhat suppressed. If these fermions are identified
with right-handed neutrinos, baryogenesis via non-thermal lepto-
genesis [39] is, in principle, possible — in the case of HI, baryogen-
esis can be also accomplished if only the waterfall field is coupled
to right-handed neutrinos. Note that, in our framework, the de-
cay of the inflaton to right-handed neutrinos is also possible due
to curvature-induced [24] couplings. However, the resulting decay
width is reduced [24] compared to this given by Eq. (2.5) and so,
the produced lepton asymmetry is lower than the expectations for
all possible masses of right-handed neutrinos. On the other hand,
since baryogenesis can be realized in a variety of ways — see, e.g.,
Refs. [25,40] — we opted not to complicate our presentation with
secondary mechanisms which may or may not affect the inflation-
ary observable quantities.
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It would be interesting to investigate if a similar realization of
non-MI can be accomplished in the framework of SUGRA, along
the lines of Ref. [41]. In such a case, the inflaton of non-MCI could
be identified with one of the right-handed sneutrinos. On the other
hand, a possible SUSY version [15,16] of non-MHI could become
compatible with larger (and more natural) values of the relevant
coupling constant κ = λ.
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