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SUMMARY

Sleep dysfunction and stress susceptibility are
comorbid complex traits that often precede and
predispose patients to a variety of neuropsychiatric
diseases. Here, we demonstrate multilevel organiza-
tions of genetic landscape, candidate genes, and
molecular networks associated with 328 stress and
sleep traits in a chronically stressed population of
338 (C57BL/6J 3 A/J) F2 mice. We constructed
striatal gene co-expression networks, revealing
functionally and cell-type-specific gene co-regula-
tions important for stress and sleep. Using a com-
posite ranking system, we identified network mod-
ules most relevant for 15 independent phenotypic
categories, highlighting a mitochondria/synaptic
module that links sleep and stress. The key network
regulators of this module are overrepresented with
genes implicated in neuropsychiatric diseases. Our
work suggests that the interplay among sleep,
stress, and neuropathology emerges from genetic
influences on gene expression and their collective
organization through complex molecular networks,
providing a framework for interrogating the mecha-
nisms underlying sleep, stress susceptibility, and
related neuropsychiatric disorders.
INTRODUCTION

Both acute and chronic stress modulate many aspects of brain

function, including cognition, emotion, behavior, and sleep

(Lupien et al., 2009). At the same time, stress-susceptible neu-

robehavioral functions also interact with one another, exerting

a complex influence on an organism’s responses to stress

(Martinez-Gonzalez et al., 2004; Minkel et al., 2012). In hu-

mans, stress susceptibility is characteristic of a range of
neurological and psychiatric disorders (Lupien et al., 2009),

many of which are also comorbid with sleep disturbances

(Goldstein and Walker, 2014). In addition, sleep loss during

stressful periods exacerbates the risk of neurobehavioral

impairment, psychiatric distress, and the development of

depression later in life (Breslau et al., 1996; Chang et al.,

1997). Despite the breadth of evidence documenting the inter-

actions between stress and sleep, the genetic and molecular

mechanisms underlying these interactions remain largely un-

clear. Both stress responses and sleep regulation are under

strong genetic control (Feder et al., 2009; O’Hara et al.,

2007), and a number of genes regulating sleep also contribute

to stress adaptation and related psychiatric disorders (Chen

et al., 2006; Turek, 2007; Yu et al., 2012). Although these find-

ings point toward common molecular mechanisms underlying

stress susceptibility and sleep, a comprehensive understand-

ing of the molecular and genetic basis for these overlapping

phenotypes remains lacking.

A systems approach is necessary to understand how multi-

ple genetic factors interact in networks and contribute to the

emergence of complex traits, including stress and sleep. Pre-

viously, such approaches have helped provide insights into

both fundamental biological processes (Archer et al., 2014;

Millstein et al., 2011; Zhu et al., 2012) and complex diseases

(Chen et al., 2008; Emilsson et al., 2008; Wang et al., 2012;

Zhang et al., 2013). A comprehensive analysis describing the

interactions between stress and sleep has not previously

been reported, and there are only a few examples demon-

strating molecular mechanisms common to stress and sleep.

Here, we address these issues by presenting a large dataset

comprising 328 stress- and sleep-related phenotypes

measured in a chronically stressed F2 mouse population (n =

338) derived from C57BL/6J (B6) and A/J. To interrogate the

possible common genetic factors underlying these stress

and sleep phenotypes, we collected genotypes at 781 infor-

mative SNP markers throughout the genome. In a randomly

selected subpopulation of 100 F2 mice, we performed RNA-

Seq gene expression profiling of the striatum, a brain region

particularly important for stress adaptation (Ahmad et al.,
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Figure 1. Experimental Design and Analytic Approach

A population of (B6 3 A/J) F2 mice underwent a chronic unpredictable stress protocol, data collected during which enables modeling of genetic and molecular

networks underlying responses to these stresses.

(A) The sequence of chronic unpredictable stress treatments and phenotypic data collection (see Supplemental Experimental Procedures for details).

(B) Schematic diagram of the molecular and physiological data collection and integrative analysis.
2010; Rossi et al., 2009), sleep-wake regulation (Earley et al.,

2013; Kim et al., 2010; Lazarus et al., 2012; Qiu et al., 2010;

Stoffers et al., 2013), and neuropsychiatric diseases (Shep-

herd, 2013; Tritsch and Sabatini, 2012; van den Heuvel

et al., 2010). Given its important roles in sleep, stress, and dis-

ease, the striatum is ideal for investigating common molecular

networks underlying sleep and stress traits. With extensive

genotypic, molecular, and phenotypic assays, we utilize an

integrative, multiscale systems approach to characterize the

genetic landscape, candidate causal genes, and gene tran-

scriptional networks shared by stress and sleep traits. We

also report that genes implicated in neuropsychiatric disorders

are overrepresented in key regulators of stress-sleep gene

networks, providing a potential molecular basis for the comor-

bidity of stress, sleep, and neuropathologies. Our systems

analysis provides a framework for identifying and prioritizing

pathways and therapeutic mechanisms associated with

abnormal stress responses and altered sleep and offers bio-

logical insights into the roles of stress and sleep in neuropsy-

chiatric pathophysiology.

RESULTS

A (B6 3 A/J) F2 Mouse Population Models Complex
Interactions between Stress and Sleep
A genetically segregating population of 338 (B6 3 A/J) F2 male

mice was subjected to a chronic, unpredictable stress schedule

(Figure 1), during which we measured multiple stress-related

behavioral and physiological phenotypes. Mice were then surgi-

cally implanted with electroencephalography (EEG) and electro-

myography (EMG) electrodes to record sleep/wake states. Upon

euthanasia, serological parameters and tissue/organ weights
836 Cell Reports 11, 835–848, May 5, 2015 ª2015 The Authors
were also obtained. We selected 328 phenotypic measurements

with large variance in this population for analysis (Figure S1), and

we grouped these phenotypes into 29 broad categories (full list in

Table S1).

We identified correlations between phenotypes using Spear-

man’s rho and assessed false discovery rates (FDRs) using the

Benjamini-Hochberg procedure (Figure 2; Table S2). We

observed associations between traits within the same pheno-

typic categories, as well as across different categories. At

FDR < 0.10, we identified 3,491 pairs of significantly correlated

phenotypes. As expected, strong correlations between pheno-

types within the same category are prevalent, confirming the

overall quality of the phenotypic measurements and categori-

cal groupings. In addition, many known interactions between

distinct aspects of stress and sleep biology were observed.

This includes well-known physiological relationships, such as

body weight measurements and plasma glucose levels (Fig-

ures 2C and 2G), as well as previously reported associations

between sleep and stress traits, such as conditioned fear

and REM sleep (Figures 2B and 2F) (Menz et al., 2013; Polta

et al., 2013). Other phenotypic relationships were also

observed. For instance, corticosterone levels at 60 min into

the third (i.e., last) exposure of a 3-day social defeat proce-

dure were specifically correlated with EEG theta I (4–8 Hz)

and theta II (8–11 Hz) power densities in REM sleep measured

across multiple conditions (Figures 2D and 2H). This compre-

hensive phenotypic dataset models interactions between

stress and sleep, providing an opportunity to study genetic

and molecular mechanisms underlying stress, sleep, and their

interactions. Phenotypic correlation data are available in its

entirety to facilitate future study of additional phenotypic rela-

tionships (Table S2).
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Figure 2. Phenotypic Interactions Observed in the Chronically Stressed (B6 3 A/J) F2 Mice

(A–D) Correlation coefficients between pairs of phenotypes. The phenotypes were ordered according to their phenotypic categories.

(E–H) Statistical significance of observed associations. The phenotypes were ordered exactly the same as in (A–D).

BL, baseline; SDR, sleep deprivation recovery; Rst, after restraint stress; AUC, area under the curve. Note that 93 sleepmeasurements that were not grouped into

any of the sleep categories are not presented here, but are included in Table S2.
A Stress-Modulated Dynamic Genetic Landscape
Reveals Linked Genetic Control of Stress and Sleep
Phenotypes
To reveal the genetic landscape of stress and sleep biology, we

mapped quantitative trait loci (QTL) that regulate stress and

sleep phenotypes. The dataset was permuted 1,000 times to es-

timate the FDR. At a permissive FDR < 0.2 (LOD >3.53), we un-

covered 143 QTL for the set of 328 stress and sleep phenotypes

(Figure 3A; Table S3). We confirmed a number of QTL that were

previously identified using genetically diverse mouse popula-

tions derived from B6 and A/J. These include a chromosome 1

(Chr.1) QTL (peaking at 70–80 cM) influencing open field activ-

ities (Gershenfeld and Paul, 1997), a Chr.1 QTL (peaking at
�75 cM) for body weight (Zhang and Gershenfeld, 2003), and

a Chr.7 QTL (peaking at �50 cM) co-localized with the albino

(Tyr) locus influencing conditioned fear (Ponder et al., 2008).

Interestingly, we identified a number of QTL that were not pre-

viously detected when the same phenotypes were studied using

unstressed B6 3 A/J populations. Notably, the most significant

QTL (LOD = 13.4) identified in our chronically stressed mice is

located at 69.58 cM on Chr.4, which strongly influenced the

plasma thyroid-stimulating hormone (TSH) levels measured at

euthanasia (Figure 3B). Median TSH levels in mice with the ho-

mozygous B6 genotype at the QTL were twice as high as in

mice with the homozygous A/J genotype (Figure 3C). This QTL

was not detected in a recent study of unstressed B6 3 A/J
Cell Reports 11, 835–848, May 5, 2015 ª2015 The Authors 837
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Figure 3. Identification of QTL that Influence Stress and Sleep Phenotypes

(A) Genetic landscape of stress and sleep. Genomic locations of the 142 identified QTL (FDR < 0.2) are shown (also see Table S3). BL, baseline; SDR, sleep

deprivation recovery; Rst, after restraint stress.

(B) A highly significant QTL for plasma TSH level on Chr.4. LOD, log of odds.

(C) Median ± interquartile range of plasma TSH level as a function of genotype at rs4224864, the most strongly associated SNP in the Chr.4 QTL region.

(D) Distinct QTL were linked to blood pressure measured at different times of the chronic stress protocol.

(E) Baseline plasma glucose levels were linked to QTL with consistent effect throughout the chronic stress treatment as well as QTL specific to different stages of

the protocol. Note that while a 6-hr fasting procedure preceded the glucose tolerance test and the glucosemeasurement at time 0 (i.e., week 7), it did not appear

to have a significant effect on the genetic control of glucose, as it did not result in presence or absence of a QTL specific to the baseline glucose measurement at

week 7. The most distinct genetic regulations of baseline glucose levels were observed between week 2 (i.e., most naive) and weeks 12 and 13 (i.e., most

experienced).
recombinant inbredmice (McLachlan et al., 2014). As prior expo-

sures to stress are known to modulate the activity of the hypo-

thalamic-pituitary-thyroid axis and the TSH profile (Armario

et al., 1993), our results may suggest that TSH levels are regu-

lated by an interaction between the Chr.4 QTL and chronic stress

exposure.

To demonstrate further how prior stress exposure may modu-

late the genetic control of physiological parameters, we investi-

gated repeated measures of phenotypes across the chronic

stress protocol. Blood pressure was measured at weeks 1, 4,

and 7 (Figure 1A). Significant phenotypic correlations were

observed between week 1 and week 4 measurements as well

as between week 4 and week 7 measurements, but not between

week 1 and week 7 measurements (Table S2). Interestingly, this

observation is accompanied by the involvement of distinct QTL

(Figure 3D). At week 1, blood pressure was influenced by a

QTL located on the distal portion of Chr.2, while a significant
838 Cell Reports 11, 835–848, May 5, 2015 ª2015 The Authors
QTL on Chr.14 and a suggestive QTL on the proximal portion

of Chr.2 were identified at week 7. No significant QTL at FDR <

0.2 was found at week 4. We noticed a similar phenomenon for

baseline plasma glucose levels in the absence of acute stress

(Figure 3E). These data suggest that even basic physiological pa-

rameters are regulated by complex genetic architecture and that

such regulation is highly susceptible to prior stress experiences.

The genetic landscape of stress and sleep revealed a number

of co-localized QTL influencing distinct phenotypic categories

(Figure 3A). Among the 143 significant QTL, 83 were mapped

to a locus less than 10 cM from a QTL for a phenotype of a

different category. For example, a cluster on Chr.1 includes

QTL that influence open field activities, body weight, a baseline

NREM trait, and a forced swim test measure (Figure 3A; Table

S3). Furthermore, QTL for conditioned fear on Chr.7 co-localize

not only with the albino locus, but also with loci influencing

open field activities, corticosterone levels during restraint stress,
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and sleep parameters both under baseline conditions and after

restraint stress. In summary, our analysis characterizes a rich ge-

netic landscape and identifies many co-localized QTL that may

underlie the interactions between stress and sleep and their ef-

fects on other behavioral and physiological parameters.

Identification of Candidate Causal Genes Underlying
Stress and Sleep QTL
Limited by the number of meiotic recombinations, a QTL identi-

fied using �300 F2 mice typically spans a �20-cM genomic re-

gion, harboring hundreds of genes (Li et al., 2005). To identify

candidate genes underlying the sleep and stress QTL, we inte-

grated the QTL data with RNA-seq expression data of 26,927

striatal genes and associated these molecular data to the 15

phenotype categories (Figure 4) that are known to be influenced
by the striatum. We focused on phenotypic QTL that overlapped

with loci regulating gene expression (i.e., eQTL; see Supple-

mental Experimental Procedures) and utilized conditional inde-

pendence models to determine whether expression variation of

the gene mediates the QTL effect and causes phenotypic varia-

tions (Millstein et al., 2009; Schadt et al., 2005). This causality

test has successfully identified causal genes for complex sleep

traits (Millstein et al., 2011) that were later pharmacologically

validated (Brunner et al., 2011).

In this analysis, we identified 92 causal genes at p < 0.05 (Ta-

ble S4), several of which have already been well supported. For

example, somatostatin signaling is known to modulate anxiety-

like behaviors and adaptive responses to stress (Stengel et al.,

2013), and we identified Sstr3 (somatostatin receptor 3) as a

causal gene for the number of entries into the center of open field
Cell Reports 11, 835–848, May 5, 2015 ª2015 The Authors 839



arena. Our analysis also reveals many other causal candidates,

some of which are causal for several traits. For example,

Arhgef17 is one of 28 genes that are relevant to multiple pheno-

types (Figure 4), testing causal for four conditioned fear mea-

sures. Arhgef17 encodes a RhoGEF, which regulates Rho

GTPase and downstream kinases, a signaling pathway known

to affect conditioned fearmemory (Lamprecht et al., 2002). Taken

together, the causality test revealed a large number of high-pro-

file candidate genes linking genetic variability to functional con-

sequences in sleep and stress-related affective behaviors.

In addition, five genes are causal for phenotypes frommultiple

categories (Figure 4). For instance, Aldh1a1was found causal for

baseline sleep fragmentation and state amount measures.

Aldh1a1 encodes an aldehyde dehydrogenase important for

the synthesis of retinoic acid (Fan et al., 2003), a molecule

involved in sleep/wake regulation (Kitaoka et al., 2011). Interest-

ingly, the causality test identified only one gene, Uvrag (UV radi-

ation resistance associated gene), that directly links sleep and

stress-related behavioral phenotypes. Uvrag tested causal for

three conditioned fear traits and two baseline sleep fragmenta-

tion phenotypes in our experiment. Though its role in the central

nervous system remains unclear, it responds to various cellular

stresses, maintains chromosomal stability, and promotes auto-

phagy (Liang et al., 2006; Zhao et al., 2012). While our causality

analysis uncovered causal genes relevant to particular traits, it

identified few pleotropic causal genes. This suggested that anal-

ysis on the level of gene networks rather than individual genes

was needed to sufficiently capture themolecular relationship be-

tween concomitant stress and sleep phenotypes.

Network Organization of Striatal Gene Expression
Exhibits Functional and Cell-type Specificity
We constructed co-expression networks for the striatum of the

(B63 A/J) F2 mice and identified 62 independent transcriptional

modules (Figure 5A), each namedwith an arbitrarily assigned co-

lor. Twenty-eight modules are enriched for genes in specific bio-

logical pathways and gene ontology (GO) functional groups

(Table S5). Transcriptional co-expression of genes suggest

similar regulatory control (Zhang and Horvath, 2005), and we

identified many co-regulatory relationships between known

genes of interest and other gene groups. For example, the In-

dianred4 module includes four genes commonly associated

with the molecular circadian pathway, Csnk1e, Arntl, Cry1, and

Hdac3. Interestingly, this module is functionally enriched for

chaperone (p = 3.36 3 10�5, 3.89x) and stress response (p =

3.6 3 10�5, 7.32x) GO categories and includes a number of

heat shock proteins traditionally implicated in disease pathways.

These relationships suggest that seemingly diverse molecular

pathwaysmay be under similar regulatory control in the striatum.

Using cell-type-specific gene signatures from the Allen Brain

Atlas (Lein et al., 2007), we also identified several cell-type-spe-

cific modules, including an oligodendrocyte-enriched Darkolive-

green module (p = 2.8 3 10�64, 54.3x) and a neuron-enriched

Turquoise module (p = 8.1 3 10�4, 2.24x). Previous studies

have described the functional and pathophysiological impor-

tance of cell-type specific modules in the human brain (Oldham

et al., 2008; Zhang et al., 2013), so we considered thesemodules

particularly interesting candidates for downstream analysis.
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Striatal Gene Co-expression Modules Link Distinct
Aspects of Sleep and Stress Biology
Genetic variability and its effect on gene expression contribute to

both module organization and phenotypic segregation in our

chronically stressed mice. Our causality test results suggest

that it is difficult to link complex phenotypes through single pleio-

tropic genes and that a network-based approach may help

better understand common molecular bases linking complex

phenotypes. By correlating modules with phenotypes, we iden-

tified specific traits most relevant to striatal co-expression mod-

ules. Previous efforts have focused on relating modules to a

single class of traits (Zhang et al., 2013), but our extensive phe-

notyping assays enabled us to identify module-phenotype asso-

ciations in 15 independent trait categories (Figure 5B). We

rankedmodule relevance for each phenotype category and iden-

tified modules shared by multiple phenotypic classes (see Sup-

plemental Experimental Procedures and Table S5).

Module ranking across phenotypic categories reveals

numerous relationships between distinct aspects of stress re-

sponses and sleep. For example, the Turquoise module ranks

first for novel environment behavioral responses and third for

REM traits after restraint stress, giving it the highest composite

ranking for these traits (Figure 5C). Interestingly, it is highly en-

riched with causal genes for behavioral responses to novel envi-

ronment (15 of the 23 causal genes; p = 2.9 3 10�7, 3.9x). This

result complements the module ranking by providing strong

gene-level evidence for its relationship to novel environment

stress. The Turquoise module is also enriched with genes in

the mitochondrial membrane (p = 1.23 3 10�12, 1.89x) and syn-

aptic (e.g., a variety of neurotransmitter receptors; p = 1.01 3

10�9, 1.85x) GO categories, which is consistent with its

neuron-specific gene signature. A growing body of evidence

suggests that mitochondria modulate synaptic plasticity,

contribute tomany CNS diseases, and can serve as an important

therapeutic target (Manji et al., 2012). Our results support the hy-

pothesis that mitochondria and synaptic mechanisms are highly

integrative and suggest that this relationship fundamentally ex-

ists at the level of transcriptional co-expression, at least in the

striatum. Because mitochondrial and synaptic impairment is

characteristic of CNS diseases, it is particularly interesting that

the Turquoise module is most relevant to both behavioral re-

sponses to novel environment and REM sleep after acute

restraint stress. Specifically, increased module expression cor-

relates with increased anxiety measures, as well as increased

REM bouts and decreased median inter-REM interval in the first

half of the dark period after restraint stress (Table S5). Transcrip-

tional co-regulation of mitochondrial and synaptic genes may

provide a mechanistic basis for the comorbidity of anxiety,

stress-related REM sleep disruptions, and neuropathology.

Bayesian Network Reconstruction Identifies Key Driver
Genes Linking Sleep and Stress
We used Bayesian network reconstruction to calculate causal

probabilistic relationships between genes and identify the causal

regulators (i.e., key drivers) of transcriptional networks linking

stress and sleep traits. We utilized cis-eQTL (FDR < 0.1) as

causal anchors in our directed probabilistic network and recon-

structed a single consensus Bayesian network from 18,460
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Figure 5. Identification of Gene Co-expression Modules Relevant to Selected Behavioral and Sleep Phenotypes

(A) The topological overlap matrix (TOM) plot corresponds to the striatal gene co-expression network. Darker color indicate stronger co-regulation between a pair

of genes (in rows and columns). Genemodules are identified by hierarchical clustering of the matrix, as labeled by arbitrarily assigned color bars on the top and at

the left.

(B) Identification of modules (rows) significantly associated with selected phenotypes (columns) organized in categories. Gene modules are indicated by their

assigned color at the left. Red bars indicate significant associations (p < 0.05 and FDR < 0.05).

(C) Ranking of modules (rows) based on relevance to individual phenotypic categories and combined categories of interest (columns). Module rankings for a

phenotypic category were determined by the number of significant module-trait associations within the phenotypic category. For a combination of multiple

phenotypic categories, rankings for each category were summed to determine a composite ranking for each module. Darker color indicate higher ranking. The

actual rankings are also labeled.

BL, baseline sleep; SDR, sleep deprivation recovery; Rst, sleep after restraint stress.
genes with the greatest variance across the mouse population

(Supplemental Experimental Procedures). We intersected the

full Bayesian network with the Turquoise module and identified

the key driver genes that primarily control the expression of the

module. Our agnostic approach identified many key drivers

that have been supported by other experiments. For instance,

we identified Slc17a7, Fmr1, and Grm5 as striatal key drivers,

which have previously been implicated in regulating anxiety-

related behavior (Moy et al., 2009; Tordera et al., 2007; Varty
et al., 2005). We also identified Syngr1 as a key driver, which is

differentially regulated in an animal model of depression (Kroes

et al., 2006) and has been genetically linked to panic disorder

in humans (Hamilton et al., 2003). Furthermore, another key

driver of the module, Pde10a (phosphodiesterase 10A), was re-

ported as a candidate genes for conduct disorder (Dick et al.,

2011) and has been tested as an antipsychotic target in animal

models (Smith et al., 2013). Our results offer tissue-specific res-

olution, suggesting that the transcriptional actions of these key
Cell Reports 11, 835–848, May 5, 2015 ª2015 The Authors 841
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Figure 6. Striatal Bayesian Networks

Downstream of Mical2

Each node represents a gene and each directed

edge indicates a causal link between genes. No-

des are colored according to their module as-

signments, using the names of the respective

modules. Key driver genes are represented by

larger square nodes. Nodes with red rims denote

homologs of human GWAS candidates for

neuropsychiatric disorders, and nodes with yel-

low rims denote candidate genes identified in this

study as causal to stress and sleep phenotypes.

One node is labeled with a half red and half yellow

rim, as the represented gene (St8sia2) is a both

reported GWAS candidate for bipolar disorder

and tested causal to a REM sleep phenotype in

this study.
drivers in the striatum may contribute to the emergence of these

anxiety-related traits in animal models and relevant psychiatric

disorders in humans.

Since the Turquoise module is enriched with causal genes for

anxiety-like behaviors, we investigated the organization of these

causal genes in the subnetwork and found that two causal candi-

dates in the Turquoise module, Cadm2 and Kcnj9, are also key

drivers.Kcnj9 encodesGIRK3, a subunit of G-protein-dependent

inwardly rectifying K+ channels. GIRK channels have been impli-

cated in a variety of diseases, including anxiety (Pravetoni and

Wickman, 2008) and addiction (Morgan et al., 2003). GIRK3 in

particular is thought to modulate the availability of all GIRK chan-

nels on the plasma membrane through lysosomal trafficking and

thus may be key to GIRK-related disease mechanisms (Lüscher

and Slesinger, 2010). Interestingly, GIRK3 (Kcnj9) is immediately
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downstream of another key driver gene,

Mical2 (a microtubule associated mono-

oxygenase), in its transcriptional subnet-

work (Figure 6). Molecularly, MICALs

link cytoskeletal dynamics, synaptic

structure, vesicle trafficking, and redox

signaling (Zhou et al., 2011). They also

bindCasL, alleles ofwhichare associated

with neurological disease (Li et al., 2008).

By regulating the expression of Kcnj9,

Mical2 drives a metabotropic glutamate

receptor (Grm2), which has been impli-

cated in anxiety (Galici et al., 2006).

Mical2 is also upstream of a GABAB re-

ceptor (Gabbr2), whose physiological

properties are intimately linkedwith those

of GIRK receptors (Lüscher and Sle-

singer, 2010). Furthermore, Mical2 is

immediately upstream of several mito-

chondrial genes, including Dlc1, which

is responsible for Bcl-2-activated

mitochondrial-mediated apoptosis, and

Nuak1, which controls synaptic plasticity

and axon branching dependent on mito-

chondria mobilization (Courchet et al.,
2013; Sunet al., 2013). Taken together, this subnetwork suggests

thatMical2may serve as a striatal regulator of synaptic andmito-

chondrial pathways and contribute to mechanisms fundamental

to sleep, stress, and neuropathology.

Key Driver Nodes of Stress and Sleep Subnetworks Are
Implicated in Neuropsychiatric Diseases
Since the Turquoise module is strongly associated with anxiety-

related traits in mice, we investigated whether its key drivers

have been previously implicated in neuropsychiatric disease in

humans. We queried the National Human Genome Research

Institute Catalog of Published Genome-Wide Association

Studies (GWAS) (Welter et al., 2014) for candidate genes associ-

ated with neuropsychiatric disorders (Table S5). Interestingly,

mouse homologs of these GWAS genes are overrepresented in
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the Turquoise module (p = 2.983 10�5, 1.3x) and are more likely

to overlap with the key drivers of the module than with down-

stream module genes (p = 0.02, 1.8x). Since GWAS data lack

mechanistic information, our results contextualize human

gene-phenotype associations within a causal probabilistic

model with tissue-specific resolution. Interestingly, key drivers

of the Turquoise module are not exclusively related to neuropsy-

chiatric diseases. Its key drivers are also overrepresented for

genes involved in Parkinson’s disease (p = 0.01, 6.6x) and Hun-

tington’s disease (p = 0.069, 4.8x) according to the KEGG (Kyoto

Encyclopedia of Genes and Genomes) database. Taken

together, these results suggest that genes associated with

neurological and psychiatric diseases are important regulators

of subnetworks linking stress and sleep traits.

The Mediumpurple2 Module Reveals Links between
Stress, Sleep, and Neurodegeneration
Links between neurodegeneration and key drivers of stress/

sleep gene networks are not limited to the Turquoise module.
The Mediumpurple2 module also links neurodegeneration to

stress and sleep. It has the highest composite ranking for forced

swim measures (fifth), sleep fragmentation traits at baseline

(third), and after sleep deprivation (fourth) (Figure 5C). This mod-

ule is enriched for the chromatin-modification GO category (p =

9.78 3 10�7, 5.7x), suggesting transcriptional control of chro-

matin-modifying genesmay link depressive behaviors with sleep

fragmentation.While theMediumpurple2module ranks highly for

sleep fragmentation measures at baseline and after sleep depri-

vation, it ranks poorly for sleep fragmentation after restraint

stress (15th). Such stressor-specific module-trait relationships

are also observed in other modules, including the White module,

which is specifically associated with sleep fragmentation after

sleep deprivation, and theMidnightblue module, which is specif-

ically associated with sleep fragmentation after the restraint

stress. It is well known that different stressors correlate with

different physiological sleep changes (Suchecki et al., 2012),

and these stressor-specific sleep modules, which include

Mediumpurple2, suggest that this phenomenon is also apparent

on the gene network level.

In addition to its stressor-specific relationships to sleep phe-

notypes, theMediumpulple2 module is also linked with neurode-

generation. Key driver genes of the Mediumpurple2 subnetwork

include Htt, whose polyQ expansion causes Huntington’s

disease. Other Mediumpurple2 key drivers such as Bsn, Mll1,

and Celsr3 have also been associated with ataxia, epilepsy,

and neurodegeneration (Altrock et al., 2003; Lim et al., 2009; Tis-

sir et al., 2005). The Htt and Bsn subnetworks converge to drive

the expression of the gene encoding heavy-chain of cytoplasmic

dynein,Dync1h1 (Figure 7), whosemutations have been linked to

Huntington’s disease-like striatal atrophy and metabolic defects

(Braunstein et al., 2010; Eschbach et al., 2011). We found that

37%of the key drivers in this module are genes that causemotor

abnormalities when disrupted, as cataloged by the Mouse

Genome Database (Blake et al., 2014). This network enrichment

(p = 8.4 3 10�4, 6.56x) suggests that genes classically associ-

ated with neurological disease drive subnetworks shared by

stress and sleep traits. Patients of neurodegenerative diseases

concomitantly suffer from psychiatric and sleep disorders

(Morton, 2013; Sauerbier and Ray Chaudhuri, 2014), which often

precede the disease onset (Postuma et al., 2012; Shirbin et al.,

2013). While links between stress and neurodegeneration

have been hypothesized (Kibel and Drenjancevi�c-Peri�c, 2008),

studies on their connections at the genetic and molecular

level are limited. Our results thus suggests that biological

mechanisms linking stress, sleep, and neurodegeneration may

reside fundamentally in the network organization of striatal

gene expression.

DISCUSSION

Sleep-wake and stress traits are controlled by complex genetic

architectures (Feder et al., 2009; O’Hara et al., 2007). Here, we

combined amultiscale systems approach with extensive pheno-

typing to investigate how genetic variation and transcriptional

networks contribute to the emergence of multiple sleep and

stress phenotypes. We uncovered candidate genes underlying

the associations between genetic and phenotypic variations
Cell Reports 11, 835–848, May 5, 2015 ª2015 The Authors 843



using a causality test, but noted that this gene-level approach

was limited. Consequently, we demonstrated that network-level

analysis better captures the effect of numerous loci on the orga-

nization of transcriptional networks and the emergence of com-

plex interacting phenotypes. Since stress maladaptation and

sleep disturbance may precede and predispose patients to

neuropsychiatric disease, understanding their molecular inter-

sections is critical for developing a more sophisticated and

nuanced conception of disease mechanism, progression, and

therapeutic intervention (Goldstein and Walker, 2014). Our anal-

ysis indeed revealed that key drivers regulating sleep- and

stress-related transcriptional networks are functionally impor-

tant and significantly overlap with genetics associated with

human neuropsychiatric diseases. This result not only contextu-

alizes GWAS findings, but also suggests that the seemingly

discrete GWAS genes can be functionally linked via gene regula-

tory networks important for stress and sleep. Furthermore, the

broad overlaps between neuropsychiatric GWAS candidates

and key drivers of stress/sleep gene networks support the

concept that gene network structure can be used to predict

functional consequences produced by molecular perturbations.

We have highlighted several module-trait relationships that

link sleep, stress, and neuropsychiatric disease. In this article,

we highlight the co-expression of mitochondrial and synaptic

genes and their relationship to anxiety-related behaviors and

REM sleep traits after restraint stress. Since both sleep and

stress disorders are common in many psychiatric diseases,

these molecular networks can provide insights into the onset

and maintenance of neuropsychopathology. We also provide

a full catalog of all module-traits relationships (Table S5) as

a resource that can facilitate in silico hypothesis testing and

in vivo validation of potential molecular mechanisms and

therapeutic candidates relevant for chronic stress, sleep,

and neuropathology.

Impaired mitochondrial and synaptic functions, similar to

sleep dysfunction and stress susceptibility, are commonly linked

with many neurological and psychiatric diseases. However,

studies of the interaction between mitochondrial and synaptic

pathways and its role in disease have produced conflicting and

sometimes tenuous evidence, which speaks to the complexity

of the biology and its consequent pathophysiology. Studying in-

dividual genes and pathways insufficiently explains this complex

relationship, so a systems approach is ideal for identifying the

basis of this interaction (Manji et al., 2012). In the present study,

the Bayesian network reconstruction revealed many key driver

genes that regulate both mitochondrial and synaptic pathways

and may serve as potential therapeutic targets for human neuro-

psychiatric disorders. Mical2 is one particularly interesting

example since it links multiple pathways related to CNS dis-

eases. Although the molecular function of Mical2 in mammals

has not been extensively characterized, several independent

lines of evidence support the role of Mical2 in mediating anxiety

behaviors and neuropathology. The expression of Mical2 is

downregulated in patients of major depressive disorder (Tochigi

et al., 2008), in stress-susceptible rats after chronic restraint

stress (Crews et al., 2012), and in offspring of prenatally stressed

rats (Mychasiuk et al., 2011).Mical2 was also identified as a hub

gene in a co-expression module implicated in human autism
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spectrum disorder (Parikshak et al., 2013), which has a signifi-

cant anxiety/phobia component. Our analyses converge with

these previous studies and provide strong evidence for the role

of Mical2 in neuropsychiatric disease. Importantly, therapeutics

targeting mitochondrial and synaptic pathways have been suc-

cessful for treating CNS diseases and may represent an impor-

tant direction for developing treatment for a range of neurological

and psychiatric disorders (Manji et al., 2012). Therefore, the

key drivers of the mitochondria/synaptic subnetwork represent

strong therapeutic candidates, as exemplified by Pde10a, a

pharmacological target for psychotic disorders (Smith et al.,

2013).

In the present study, we examined the striatum because it is

critical for regulating motivation, stress susceptibility, and sleep

and is dysfunctional in many neuropsychiatric diseases. Our

integrative analysis revealed that striatal gene networks are

extensively shared by sleep and stress phenotypes and that

these points of intersection are relevant to neuropsychiatric

disease. However, many other brain regions are known to be

involved in the regulation of stress and/or sleep. It is likely

that coordinated organization and functionality of gene net-

works in multiple brain regions are required for appropriate

stress adaptation and sleep regulation. Limited to only one

brain region, our current analysis does not address tissue spec-

ificity or multi-tissue coordination of gene networks relevant to

stress and sleep. Since we collected other brain regions and

peripheral organs in our chronically stressed and extensively

phenotyped (B6 3 A/J) F2 mouse population, we are in a posi-

tion to extend our systems approach to multiple tissues in

future studies.

Finally, our data-driven systems approach has revealed a

number of intriguing but unexpected results. For example, we

found that key drivers of multiple networks linking sleep and

stress are enriched with neurodegenerative genes, suggesting

amolecular mechanism linking stress, sleep, and neurodegener-

ation. The frequency of this association in our networks suggests

that neurodegenerative properties may be a general attribute of

key driver nodes important for both stress and sleep, at least in

the striatum, a brain region known to be prone to neurodegener-

ative diseases such as Huntington’s and Parkinson’s diseases.

This hypothesis requires further investigation but proposes that

identifying common networks relevant to stress and sleep can

reveal molecular mechanisms and therapeutic targets of neuro-

pathology. Furthermore, although the main text of this paper

focuses on 15 categories of phenotypes most relevant to the

striatum, our data-driven approach can also be applied to the

other 14 categories of phenotypes that are not classically asso-

ciated with striatal function. As expected, the neuronal-specific

module Turquoise is almost exclusively associated with sleep

and behavioral phenotypes and is not associated with pheno-

types that do not directly involve the CNS, confirming the

functional specificity of gene network organization. However, a

number of associations between other striatal gene modules

and non-CNS phenotypes were also observed. For instance,

the modules enriched for cellular for stress response genes

(Indianred4) and chromatin-modification genes (Mediumpur-

ple2) ranked the highest for peripheral white blood cell measure-

ments, whose association with the striatum is unknown. Some



evidence suggests that the peripheral immune system plays an

important role in stress resilience, cognition, and other central

nervous system functions (Cohen et al., 2006; Kipnis et al.,

2012; Schwartz and Kipnis, 2011), and our unbiased analyses

support this link by showing that serological measurements of

the peripheral immune system correlate with striatal transcrip-

tional networks that are also associated with stress-related

behavioral and sleep phenotypes. The precise relationship be-

tween the striatum and peripheral immune system is beyond

the scope of this study, but this analysis can serve as comple-

mentary evidence for future investigations regarding the interac-

tions between the functions of multiple organ systems involved

in stress and sleep.

Overall, our analysis provides the foundation for a data-driven

approach that links diverse phenotypes through common mo-

lecular networks, and our strategy considers the complex symp-

tomatology of neuropsychiatric disease as a guide, rather than a

hindrance, to our molecular analysis. We provide all the data and

analysis results as a resource to the biomedical research com-

munity, and we expect it will guide future investigations into

the biological mechanisms underlying stress, sleep, and related

neuropathology.

EXPERIMENTAL PROCEDURES

Animals and Housing

All mice were housed and handled according to the Federal Animal Welfare

guidelines, and all studies were approved in advance by the Institutional Ani-

mal Care and Use Committee at Northwestern University. This study utilized

338 male (B63 A/J) F2 mice, bred at the Jackson Laboratory. Animals arrived

at Northwestern at 4 to 5 weeks of age and were individually housed in opaque

cages without enrichment items for the duration of the study to create social

isolation stress. Mice were maintained on a 12-hr light/12-hr dark cycle at a

room temperature of 23�C ± 2�C with food and water available ad libitum

(except during test procedures).

Stress Procedures and Phenotypes

Mice were divided into 12 consecutively run cohorts of 10–40 animals each,

which were all subjected to the same chronic unpredictable stress protocol

(Figure 1A) with accompanying phenotypic measurements (see Supple-

mental Experimental Procedures). The stressors included social isolation,

novel exposed environments (elevated plus maze, open field, elevated zero

maze), restraint, forced swimming, fear conditioning, social defeat, cold

exposure, a metabolic stressor (6-hr fast and glucose tolerance test), and

the sleep behavior response to sleep deprivation and restraint. Sleep/wake

behavior was recorded from each mouse by surgically implanting EEG and

EMG electrodes. Following all stress and sleep behavior tests, all animals

were euthanized by decapitation, and blood and tissue samples were

collected for additional analyses. Phenotypes were functionally grouped

into 29 categories; for sleep traits, factor analysis was used to confirm cat-

egories (Table S1).

Genotyping

Genotypes of all animals were determined from DNA extracted from tail-tip bi-

opsies by using the Illumina medium-density single-nucleotide polymorphism

(SNP) panel. A complete set of the genotypic data is provided in Table S1.

RNA-Seq

The striatum brain region was rapidly dissected from each mouse after eutha-

nasia and frozen in liquid nitrogen. Gene expression from the striatum was

evaluated using RNA sequencing; 100-bp single-end sequencing reads

were aligned against the Ensembl NCBIM37 mouse reference genome for

gene-level expression profiling.
Analysis Procedures

Details of analysis procedures are described in the Supplemental Experi-

mental Procedures. Briefly, for the genome-wide QTL and eQTL scan, we

used Haley-Knott (HK) regression in the r/qtl package. The sample order of

the genotypic data was randomly permuted 1,000 times to estimate FDRs

for phenotypic QTL. FDRs for cis-eQTL and trans-eQTL were separately esti-

mated based on 500 permutations.

In the causality test, we consider combinations of a trait (T), expression of a

gene (G), and a locus (L) regulating both T and G. G tests causal to T if the

following four conditions are met: (1) L is associated with T, (2) L is associated

with GjT, (3) G is associated with TjL, and (4) L is independent of TjG.

To construct co-expression networks, we used a weighted gene co-expres-

sion network analysis (WGCNA) framework, in which gene expression correla-

tions were weighted with a positive power in order to satisfy a ‘‘scale-free’’

power law connectivity distribution in the resulting network. Genes were then

grouped into modules using hierarchical clustering based on their topological

overlap.Geneexpression inamodulewas reduced to their firstprincipal compo-

nent and correlated with phenotypes to identify module-trait relationships.

Bayesian network reconstruction was used to decipher regulatory relation-

ships among genes. To breakMarkov equivalent structures and infer causality,

cis-eQTL data were used as causal anchors. We used a Monte Carlo Markov

Chain (MCMC) simulation to reconstruct 1,000 gene networks, evaluating the

fit of each network with Bayesian Information Criterion (BIC). A single

consensus network was constructed from these simulations and was used

to identify key regulators of modules relevant to sleep and stress traits. We

calculated the size of the h-layer neighborhood (HLN) downstream of each

gene in the subnetwork resulting from the intersection between Bayesian

network and the module. Genes were identified as causal network regulators

(i.e., key drivers) if their HLNs are greater than mean(m) + s(m), where m is the

size of the respective HLN of each gene in the subnetwork.
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