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a b s t r a c t

In this paper, we first prove some general results on the number of fixed points of
collineations of finite partial geometries, and on the number of absolute points of dualities
of partial geometries. In the second part of the paper, we establish the number of
isomorphism classes of partial geometries arising from a Thas maximal arc constructed
from a (finite) Suzuki–Tits ovoid in a classical projective plane. We also determine the
full automorphism group of these structures, and show that every partial geometry arising
from any Thas maximal arc is self-dual.
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1. Introduction

Partial geometries were introduced by Bose [3] in 1963 as a geometric approach to many strongly regular graphs.
Although a number of classes and sporadic examples of (finite) partial geometries are known, they do not seem to exist
in great numbers. In order to understand the structure of partial geometries better, it seems reasonable to try to understand
how collineations act on them. In particular, a general but pertinent question is: what can we say about the fixed points
and fixed lines of an arbitrary collineation? And can one say something about the number of absolute points and lines of a
duality of a partial geometry? This paper intends to answer these questions.
The formulae we find for self-dual partial geometries lead us to take a closer look at the examples of self-dual partial

geometries. There are very few of these. The most prominent examples are the partial geometries arising from a Thas
maximal arc of a Desarguesian projective plane constructed with a Suzuki–Tits ovoid. We show (1) that these examples
are really self-dual; in fact we show that this holds when considering any ovoid of PG(3, q), with q even. Our methods
then allow us to (2) determine the full collineation groups of these geometries. As an application we show (3) that, for each
Suzuki–Tits ovoid, there are exactly two isomorphism classes of Thas maximal arcs in the classical plane, and consequently
also two isomorphism classes of corresponding partial geometries. Questions (2) and (3) were also answered by Hamilton
and Penttila [7], tacitly assuming that, with the notation of Section 5.3, the vertex x of the cone defining the maximal arcs
in question is fixed under every collineation stabilizing the maximal arc. We include a complete proof. Question (1) was, as
far as we know, never treated before and has been open since 1974, when Thas introduced these geometries.
Theorem 3 was also proved in [6], but we repeat the proof here, as it gives us the opportunity to introduce the technique

we will use for the dualities.

2. Generalities

A (finite) partial geometry is an incidence structure S = (P ,L, I), with an incidence relation satisfying the following
axioms
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1. each point is incident with t + 1 lines (t ≥ 1) and two distinct points are incident with at most one line;
2. each line is incident with s+ 1 points (s ≥ 1) and two distinct lines are incident with at most one point;
3. if x is a point and L is a line not incident with x, then there are exactly α(α ≥ 1) points x1, x2, . . . , xα and α lines
L1, L2, . . . , Lα such that xILiIxiIL, i ∈ {1, 2, . . . , α}.

We will say that such a partial geometry is of order (s, t, α). If |P | = v and |L| = b, then v = (s+1)(st+α)
α

and b = (t+1)(st+α)
α

.
In a finite projective plane of order q, any non-void set of l points may be described as an {l; n}-arc, where n 6= 0 is the

largest number of collinear points in the set. For given q and n, n 6= 0, l can never exceed (n− 1)(q+ 1)+ 1, and an arc with
that number of points will be called a maximal arc (cf. [2]). It is easily seen that a maximal arc meets every line in either 0
or n points.
A near polygon is a partial linear space S = (P ,L, I)with the following property: if x is a point and L is a line not incident

with x, then there exists a unique point y incident with L for which dist(x, y) is minimal. If the maximal distance between
two elements is n, then the near polygon is also called a near n-gon.
Wewill say that a near polygon is of order (s, t), if there are s+1 points on every line and t+1 lines through every point.
Let S = (P ,L, I) be a partial geometry of order (t, t, α). Then we define the double of it as the following geometry: the

point set is P ∪L, the line set is the set of flags of S, where a flag is an incident point-line pair, and incidence is the natural
one.
In this way each partial geometry of order (t, t, α) gives rise to a unique near octagon, that is, a near 8-gon, of order

(1, t), for which the following property holds: for every two points x and y which lie at distance 6 from each other, there
exist precisely α paths of length 6 from x to y, and for every two points x′ and y′ which lie at distance 4 from each other
there exists precisely 1 shortest path from x′ to y′. We will say that such a near octagon is of order (1, t;α, 1). Conversely,
each near octagon of order (1, t;α, 1) arises from a partial geometry of order (t, t, α).
We will need the following lemmas in Section 3. The proofs can be found in [11].
Let A be an adjacencymatrix of the point graph of a partial geometry S of order (s, t, α)with v points, letM = A+(t+1)I ,

let θ be an automorphism of S of order n and let Q = (qij) be the v × v matrix with qij = 1 if xθi = xj and qij = 0 otherwise.

Lemma 1. Suppose that ξ and ξ ′ are both primitive dth roots of unity, with d a divisor of n, and let λ be an integer eigenvalue
of M. If at least one of ξλ and ξ ′λ is an eigenvalue of QM, than they both are and they have the same multiplicity.

Lemma 2. Let ξ be an nth root of unity and λ an eigenvalue of M such that −λ is not an eigenvalue. Then the multiplicity of ξλ
as an eigenvalue of QM is equal to the multiplicity of ξλj as an eigenvalue of QM j, with j = 2, 3, . . . .

3. A Benson-type theorem for partial geometries

We now introduce some further notation. Suppose that S = (P ,L, I) is a partial geometry of order (s, t, α). It is
convenient to use the notion of collinearity only for distinct points. Let D be an incidence matrix of S. Then M := DDT =
A+(t+1)I , where A is an adjacencymatrix of the point graph of S. Let θ be an automorphism of S of order n and letQ = (qij)
be the v × v matrix with qij = 1 if xθi = xj and qij = 0 otherwise; so Q is a permutation matrix. BecauseM = A+ (t + 1)I ,
the eigenvalues ofM are as follows (cf. [3]):

Eigenvalues ofM Multiplicity

0 m0 = s(s+1−α)(st+α)
α(s+t+1−α)

(s+ 1)(t + 1) m1 = 1
s+ t + 1− α m2 = (s+1)(t+1)st

α(s+t+1−α)

Theorem 3. Let S be a partial geometry of order (s, t, α) and let θ be an automorphism of S. If f0 is the number of points fixed
by θ and if f1 is the number of points x for which xθ 6= x ∼ xθ , then for some integer k

tr(QM) = k(s+ t + 1− α)+ (1+ s)(1+ t) = (t + 1)f0 + f1.

Proof. Suppose that θ has order n, so that (QM)n = Q nMn = Mn. It follows that the eigenvalues ofQM are the eigenvalues of
M multiplied by the appropriate roots of unity. Let J be the v×vmatrixwith all entries equal to 1. SinceMJ = (1+s)(1+t)J ,
we have (QM)J = (1+ s)(1+ t)J , so (1+ s)(1+ t) is an eigenvalue of QM . Becausem1 = 1, it follows that this eigenvalue
of QM has multiplicity 1. Further it is clear that 0 is an eigenvalue of QM with multiplicitym0. For each divisor d of n, let ξd
denote a primitive dth root of unity, and put Ud =

∑
ξ id, where the summation is over those integers i ∈ {1, 2, . . . , d− 1}

that are relatively prime to d. ThenUd is an integer by [9]. For each divisor d of n, the primitive dth roots of unity all contribute
the same number of times to the eigenvalues ϕ of QM with |ϕ| = s + t + 1 − α, because of Lemma 1. Let ad denote the
multiplicity of ξd(s+ t + 1− α) as an eigenvalue of QM , with d|n, and ξd a primitive dth root of unity. Then

tr(QM) =
∑
d|n

ad(s+ t + 1− α)Ud + (1+ s)(1+ t),
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or

tr(QM) = k(s+ t + 1− α)+ (1+ s)(1+ t),

with k an integer.
Since the entry on the ith row and ith column of QM is the number of lines incident with xi and xθi , we have tr(QM) =

(1+ t)f0 + f1. Hence

k(s+ t + 1− α)+ (1+ s)(1+ t) = (1+ t)f0 + f1,

with k an integer. �

Corollary 4. Let S be a partial geometry of order (s, t, α) and let θ be an automorphism of S. If s, t and α − 1 have a common
divisor distinct from 1, then there exists at least one fixed point or at least one point which is mapped to a point collinear to itself.

Proof. Suppose that there are no fixed points and no points which are mapped to a collinear point, hence f0 = f1 = 0.
Because of the previous theorem, k(s+t+1−α)+(1+s)(1+t) has to be equal to 0. Hence k(s+t+1−α)+s+t+st = −1.
But because s, t and α − 1 have a common divisor distinct from 1, there exists an integer m which divides s, t and α − 1.
Hencem divides k(s+ t + 1− α)+ s+ t + st , butm does not divide−1 and we have a contradiction. �

Corollary 5. Let S be a partial geometry of order (s, t, α) and let θ be an involution of S. If s, t and α−1 have a common divisor
distinct from 1, then there exists at least one fixed point or at least one fixed line.

Proof. This follows immediately from the previous corollary because if there is a point xwhich ismapped to a point collinear
to x by the involution θ , then the line xxθ is a fixed line. �

We now have a look at the double of a partial geometry of order (t, t, α), which is a near octagon of order (1, t;α, 1).
If the matrixM of this near octagon is defined as before, then it has the following eigenvalues (cf. [4]):

Eigenvalues ofM Multiplicity

0 m0 = 1
2t + 2 m1 = 1
1+ t m2 = 2(2−α)(t+α)

α(t+2−α)

t + 1+
√
2t + 1− α m3 = 2(t+1)t

α(t+2−α)

t + 1−
√
2t + 1− α m4 = 2(t+1)t

α(t+2−α)

Since these eigenvalues are not necessarily integers, we must first establish a lemma similar to Lemma 1 for eigenvalues
of the form a+b

√
c , where c is a square-free natural number, and a and b are integers. Using the action of the Galois group of

the extension [Q(
√
c, ζd) : Q(

√
c)], where ζd is a primitive dth root of unity, and

√
c does not belong to the dth cyclotomic

extension of Q, the following is obvious.

Lemma 6. Suppose that ξ and ξ ′ are both primitive dth roots of unity, with d a divisor of n, and let a + b
√
c be a non-integer

eigenvalue of M, with a, b, c as above. If at least one of ξλ and ξ ′λ is an eigenvalue of QM, and if c is not a square inQ(ζd), then
they both are eigenvalues of QM and they have the same multiplicity.

It is an elementary exercise to calculate when precisely a square-free natural number c is not a square in the dth cyclotomic
extension of Q. This has been done explicitly in [10]. This happens exactly when either (1) c does not divide d, or (2) c
divides d, c is even and d is not a multiple of 8, or (3) c divides d, c ≡ 3 mod 4, and d is not a multiple of 4. If one of these
conditions holds, then we say that λ = a + b

√
c is cyclotomically independent of d. We extend this definition to integers

by defining every integer to be cyclotomically independent of d. Note that, if λ is cyclotomically independent of d, then it is
also cyclotomically independent of any integer divisor of d.

Theorem 7. Let S be a near octagon of order (1, t;α, 1) and let θ be an automorphism of S of order n. Suppose all eigenvalues
of M are cyclotomically independent of n. If f0 is the number of points fixed by θ and f1 is the number of points x for which
xθ 6= x ∼ xθ , then for some integers k1, k2 and k3

k1(1+ t)+ k2(1+ t +
√
2t + 1− α)+ k3(1+ t −

√
2t + 1− α)+ 2(1+ t) = (1+ t)f0 + f1.

Proof. Clearly (QM)n = Q nMn = Mn. It follows that the eigenvalues of QM are the eigenvalues of M multiplied by the
appropriate roots of unity. Let J be thev×vmatrixwith all entries equal to 1. SinceMJ = 2(1+t)J , wehave (QM)J = 2(1+t)J ,
so 2(1 + t) is an eigenvalue of QM . Because m1 = 1, it follows that this eigenvalue of QM has multiplicity 1. Further it is
clear that 0 is an eigenvalue of QM with multiplicity m0 = 1. For each divisor d of n, let ξd denote a primitive dth root of
unity, and put Ud =

∑
ξ id, where the summation is over those integers i ∈ {1, 2, . . . , d − 1} that are relatively prime to d.
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Then Ud is an integer by [9]. For each divisor d of n, the primitive dth roots of unity all contribute the same number of times
to the eigenvalues ϕ of QM with |ϕ| = 1+ t+

√
2t + 1− α and also the primitive dth roots of unity all contribute the same

number of times to the eigenvalues ϕ′ of QM with |ϕ′| = 1+ t −
√
2t + 1− α, because of Lemma 6 and our assumptions.

Let ad denote the multiplicity of ξd(1+ t +
√
2t + 1− α) and let bd denote the multiplicity of ξd(1+ t −

√
2t + 1− α) as

eigenvalues of QM , with d|n and ξd a primitive dth root of unity. Then

tr(QM) =
∑
d|n

ad(1+ t +
√
2t + 1− α)Ud +

∑
d|n

bd(1+ t −
√
2t + 1− α)Ud + 2(1+ t),

or

tr(QM) = k1(1+ t +
√
2t + 1− α)+ k2(1+ t −

√
2t + 1− α)+ 2(1+ t),

with k1 and k2 integers. Since the entry on the ith row and ith column of QM is the number of lines incident with xi and xθi ,
we have tr(QM) = (1+ t)f0 + f1. Hence

k1(1+ t +
√
2t + 1− α)+ k2(1+ t −

√
2t + 1− α)+ 2(1+ t) = (1+ t)f0 + f1,

with k1 and k2 integers. �

Theorem 8. Let S be a near octagon of order (1, t;α, 1) and let θ be an automorphism of S of order n. Suppose all eigenvalues of
M are cyclotomically independent of n. If f0 is the number of points fixed by θ , f1 is the number of points x for which xθ 6= x ∼ xθ
and f2 is the number of points for which dist(x, xθ ) = 4, then for some integers k1, k2 and k3

k1(1+ t)2 + k2(1+ t +
√
2t + 1− α)2 + k3(1+ t −

√
2t + 1− α)2 + (2(1+ t))2

= (2+ t)(1+ t)f0 + (2+ 2t)f1 + f2.

Proof. Suppose that M , A and Q are defined as before. Now we consider M2 and we have (QM2)n = Q nM2n = M2n.
It follows that the eigenvalues of QM2 are the eigenvalues of M2 multiplied by the appropriate roots of unity. Since
M2J = (2(1 + t))2J , we have (QM2)J = (2(1 + t))2J , so (2(1 + t))2 is an eigenvalue of QM2. By Lemma 2 m1 = 1 and
it follows that this eigenvalue of QM2 has multiplicity 1. Further it is clear that 0 is an eigenvalue of QM2 with multiplicity
m0. For each divisor d of n, let ξd again denote a primitive dth root of unity, and put Ud =

∑
ξ id, where the summation is

over those integers i ∈ {1, 2, . . . , d − 1} that are relatively prime to d. Then Ud is an integer [9]. For each divisor d of n,
the primitive dth roots of unity all contribute the same number of times to the eigenvalues ϕ, respectively ϕ′ and ϕ′′, of
QM2 with |ϕ| = (t + 1 +

√
2t + 1− α)2, respectively |ϕ′| = (t + 1 −

√
2t + 1− α)2 and |ϕ′′| = (1 + t)2, because of

Lemma 6 and our assumptions. Let ad denote the multiplicity of ξd(1+ t +
√
2t + 1− α)2, let bd denote the multiplicity of

ξd(1+ t −
√
2t + 1− α)2 and let cd denote the multiplicity of ξd(1+ t)2 as eigenvalues of QM2, with d|n and ξd a primitive

dth root of unity. Then

tr(QM2) =
∑
d|n

ad(1+ t +
√
2t + 1− α)2Ud +

∑
d|n

bd(1+ t −
√
2t + 1− α)2Ud +

∑
d|n

cd(1+ t)2Ud + (2(1+ t))2,

or

tr(QM2) = k1(1+ t)2 + k2(1+ t +
√
2t + 1− α)2 + k3(1+ t −

√
2t + 1− α)2 + (2(1+ t))2,

with k1, k2 and k3 integers. On the other hand, we have

M = A+ (1+ t)I ⇒ QM = QA+ (1+ t)Q
⇒ tr(QM) = tr(QA)+ (1+ t)tr(Q )
⇒ (1+ t)f0 + f1 = tr(QA)+ (1+ t)f0
⇒ tr(QA) = f1.

The matrix A2 = (aij) is the matrix with (1 + t) along the main diagonal and on the other entries we have aij = 1 if
dist(xi, xj) = 4 and aij = 0 otherwise. Hence tr(QA2) = (1+ t)f0 + f2. It follows that

tr(QM2) = tr(Q (A+ (1+ t)I)2)
= tr(QA2)+ 2(1+ t)tr(QA)+ (1+ t)2tr(Q )
= (1+ t)f0 + f2 + 2(1+ t)f1 + (1+ t)2f0
= (2+ t)(1+ t)f0 + 2(1+ t)f1 + f2. �

Theorem 9. Let S be a near octagon of order (1, t;α, 1) and let θ be a nontrivial automorphism of S of order n. Suppose that
all eigenvalues of M are cyclotomically independent of n. If f0 is the number of points fixed by θ , f1 is the number of points x for
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which xθ 6= x ∼ xθ , f2 is the number of points for which dist(x, xθ ) = 4 and f3 is the number of points for which dist(x, xθ ) = 6,
then for some integers k1, k2 and k3 holds

k1(1+ t)3 + k2(1+ t +
√
2t + 1− α)3 + k3(1+ t −

√
2t + 1− α)3 + ((1+ s)(1+ t))3

= (3(1+ t)2 + (1+ t)3)f0 + (1+ 2t + 3(1+ t)2)f1 + 3(1+ t)f2 + αf3.

Proof. Suppose that M , A and Q are defined as before. In the same way as in the proof of Theorems 7 and 8 we can prove
that tr(QM3) = k1(1 + t)3 + k2(1 + t +

√
2t + 1− α)3 + k3(1 + t −

√
2t + 1− α)3 + (2(1 + t))3, with k1, k2 and k3

integers. On the other hand, we can calculate that A3 = (aij) is the matrix with 0 along the main diagonal while on the other
entries we have aij = 1 + 2t if xi ∼ xj, aij = α if dist(xi, xj) = 6 and aij = 0 otherwise. Hence tr(QA3) = (1 + 2t)f1 + αf3.
Because of the proof of Theorem 8 we know that tr(QA2) = (1+ t)f0 + f2, tr(QA) = f1 and tr(Q ) = f0. Hence

tr(QM3) = tr(Q (A+ (1+ t)I)3)
= tr(QA3)+ 3(1+ t)tr(QA2)+ 3(1+ t)2tr(QA)+ (1+ t)3tr(Q )
= (1+ 2t)f1 + αf3 + 3(1+ t)((1+ t)f0 + f2)+ 3(1+ t)2f1 + (1+ t)3f0
= (3(1+ t)2 + (1+ t)3)f0 + ((1+ 2t)+ 3(1+ t)2)f1 + 3(1+ t)f2 + αf3. �

Note that the integers k1, k2 and k3 in Theorems 7–9 are the same by Lemma 2.
Suppose that we have a duality in the underlying partial geometry, then we know that f0 = 0 and f2 = 0. Because

of Theorems 7–9, we have the following equations, under the assumption that all eigenvalues of M are cyclotomically
independent of the order of the duality.

k1(1+ t)+ k2(1+ t +
√
2t + 1− α)+ k3(1+ t −

√
2t + 1− α)+ 2(1+ t) = f1,

k1(1+ t)2 + k2(1+ t +
√
2t + 1− α)2 + k3(1+ t −

√
2t + 1− α)2 + (2(1+ t))2 = (2+ 2t)f1,

k1(1+ t)3 + k2(1+ t +
√
2t + 1− α)3 + k3(1+ t −

√
2t + 1− α)3 + (2(1+ t))3

= (1+ 2t + 3(1+ t)2)f1 + αf3.

Because f0 and f2 are 0, we know that f1 + f3 = 2(t+1)(α+t2)
α

. Hence

k1 = 0,

k2 =
−2(t + 1)+ f1
2
√
2t + 1− α

,

k3 = −
−2(t + 1)+ f1
2
√
2t + 1− α

,

f3 =
2(t + 1)(α + t2)

α
− f1.

So −2(t+1)+f1
2
√
2t+1−α

has to be an integer. In the case that 2t + 1− α is not a square, this only holds if f1 = 2(t + 1). Suppose that

2t+1−α is a square, then f1−2(t+1) should be amultiple of 2
√
2t + 1− α. Ifα is odd, then f1 ≡ 1+α mod 2

√
2t + 1− α.

If α is even, then f1 ≡ 1+ α +
√
2t + 1− α mod 2

√
2t + 1− α.

Corollary 10. If θ is a duality of a partial geometry of order (t, t, α), with 2t+1−α not a square, but such that it is cyclotomically
independent of the order of θ , then it has 1+ t absolute points and 1+ t absolute lines, and there are (1+ t)t2/α points which
are mapped to a line at distance 3 and (1+ t)t2/α lines which are mapped to a point at distance 3.

Corollary 11. Suppose that θ is a duality of a partial geometry of order (t, t, α), with 2t + 1 − α a square. If α is odd, then
it has (1 + α)/2 mod

√
2t + 1− α absolute points and equally many absolute lines. If α is even, then it has (1 + α +√

2t + 1− α)/2 mod
√
2t + 1− α absolute points and equally many absolute lines.

4. Partial geometries which arise frommaximal arcs

Weare able to construct a partial geometry from amaximal arc (cf. [13]). Suppose thatwe have amaximal {qn−q+n, n}-
arc K , 1 < n < q, of a projective plane π of order q. Define the points of the partial geometry S as the points of π which are
not contained in K . The lines of S are the lines of π which are incident with n points of K and the incidence is the incidence
of π . This gives us a partial geometry of order (q− n, q− q/n, q− q/n− n+ 1).
Consider an ovoid O and a 1-spread R of PG(3, 2m), m > 0, such that each line of R has one and only one point in

common with O. Let PG(3, 2m) be embedded as a hyperplane H in PG(4, 2m) = P , and let x be a point of P \ H . Call C the
set of the points of P \ H which are on a line xy, with y ∈ O. Then the point set C is a maximal {23m − 22m + 2m, 2m}-arc of
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the projective plane π defined by the 1-spreadR (cf. [13]). We will call such maximal arcs Thas maximal arcs. As described
above, we can construct a partial geometry pg(C) from this arc C having order (22m − 2m, 22m − 2m, 22m − 2m+1 + 1).
An interesting example of this situation occurs when the spread is a regular spread (so there arises a Desarguesian

projective plane of order 22m) and the ovoid is a Suzuki–Tits ovoid (hence the maximal arc is not a Denniston maximal
arc; see [13]). In the following we determine the isomorphism classes of suchmaximal arcs and of the corresponding partial
geometries. We also determine the full automorphism groups and correlation groups of these structures.
In order to do so, and in particular in order to prove that the partial geometries are self-dual, we first give an alternative

description of the maximal arcs in a more homogeneous setting.
Consider the projective space PG(5, q) and suppose that we have a regular spread S of lines in this space. The lines of

this spread can be considered as the points of a projective plane PG(2, q2)while the 3-spaces of PG(5, q) containing q2 + 1
spread lines are the lines of this projective plane. Fix such a 3-space PG(3, q) and denote by L∞ the corresponding line of
PG(2, q2). LetO be an ovoid in PG(3, q) such that every point ofO is incidentwith a unique line of S. Take a line L of S outside
PG(3, q) and a point x incident with L. Let PG(4, q) be the hyperplane generated by PG(3, q) and x. Then there is a bijective
correspondence β between the points of PG(4, q) \ PG(3, q) and the lines of S not in PG(3, q) given by containment. It is
also obvious that a 3-space distinct from PG(3, q) containing q2 + 1 spread lines intersects PG(4, q) in a plane π which on
its turn intersects PG(3, q) in a member of S. Hence the bijection β described above defines an isomorphism between the
two models of PG(2, q2).
Using β , we now see that in PG(5, q), the spread lines corresponding to points of the Thas maximal arc C defined by O

and x are the elements of S not in PG(3, q) that meet a line xp in a point, where p ∈ O.

5. Collineations and dualities of the partial geometry pg(C)

5.1. Duality problem

In this section we show that the partial geometry pg(C), with C a Thas maximal arc in the Desarguesian projective plane
PG(2, q), is self-dual.
Note that, for a given maximal arc C in any projective plane, the set of external lines of C is a maximal arc C∗ in the dual

projective plane, and it has the complementary parameters, i.e., if C is a maximal {qn − q + n, n}-arc, then C∗ is a (dual)
{qh− q+ h, h}-arc, with nh = q. In the case of a Thas maximal arc considered above, we see that n = h = 2m.
So, in order to prove that the partial geometry related to a Thas maximal arc is self-dual, it suffices to show that the

corresponding Thasmaximal arc is ‘‘self-dual’’, i.e., a Thasmaximal arc C is projectively equivalentwith the set C∗ of external
lines in the dual projective plane.
So let C be a Thas maximal arc in PG(2, q2), constructed as above using the ovoidO. First of all, we remark that the set of

tangent planes ofO is an ovoidO∗ in the dual of PG(3, q). Indeed, the set of tangent lines ofO is the line set of a symplectic
generalized quadrangle W(q), which arises from a (symplectic) polarity ρ of PG(3, q). This symplectic polarity maps each
point of PG(3, q) onto the plane spanned by the lines of W(q) through x. Hence it maps each point of O onto its tangent
plane. Now it is also clear that O and O∗ are isomorphic.
Next we consider the following construction of C . We dualize in PG(5, q) the construction of PG(2, q2) outlined above.

The line L not in PG(3, q) of the spread plays the role of the space PG(3, q); the ovoid O, as a set of points in PG(3, q) is
replaced by the set of hyperplanes (which we will call the dual ovoid in the sequel) spanned by L and the tangent planes
to O in PG(3, q). The space PG(3, q) plays the role of L. The point x plays the role of the hyperplane X generated by x and
PG(3, q). The spread lines in PG(3, q) and the 3-spaces containing L and q2 + 1 spread lines are also interchanged. Let H be
an element of the dual ovoid. We claim that H contains a unique 3-space K containing L and q2+1 spread lines. Indeed, K is
the 3-space generated by L and the spread line incident with the point ofO obtained by intersecting the tangent plane ofO
corresponding to H with O. Now, interpreting the Thas maximal arc in this dual setting in the PG(5, q)-model of PG(2, q2),
this maximal arc consists of those 3-spaces S containing q2 + 1 spread lines and contained in a hyperplane which contains
〈x, π〉 but not L, where π is a tangent plane of O. Then S contains the spread line T in π . It is clear that S has no point in
common with the cone xO, and hence defines a line of C∗.
Hence we have shown the following result.

Theorem 12. Let C be a Thas maximal arc in PG(2, q2), arising from an ovoidO in PG(3, q) by considering the points of the cone
xO not in PG(3, q). Then C is isomorphic to its dual C∗, and there is a duality of PG(2, q2) that interchanges the point x with the
line L∞ = PG(3, q). In particular, the partial geometry which arises from this maximal arc is self-dual.

Wewill now apply the Benson-type formulae to this example.We have a partial geometry of order (s, t, α), with (cf. [13])

s = t = 22m − 2m and α = 22m − 2m+1 + 1.

So the maximal arc is a {23m − 22m + 2m, 2m}-arc. Hence 2t + 1− α = 22m, which is a square. In this case α is odd; hence

f1 ≡ 1+ α mod 2m+1

≡ 1+ 22m − 2m+1 + 1 mod 2m+1

≡ 2 mod 2m+1.
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We can conclude that if we have a duality in this partial geometry, then there will be at least one absolute point and one
absolute line.

5.2. Automorphism problem

Consider the construction which we described in Section 4. So we have a projective plane PG(2, q2) and a maximal arc
C . Consider the partial geometry which arises from this arc and a collineation of this partial geometry. Now we will have a
look at this collineation in the projective plane. The points outside the maximal arc are permuted and also the lines which
intersect the maximal arc are permuted. Consider a line outside the maximal arc. This is a set of q2 + 1 points, with the
condition that any two of them are non-collinear in the partial geometry. Hence this line is mapped to a set B of q2 + 1
mutually non-collinear points. Consider a point z of B. From the foregoing, we deduce that every line containing z which
intersects C non-trivially is a tangent line to B. Hence every point of themaximal arc is a nucleus of B and because of Theorem
13.43 in [8] and the fact that |C | > q − 1, B should be a line of the projective plane. Hence also the lines outside C and the
points inside C are permuted and incidence is preserved, because we look at external lines as sets of points and at maximal
arc points as sets of lines.We conclude that a collineation of the partial geometry, which arises from C , induces a collineation
of the projective plane PG(2, q2).
So we have the following result.

Theorem 13. The collineation group of pg(C) is induced by the collineation group of PG(2, q2).

Remark 14. The previous theorem holds for all maximal arcs and corresponding partial geometries.

We will apply this theorem in the next section to give a description of the complete correlation groups of the partial
geometries arising from the maximal arcs in PG(2, q2) related to the Suzuki–Tits ovoids. But first we determine the
isomorphism classes of such partial geometries.

5.3. Isomorphism problem

The arguments below will require thatm > 1 (equivalently, q > 2). Henceforth, we assumem > 1. At the end we make
a remark about the casem = 1.
Consider again the projective space PG(5, q) and a regular spread of lines in this space. Take a 3-space PG(3, q) containing

q2 + 1 spread lines in this 5-space and take a Suzuki–Tits ovoid O in this 3-space with the property that each point of O
is on a unique spread line. The tangent lines to O form the lines of a symplectic quadrangleW (q) (cf.[8]). The lines of the
spread which lie in this PG(3, q) are lines ofW (q). Hence these lines form a spread S ofW (q).
The Suzuki–Tits ovoid determines a unique polarity ρ ofW (q), see [15]; here we require q > 2. Hence we obtain a set of

absolute lines which corresponds with ρ. This set of lines forms a Lüneburg–Suzuki–Tits spread T .
By [1], see also [5], there are two possibilities for the size of S ∩ T , namely q+

√
2q+ 1 and q−

√
2q+ 1.

It will turn out that themaximal arcs, whichwe obtain by taking a Suzuki–Tits ovoid, and forwhichwe obtain q+
√
2q+1

as intersection number are not isomorphic to those forwhichwe obtain q−
√
2q+1 as intersection number. To prove this,we

determine the collineation groups of each maximal arc. Now, by [1], the subgroup of PGL4(q) stabilizing S and T is dihedral
of order 4|S ∩ T |. Taking into account all generalized homologies with center x and axis PG(3, q) in PG(4, q), one easily sees
that the stabilizer of x and L∞ inside the stabilizer of the maximal arc C in the group PGL2(q2) : 2 (the extension of order
2 is due to the unique involution of GF(q2), which is linear over GF(q) in PG(4, q)), acting on PG(2, q2) is a group of order
4|S ∩ T |(q − 1) isomorphic to the direct product of the dihedral group of order 4|S ∩ T | and a cyclic group of order q − 1.
We now claim that every collineation stabilizing C must fix x.
We will first prove the following lemma.

Lemma 15. Let O be a Suzuki–Tits ovoid in PG(3, q), q > 2, and let π be a plane that intersects O in an oval O. Let T be the
corresponding Lüneburg–Suzuki–Tits spread. If q > 8 and p ∈ O, then O \ {p} is no non degenerate conic minus a point. If q = 8
and p ∈ O \ {p′}, with p′ the point of O incident with the line of T in π , then O \ {p} is no non degenerate conic minus a point.

Proof. By [14] 7.6.13 we can choose the coordinates such that O = {(1, 0, 0, 0)} ∪ {(aθ+2 + aa′ + a′θ , 1, a′, a) : a, a′ ∈ K},
with θ a Tits automorphism, i.e. (xθ )θ = x2, ∀x ∈ GF(q). Since all plane intersections play the same role, we can choose the
plane X3 = 0. The oval O is the point set of the algebraic curve C ′ : X0Xθ1

−1
+ Xθ2 = X3 = 0. Let p ∈ O, q > 8 and assume, by

way of contradiction that O \ {p} is a non degenerate conic C minus a point. Then C and C ′ have at least q common points.
As q > 2θ , by the Theorem of Bézout, C is a component of C ′. Hence O is a conic, contradiction. Next, let q = 8, p ∈ O,
p 6= p′, and assume, by way of contradiction, that O \ {p} is a non degenerate conic C minus a point. Here p′ = (1, 0, 0, 0)
and O \ {p′} is a conic C ′′ minus a point. The conics C and C ′′ have at least 7 points in common, so coincide. Hence O is a
conic, a contradiction. �

Note that the previous lemma is also true for the infinite case.
Now, all lines of PG(2, q2) through x meet C in an affine Baer subline minus one point. Consider a point z ∈ C , z 6= x,

and let π be a plane through z and through a line of S \ T . Put C ′ = π ∩ C . Then the projection from x of C ′ onto PG(3, q)
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is a plane intersection of O minus a point of the Suzuki–Tits ovoid O satisfying the assumption of Lemma 15. Hence C ′ is
not a Baer subline minus a point in PG(2, q2). So, there are lines through each other point of C meeting C in a set different
from a Baer subline minus one point. The claim that every collineation of PG(2, q2) stabilizing C must fix x is proved. By
Theorem 12 also L∞ must be fixed by such a collineation.
At this point we could refer to [7] for the remainder of the proof. But since we have come that far, it only takes a few

paragraphs to finish.
From the foregoing it follows that the full stabilizer of C is a group with a normal subgroup as described above, and the

corresponding factor group a group of orderm, corresponding to the field automorphisms of GF(q).
This not only shows that the order of the full collineation group of C , and hence also of pg(C), is equal to 4m|S∩T |(q−1),

q = 2m, but it also shows that the two partial geometries related to the two different intersections are not isomorphic.
At last we show that two partial geometries pg(C) and pg(C ′) related to two maximal arcs C and C ′ corresponding to

respective Suzuki–Tits ovoids O and O′, for which the corresponding respective spreads T and T ′ satisfy |S ∩ T | = |S ∩ T ′|,
are isomorphic.
First we claim that for a given intersection S ∩ T , with T a Lüneburg–Suzuki–Tits spread, T is the only

Lüneburg–Suzuki–Tits spread intersecting S in S∩T . Indeed,we count the number of all possible intersections of Swith some
Lüneburg–Suzuki–Tits spread that occur. As above, it follows from [1] (see also [5]) that, for ε ∈ {+1,−1}, the intersection
of size q+ ε

√
2q+ 1 occurs at least

|PGL2(q2)|
2(q+ ε

√
2q+ 1)

=
(q2 + 1)q2(q2 − 1)
2(q+ ε

√
2q+ 1)

=
1
2
(q− ε

√
2q+ 1)q2(q2 − 1)

times. Hence, in total, we have at least (q+ 1)q2(q2 − 1) possible intersections that occur. But this is equal to the index of
the Suzuki group in the symplectic group, namely

q4(q4 − 1)(q2 − 1)
(q2 + 1)q2(q− 1)

,

which is precisely the number of Lüneburg–Suzuki–Tits spreads. Our claim follows.
Now since every two intersections of the same size can be mapped onto each other, while preserving S, and there are

unique Suzuki–Tits ovoids corresponding with them, we conclude that the corresponding maximal arcs are isomorphic.
Hence the following result has been shown.

Theorem 16. There are exactly two isomorphism classes of partial geometries pg(C) in PG(2, 2m), where C is a Thasmaximal arc
in PG(2, q2) corresponding to a Suzuki–Tits ovoid, with m > 1 odd. Each such partial geometry is self-dual and each collineation
and duality of pg(C) is induced by a collineation or duality of the projective plane PG(2, q2). The size of the full correlation group
is 8m(2m + ε2

m+1
2 + 1)(2m − 1), with ε ∈ {+1,−1}.

Remark 17. If q = 2, then any maximal arc in PG(2, 4) is a hyperoval obtained by adding the nucleus to a conic. The
corresponding partial geometry is the unique generalized quadrangle of order (2, 2), which is isomorphic toW(2). Also in
this case, the full collineation group and correlation group are induced by the collineation and correlation groups of PG(2, 4),
see for instance [12].
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