lished sources. The zero tolerance MRSA policy set by NHS England, which includes financial incentives, was implemented in a complex model. Over the one-year time horizon, although prevalence was higher on the high-risk ward, outbreaks occurred most frequently on the low-risk ward due to the higher number of patients. Preliminary results indicate that fewer outbreaks were declared when using WGS to identify the MRSA strain compared to current methods. The cost-effectiveness of WGS in identifying unrelated MRSA strains and therefore classifying fewer concurrent colonisations/infections as "outbreaks". Fewer outbreaks resulted in cost-savings on average of £45,610 per year. The probability of cost-effectiveness at 10 years was 99%.

RESULTS: Over the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was cost effective in terms of QALYs ($40,221/QALY) and life years gained ($45,610/LYG). LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was cost effective in terms of QALYs ($40,221/QALY) and life years gained ($45,610/LYG). LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was cost effective in terms of QALYs ($40,221/QALY) and life years gained ($45,610/LYG). LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was cost effective in terms of QALYs ($40,221/QALY) and life years gained ($45,610/LYG). LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was cost effective in terms of QALYs ($40,221/QALY) and life years gained ($45,610/LYG). LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was cost effective in terms of QALYs ($40,221/QALY) and life years gained ($45,610/LYG). LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was cost effective in terms of QALYs ($40,221/QALY) and life years gained ($45,610/LYG). LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was cost effective in terms of QALYs ($40,221/QALY) and life years gained ($45,610/LYG). LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was cost effective in terms of QALYs ($40,221/QALY) and life years gained ($45,610/LYG). LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was cost effective in terms of QALYs ($40,221/QALY) and life years gained ($45,610/LYG). LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was cost effective in terms of QALYs ($40,221/QALY) and life years gained ($45,610/LYG). LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was cost effective in terms of QALYs ($40,221/QALY) and life years gained ($45,610/LYG). LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was cost effective in terms of QALYs ($40,221/QALY) and life years gained ($45,610/LYG). LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was cost effective in terms of QALYs ($40,221/QALY) and life years gained ($45,610/LYG). LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.

LAAC was cost effective in terms of QALYs ($40,221/QALY) and life years gained ($45,610/LYG). LAAC was dominant over warfarin at 10 years and remained so for the 20-year time horizon. The probability of cost effectiveness at 10 years was 99%.
tiveness of 24-hours Holter and up to 30 days ELR, each with different diagnostic yield, 1Self, Rio de Janeiro, Brazil, 2Derma Sciences, Princeton, NJ, USA costs, associated to diagnosis and not having a diagnosis. Third party payer perspective, five year horizon and 3.5% discount rate for future costs and future were assumed. Baseline and model inputs were derived from doctor interviews and literature search. Average market prices of US$175 for 24-hours Holter and US$567 for ELR were used. Micro-costing for avoided emergency medical costs were considered (cost of devices as well as the procedure). An increase in ICUs were included. Only patients above 20 years old were included. Unit cost estimation was done, incorporating deterministic and probabilistic sensitivity analysis. RESULTS: 24-Holter strategy had 19% diagnostic yield compared to 63% for ELR. Over a five year horizon, ELR strategy obtained more QALYs than 24-Holter (2.62 vs. 2.18), at lower cost, been dominant over 24-hours Holter with US$2,013.66 in incremental savings per QALY. Sensitivity analysis showed the result to be particularly sensitive to disease and untreated syncope utilities and cost. The probabilistic sensitivity analysis showed a robust model with 95% confidence intervals of 1.83-2.57 QALYs for 24-hours Holter and 2.21-3.94 QALYs for ELR. In other words, we found that ELR added a greater quality (QALY) to lower costs, as demonstrated through greater incremental savings per QALY, was dominant over 24-Holter. The superior results of the ELR are attributable in part to the greater diagnostic yield and higher patient compliance.

PMD41 THE COST-EFFECTIVENESS OF DRUG-ELUTING STENTS VERSUS BARE METAL STENTS IN TAIWAN Fang N1, Mao M2, Tseng T1 1Tunghai University, Taichung city, Taiwan, 2National Chiao Tung University, Hsinchu county, Taiwan

OBJECTIVES: Drug-eluting stents (DESs) have been shown to reduce in-stent restenosis and target vessel revascularization (TVR) in several large clinical trials. We conducted this study to compare the different clinical and economic outcomes of DESs and bare metal stents (BMSs). METHODS: We retrospectively analyzed the clinical data and costs of patients with stable angina treated with coronary stents in 2012 at a medical center in Taiwan. RESULTS: We enrolled 245 patients treated with DESs and 194 patients treated with BMSs. The use of DESs is a lower rate of TVR compared with that with BMSs (11% vs. 20%, p = 0.01). Compared with the DES group, the overall costs were significantly higher in the BMS group (NT$23,777.0 ± 8,974.9 vs. NT$14,707.3 ± 12,979.3, p < 0.001). CONCLUSIONS: The use of DESs compared with BMSs in patient with chronic stable angina is cost-effective.

PMD42 ECONOMIC EVALUATION OF PACLITAXEL-ELUTING BALLOON CATHETER FOR PERCUTANEOUS TRANSLUMINAL ANGIOPLASTY (PTA) IN MEXICAN POPULATION WITH PERIPHERAL ARTERIAL OBSTRUCTIVE DISEASE Ceballos R1, Orozco J.J.2, Soto H.3, Carmona M.2, Escober Juárez Y4 1Medtronic, Mexico, Mexico, 2Medtronic, Medellin, Colombia, 3Universidad Autonoma Metropolitana, Mexico D.F., Mexico, 4HS Estudios Farmacoeconomicos, Mexico City, Mexico

OBJECTIVES: To perform a full economic evaluation through a cost-effectiveness analysis of the use of paclitaxel-eluting balloon catheter (InPACTM Admiral) in comparison with balloon catheter, for PTA in the treatment of peripheral obstructive arterial disease in Mexico population, from the perspective the public health care system in Mexico. METHODS: The measure of effectiveness considered was the reduction in the rate of target lesion revascularization (TLR). Information about efficacy and safety of the DES was obtained from a systematic review. METODOLOGY: Direct medical costs were considered (cost of devices as well as the procedure). An incremental cost-effectiveness analysis was performed with a horizon of two years. To demonstrate the robustness of the model, sensitivity analysis was performed with deterministic and probabilistic analysis. RESULTS: Paclitaxel-eluting balloon catheter for PTA (InPACTM Admiral) demonstrated good efficacy and safety producing a significant reduction in TLR at six months, which was maintained up to 24 months (estimated rate 14.4%), evaluated angiographically. This was significantly better than that obtained with conventional balloon angioplasty (estimated rate 40.3%) in the treatment of restenosis Total average costs were $102,299.00 and $115,652.00 respectively. Therefore the incremental cost-effectiveness ratio (ICER) obtained showed that the paclitaxel-eluting balloon catheter for PTA (InPACTM Admiral) is a dominant option. Clinical benefits were clearly demonstrated by the improvement in the ankle-arm index and Rutherford category. CONCLUSIONS: Paclitaxel-eluting balloon catheter for PTA (INPACTM Admiral) proved to be more effective and less costly than the standard of care in the treatment of peripheral obstructive arterial disease, for Mexican public health care institutions.

PMD43 COST-ANALYSIS OF MEDHONEY CALCIUM ALGINATE VERSUS AQUACEL AG DRESSING FOR FIRST- 2Partial Dosage of a Transcranial Magnetic Stimulation Therapy for Major Depressive Disorder 1School of Health Science, University of the Philippines, Philippines, 2University of the Philippines, Philippines, 3University of the Philippines, Philippines

OBJECTIVES: The literature review of the efficacy and effectiveness of using sacral neurostimulation versus botulinum toxin type A and augmentation cystoplasty, for the treatment of overactive bladder in Mexico, from the perspective of the public health sector. METHODS: A systematic literature review was conducted to identify articles to extract data on safety and efficacy of: sacral neurostimulation, botulinum toxin type A, and augmentation cystoplasty. A cost-effectiveness analysis was performed using a Markov model with a time horizon of 5 years. The main outcome measures were mean cost per QALY and quality-adjusted life-year (QALY). Only direct medical costs were considered, such as: medicine, surgery, devices, adverse events, days of hospitalization and labora- tory studies; an analysis of incremental cost-effectiveness ratio (ICER) and incre- mental cost-utility (ICU) was performed. To test the model and demonstrate the robustness, a probabilistic sensitivity analysis was performed, using Monte Carlo simulations. RESULTS: Sacral neurostimulation showed better efficacy with 3.65 QALY's and 3.27 QALY's with a cost of $295,538.11- The ICER over botul- inum toxin A was 69.917.92, less than one time the Mexican GDP per capita, for the botulinum toxin the cost was 191,343.86 with 2.39 continence years and 2.13 QALY's; for augmentation cystoplasty the cost was $205,049.02 with 3.19 continence years and 2.08 QALY's. The probabilistic sensitivity analysis demonstrated that sacral neurostimulation is a cost-effective alternative, despite the modification of all the model's variables. CONCLUSIONS: Sacral neurostimulation is a very cost-effective alternative for patients in the the public health care system in Mexico, being ICU and ICER less than one time the Mexican GDP per capita.

OBJECTIVES: The severity of the effect in reducing the risk of sudden cardiac death has a significant positive impact on the forecast as a whole and significantly reduces the probability of mortality rate. New studies of different categories of medicated patients. Meanwhile, it imposes a significant burden on the healthcare budget of the Republic of Kazakhstan. Due to the fact that the CD’s implantation is an expensive method of treatment, the authors conducted a review of existing studies on the cost-effectiveness of the CD in the application of additional functions - MRI-compatible and home monitoring function. METHODS: The literature review of the efficacy and safety of MRI-compatible CD with home monitoring were conducted on the database of the Cochrane Library, a database of bibliographic review on the effectiveness of medical intervention (DARE), database reviews of health technology assessment (HTA), PubMed, CADTH, NICE, Clinical Trials and TripDatabase. RESULTS: Search results revealed 522 publications, and from this number 3 studies were selected for the final analysis. The remaining works were excluded due to non-compliance with the PICOS’ criteria. According to the data from representatives Biotronik and Medtronic in Kazakhstan the CD’s cost without MRI-compatible, completed with electrodes in Kazakhstan ranges $18,000-19,000. CONCLUSIONS: Application in clinical practice, MRI-compatible CD with home monitoring has significant advantages - the almost complete absence of the risk of adverse events, the possibility of more frequent MRI as one of the main methods of diagnosis and early detection of various pathological conditions, the avoidance of unnecessary visits to patients without necessary evidence, revealing significant changes in the health status of patients in the constant monitoring; has a relatively small increase in the cost of a set of CD without this function, an average of 33%.

PMD45 COST-UTILITY OF TRANSPORTABLE MAGNETIC STIMULATION VERSUS ANTIDEPRESSANT THERAPY FOR TREATMENT-RESISTANT DEPRESSION Gordon GD, Nguyen K 1Department of Psychology, September, Australia

OBJECTIVES: Major depressive disorder (MDD) is a debilitating disease that significantly decreases quality of life. Repetitive Transcranial Magnetic Stimulation (rTMS) therapy is a safe, non-invasive, physical treatment for major depressive disorder. We evaluated the cost-effectiveness of rTMS compared with third-line antidepress-