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REVIEW ARTICLE

Extracellular Matrix of the Skin: 50 Years of Progress
Jouni Uitto, M.D., Ph.D., David R. Olsen, Ph.D. and Michael J. Fazio, M.D.

The extracellular connective tissue matrix of the skin is a complex aggregate of distinct collagenous and non-collagenous
components. Optimal quantities and delicate interactions of these components are necessary to maintain normal physiologic
properties of skin. This overview summarizes the progress made in understanding the normal biology and biochemistry of the
extracellular matrix, and will highlight cutaneous diseases with underlying molecular defects in the structure and expression of

extracellular matrix components.

Some 50 years ago, at the time of birth of the Journal of Investigative
Dermatology, the extracellular connective tissue matrix was perceived as
an inert, metabolically inactive substance, which was necessary to glue
tissues together and provide support for cells. During the ensuing half a
decade, this perception has been radically revised, and it is now
appreciated that the extracellular matrix is a complex aggregate of
distinct collagenous and non-collagenous protein components, which in
physiologic situations are in a dynamic equilibrium. The optimal
quantities of different matrix components and their delicate interactions
are clearly necessary to maintain normal physiologic properties of
tissues, such as skin. In fact, skin is a good example of an organ where the
extracellular matrix plays an integral role in providing physiologic
properties to the tissue. This point is well demonstrated by the fact that
there are several examples where molecular aberrations in the structure
or expression of components of the skin result in a phenotypically
recognizable cutaneous disease.

It is now appreciated that the extracellular matrix of skin consists of a
large number of distinct components, and the predominant ones, as they
are recognized today, are listed in Table I. To illustrate the tremendous
progress made in our understanding of the biology and biochemistry of
the extracellular matrix, this overview will discuss some of the specific
components of skin, viz. collagen, elastic fibers, and the basement
membrane zone glycoprotein laminin, as examples of relatively well-
characterized extracellular matrix components. For additional reviews on
matrix research not covered by this overview, see Chapters in recent
textbooks [1-3].

THE COLLAGENS
The predominant extracellular matrix component of the dermis and a
variety of other human tissues is collagen [4], now known to be a
superfamily of closely related, yet genetically distinct proteins [5,6]. As
the name implies (Gr. kolla, glue; gennan, to produce; collagen, glue
former), collagen was initially recognized as a tissue component which,
when boiled, produced glue. In fact, this property of collagen was noted
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by the Romans as early as 50 A.D. when Pliny wrote “glue is cooked
from the hides of bulls’”’ (see Ref 7).

The initial scientific approaches employed to study collagen
centered around the tanning industry, which attempted to enhance the
tensile properties of leather products by introducing additional cross-
links into collagen. The advent of modern technologies, such as electron
microscopy, allowed the visualization of collagen fibers [8-10], and
such fiber structures are essential for collagen to provide tensile strength
to the tissues (Fig 1). Bit by bit, the biochemistry of collagen has
been elucidated in a large number of studies by skilled researchers,
including many individuals specialized in investigative dermatology. As
a result of these studies it is now appreciated that there are as many as 25
different genes which code for the subunit polypeptides of at least 13
different collagen types [6,11]. Six different collagen types have been
detected in human skin (Table 1), and additional collagens have
been shown to be synthesized by cultured human skin fibroblasts
in vitro (see Ref 11).

Genetic Heterogeneity Each of the genetically distinct collagen types
has an important functional role within its compartmentalized distribu-
tion in the skin. Collagen types | and Ill are considered to be the major
interstitial, fiber-forming collagens in normal human dermis [12,13]. In
addition, the dermis contains collagens types IV, V, VI, and VII [13-16].
Type IV collagen is also a major constituent of the basement membrane
at the dermal-epidermal juncture [17-19].

Type | collagen is the classic collagen molecule consisting of three
polypeptide chains in a characteristic triple-helical conformation. This
conformation, which is the hallmark of collagenous proteins, results from
the unique primary sequence of collagen «-chains. Specifically, the
collagenous portion of these polypeptides consist of a repeating Gly-X-Y
sequence, where the X and Y positions are often occupied by the imino
acids, proline and hydroxyproline, respectively. The enzymatic synthesis
of hydroxyproline, which requires ascorbic acid as a co-factor, stabilizes
the triple-helical conformation under physiologic conditions. A similar
enzymatically catalyzed pathway exists for the formation of hydro-
xylysine, an amino acid also characteristically found in collagens. In
addition to prolyl and lysyl hydroxylations, the collagen polypeptides
undergo other co- and post-translational modifications, including
glycosylation, interchain disulfide bonding, and folding of the proa-
chains into their triple-helical conformation [6,11]. Subsequent to the
secretion of triple-helical procollagen molecules into the extracellular
milieu, the precursor specific extensions both at the amino- and carboxy-
terminal ends of the proca-chains, are proteolytically removed, and the
processed collagen molecules spontaneously assemble into fiber
structures [20,21]. Recent studies have suggested that the order in which
the amino- and carboxy-terminal extensions are removed from the
molecules determines, at least in part, the final diameter of the collagen
fibers in tissues [22,23]. Additionally, several lines of evidence suggest
that the presence of type Ill collagen serves as a factor limiting the fiber
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Table I. Structural Components of the Extracellular Matrix Relevant to Skin

Size of Native

Component® Molecule (daltons) Molecular Organization  Tissue Distribution Functional Role
Collagens
Type | 285,000 [oc1(1)]o02(1) Ubiquitous in most connective Major component providing tensile
tissues, including skin, bones, strength
tendons, ligaments, etc.
Type 1l 285,000 [T (115 Skin, blood vessels, Contributes to tensile properties
predominant in fetal tissues
Type IV 540,000 [a1(IV)]202(1V) Basement membranes, Major structural component of
anchoring plaques basement membranes
Type V 300,000 o1 (V)]502(V)° Ubiquitous Pericellular location interfacing the
[a1(V)]5 cell surface and the surrounding
matrx
Type VI 530,000 a1 (VDa2(VDa3 (V1) Extracellular microfibrils Matrix assembly
Type VII© 510,000 [2T(V)]3 Skin, fetal membranes Structural component of anchoring
fibrils
Elastic fibers
Elastin 70,000 Cross-linked polymer Blood vessels, Resilience and elasticity of the skin
of fibers skin and lungs
Microfibrillar component Unknown Surrounding the Same as elastin Scaffolding in formation of the
elastic fibers elastic fibers
Fibrillin 350,000 Part of the microfibrillar Same as microfibrillar Stabilization of the microfibril

component

Basement membrane associated macromolecules

Proteoglycans/GAGs >10° Complex aggregates

Heparan sulfate Low and high density

proteoglycan forms

Laminin 900,000 A, B1, B2

Nidogen/entactin 150,000 Stoichiometric binding to
laminin

Fibronectin 450,000 Disulfide-linked dimers

component structure (?)

Maintenance of water and ion
balance; regulation of growth,
migration and attachment of cells

Cartilage, skin

Basement membranes

Cell attachment and differentiation,
neurite outgrowth

Cell binding

Basement membranes

Co-localizes with laminin

Attachment of cells to the
extracellular matrix

Cell surface, plasma

“These are the major, relatively well-characterized matrix components in the skin. Several additional components, including bullous pemphingoid antigen,
SPARC/BM-40/osteonectin, vitronectin, tenascin, and epinectin, are currently under biochemical characterization.

PAdditional heterotrimeric forms may exist.

“The carboxy-terminal domain of type VII collagen is the acquired epidermolysis bullosa antigen.

growth during fetal development [24] and in pathologic conditions, such
as scleroderma [25,26].

The entire primary sequence of the «1(l) and «2(l) chains of type |
collagen, as well as several additional procollagen o-chains, has been
elucidated through sequencing of the corresponding cDNAs (see, e.g.,
Refs 27-29). Examination of the genes encoding type | collagen
polypeptides has revealed that the genomic DNA consists of ~50
separate coding regions, exons, which are interspersed between
noncoding, intervening sequences, introns (Fig 2). During initial stages
of the expression of these genes, the nucleotide sequence in the collagen
gene is faithfully transcribed into a messenger RNA precursor molecule,
which contains sequences corresponding to both exons and introns
(Fig 3). Post-transcriptionally, the sequences corresponding to the introns
are removed by “splicing,”” and after additional post-transcriptional

modifications, such as “capping’ of the 5’ end and polyadenylation of
the 3’ end, the messenger RNA molecules serve as a template for
translation of the preproo-chains (Fig 4). The newly synthesized
polypeptides undergo several co- and post-translational modifications
depicted in Fig 4. The triple-helical procollagen molecules are secreted
out of the cells, and the non-helical extensions are removed by specific
proteases. The collagen molecules then align to a fiber structure which is
stabilized by the formation of intermolecular cross-links (Fig 4). The
fibers have a characteristic banding pattern, as shown in Fig 1.
Examination of the regulatory sequences in the promoter regions of
the type | collagen genes has revealed the presence of “CAAT” and
“TATA” boxes, nucleotide sequences that serve as signals for expression
of the corresponding genes by serving as binding sites for the
transcriptional machinery [30,31]. In addition, recent studies have
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Figure 1. Electron micrograph of collagen fibers prepared from human
dermis. Note the regular banding pattern at ~68-nm intervals ( x 45,000).
(From Ref 206, with permission.)

identified other regulatory elements at the 5’ flanking region, upstream
from the initiation site of transcription [32]. There are also distinct
transcriptional enhancer elements located in the first intron of several
collagen genes [33,34]. Many of these promoter and enhancer sequences
serve as binding sites for specific regulatory proteins that control the
expression of these genes.

Type 1l collagen was initially called fetal collagen because of its
abundance in fetal tissues, including skin [35]. In fetal skin, type Il
collagen initially accounts for over half of the total collagen [35].
However, type | collagen synthesis exceeds the production of type llI
collagen in the postnatal period, and consequently, in adult human skin,
the ratio of type I/lll collagen is approximately 5-6:1 [36]. Initial
immunofluorescence data suggested that type Ill collagen in human skin
might be enriched in the papillary dermis as compared with the reticular
dermis [37]. However, quantitative biochemical and biosynthetic
measurements have not confirmed this initial observation [38,39].

Type 1V collagen is a major component of the basement membrane in
the dermal-epidermal junction [17-19]. Type IV collagen differs from the
interstitial collagen types | and Il in that the triple-helical conformation
of the molecule is interrupted by several non-collagenous segments
which do not demonstrate the repeating Gly-X-Y sequence. This feature
provides the molecule with added flexibility, allowing these molecules to
form a meshwork-like structure, as opposed to the ordered, staggered
fibrils formed by interstitial collagen fibers. Type IV collagen molecules
are thought to act as a scaffold which allows interactions with other
noncollagenous basement membrane components, such as laminin,
nidogen, and heparan sulfate proteoglycan [40,41]. It has also been
shown that basal keratinocytes preferentially attach to type IV collagen
[42]. This interaction, which may be mediated by laminin or nidogen,
apparently contributes to the stability of the skin at the interface between
the epidermis and the dermis at the dermal-epidermal basement
membrane zone.

EXTRACELLULAR MATRIX OF THE SKIN 63S

The type V collagen gene is expressed in a variety of tissues, but in
normal human skin it is clearly a minor component [13,14,43,44]. It was
initially suggested that type V collagen has a pericellular location,
interfacing between the cells and their immediate environment [45]. The
role of type V collagen in human skin is not clear, but it has been
reported that migrating epidermal cells produce type V collagen and its
continued synthesis is a prerequisite for migration [46].

Type VI collagen was also initially thought to be a minor collagen in
tissues, such as the dermis [47]. However, recent improvements in the
isolation techniques have demonstrated that type VI collagen may be a
more abundant collagenous component in a variety of tissues, including
skin [48]. In support of the latter suggestion is the recent demonstration
that type VI collagen is a major gene product of cultured skin fibroblasts,
as determined on the mRNA level [16]. In fact, molecular hybridizations
with human sequence specific cDNAs have revealed that the ratio of type
I/V1 procollagen mRNAs in cultured skin fibroblasts is approximately 3:1,
suggesting that type VI collagen may be even more abundant than type IlI
collagen in the skin. Thus, type VI collagen, which is unusual in that it is
highly disulfide bonded, may play an important role in the assembly of
the collagenous matrix in the dermis.

Type VI collagen was initially termed long-chain collagen due to the
fact that each a-chain is considerably larger (467 nm) than the a-chains of
interstitial collagens, type I and Il (297 nm) [49]. Type VII collagen is of
particular interest from a dermatologic point of view because type VII
collagen is known to be a predominant component of anchoring fibrils,
structures which extend from the dermal-epidermal junction to the upper
dermis [15,50]. It has been suggested that the structure of type VII
collagen in tissues is an anti-parallel dimer linked through their amino-
termini. The usually large carboxy-terminal, non-collagenous domains of
type VII collagen (~150kd) are thought to interact with type IV
procollagen in the dermal-epidermal basement membrane and in the
choring plaques [51]. The latter structures, which are embedded in the
papillary dermis, were recently shown to contain type IV collagen. This
type of structural organization of the anchoring fibrils is thought to
stabilize the attachment of the dermal-epidermal basement membrane to
the underlying dermis [40]. Thus, alterations in the expression, structure,
or molecular interactions of type IV and/or type VII procollagens could
result in fragility of the skin, as exemplified by epidermolysis bullosa, a
group of heritable cutaneous disorders (see below).

Molecular Pathology Considering the complexity of collagen biology,
it is clear that there are several features which predispose the collagenous
proteins to faulty production leading to synthesis of abnormal collagen
fibers. In cases where the abnormal fibers lead to altered functional
properties of skin, such a situation could be manifested clinically as a
disease. For example, as indicated above, collagens comprise a super-
family of genetically distinct, yet closely related proteins that have a
characteristic tissue distribution and specific molecular interactions
(Table 1). The collagens also have a complex gene structure and the
expression of these genes in a precise and coordinate manner requires
carefully regulated control mechanisms (Figs 2 and 3). There is also a
need for the repetitive Gly-X-Y primary sequence in the collagenous
portion of the molecule. The initial biosynthetic product undergoes
multiple co- and post-translational modifications, which are necessary
for deposition of functional collagen molecules (Fig 4). Finally,
extracellular processing and fibrillogenesis, followed by formation of
intermolecular cross-links are multi-step events, which are required for
stabilization of the fiber structures (Fig 4). Thus, there are several distinct
levels of collagen biology where processes can go awry, and such
alterations may be manifested phenotypically as a connective tissue
disease. In fact, several heritable collagen diseases are currently
recognized and their clinical features, associated biochemical defects,
and mode of inheritance are summarized in Table II.

Many dermatologists have been involved in studies on heritable and
acquired collagen diseases, and this progress has been summarized in the
Journal of Investigative Dermatology on several occasions. For example,



64S Uitto, Olsen, Fazio

THE JOURNAL OF INVESTIGATIVE DERMATOLOGY

s N
50 as 40 as a0
L] BAB DRDAC
- A -—— — N

Figure 2. Structure of human pro-u1(l) collagen gene. The upper panels represent electron micrographs of DNA-RNA hybrids of different parts of the procollagen
gene and the corresponding mRNA. This technique, called R-loop mapping, allows evaluation of the intron-exon structure of a gene; the introns, i.e., the
intervening, noncoding sequences of DNA, loop out, while the exons, i.e., the coding sequences, bind through complementary base-pairing to the corresponding
translatable sequences in the RNA. The numbers indicate the order of exons. The diagram at the bottom of the picture is a schematic presentation of the exon-intron
arrangement of the gene. The solid blocks represent exons, open areas signify introns, and the hatched areas are regions corrcsponding to untranslated sequences in
the mRNA. There are 51 exons in the pro-u1(l) procollagen gene separated by introns of variable sizes. The areas indicated by the solid horizontal bars at the bottom
of the figure respond to sections for which the exact nucleotide sequences were determined. The positions of S, N, and C, indicated by the arrows, correspond to the
sites of cleavage of the signal peptidase, procollagen N-protease and procollagen C-protease, respectively. (From Ref 207, with permission.)

in 1976, an updated review was presented [52]; this review ranks among
the 100 most quoted articles in the Journal. In 1982, a special issue was
devoted to the extracellular matrix [53]. This compilation was based on a
William Montagna Symposium devoted to the extracellular matrix of the
skin, which was held the prior year at the Salishan Lodge in Gleneden
Beach, Oregon.

The Ehlers-Danlos Syndrome: The prototype of collagen diseases is the
Ehlers-Danlos syndrome (EDS), a group of phenotypically related
conditions manifested as hyperextensible skin, loose-jointedness, and
fragility of tissues [11,54,59]. It is now appreciated that there are at least
11 different forms of EDS, and several of them result from specific
molecular defects in collagen. In fact, the demonstration of hydro-
xylysine-deficient collagen in EDS VI by Pinnell and his co-workers in
1972 [55] was the first case of a heritable human connective tissue
disorder in which a distinct abnormality in collagen was disclosed. Thus,
EDS Vl is a primary collagen disease in which the underlying molecular
defect is directly related to collagen metabolism [55,56]. Subsequently,
EDS IV was shown to result from deficient deposition of type Ill collagen
in tissues [57,58], while EDS VI is a result of deficient conversion of type
I procollagen to collagen [59,60]. Finally, the abnormality in EDS IX has
been shown to involve deficient cross-linking of collagen, as a result of
reduced lysyl oxidase activity [61]. The primary defect in EDS IX is,
however, in the metabolism of copper, a cofactor for lysyl oxidase [62].
Strictly speaking then, EDS IX is a secondary collagen disease, in which
collagen is clearly altered, but the primary defect is unrelated to collagen

metabolism. It should be pointed out that the most common autosomal
dominant forms of EDS, types IHIl, may involve abnormalities in
collagen, as suggested by aberrant organization of collagen fibers noted
by ultra-structural analyses [63]; however, no biochemical defect has
been disclosed as yet. It should also be emphasized that the initial reports
of deficient lysyl oxidase activity in the X-linked EDS V were probably
incorrect because further careful analyses [64] have not disclosed any
abnormalities in collagen cross-linking in these patients.

Osteogenesis Imperfecta: ~ Significant progress has recently been made
in understanding the underlying molecular defects in osteogenesis
imperfecta (Ol), a disease characterized primarily by brittle bones, but
also manifested by thin skin, blue sclerae, and aberrant scar formation. In
a large number of cases with Ol, specific defects in type | collagen have
been demonstrated; these include insertions or deletions in the gene,
splicing errors, or single point mutations [65,66]. Particularly instructive
are the cases in which a single point mutation in one of the glycine
codons in the repeating Gly-X-Y sequence has resulted in substitution of
a glycine by a cysteine residue [67]. This amino acid substitution often
leads to a lethal form of Ol, and these observations clearly attest to the
importance of maintaining glycine in every third position of the repetitive
primary sequence of type | collagen [65].

Fibrotic Skin Diseases: A group of diseases of particular interest to
dermatologists involves abnormalities in the regulation of collagen gene
expression. It is clear that rigorous control at the transcriptional and
translational levels has to be exerted in order to maintain physiologic



VOL. 92, NO. 4, SUPPLEMENT, APRIL 1989

intron

exon

oNA .7 \
|

l transcription
processmg
1 messenger RNA
- ‘Q@‘-’ -"splicing”
A
—

Figure 3. Schematic presentation of the expression of a gene in eukaryotic
cells. DNA, containing the coding sequences (exons) and the intervening non-
coding sequences (introns) of the gene, is transcribed to form a precursor of
the mRNA molecule. The pre-mRNA molecule is processed during post-
transcriptional events, including splicing, which removes the segments
corresponding to the intron sequences. Following capping of the 5" end and
polyadenylation of the 3’ end, the functional mRNA molecule is ready to
serve as template for translation of the polypeptides. (From Ref 208, with
permission.)
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concentrations of collagens in tissue [68]. The steady-state level of tissue
collagen results from a balance between the biosynthetic pathway and
the rate of degradation. Fibrotic conditions, demonstrating excessive
accumulation of collagen, apparently result from an imbalance between
synthesis and degradation of skin collagen. A classification of the fibrotic
skin diseases has allowed recognition of at least five distinct categories,
based on clinical, genetic, and biochemical considerations (Table III).

The prototype of fibrotic diseases is scleroderma, a condition in
which fibrosis is evident not only in the skin but also in several internal
organs, including the lungs, gastrointestinal tract, and the kidneys [69]. In
addition to scleroderma, scleroderma-like skin changes are often
encountered in other connective tissue disorders, including overlap
syndromes and eosinophilic fasciitis. Particularly interesting is the
observation that chronic graft-vs-host disease presents with a clinical
picture similar to that of progressive systemic sclerosis [70]. The latter
observation emphasizes the fact that progressive systemic sclerosis is
often considered an autoimmune disease, with the underlying immune
reaction perhaps triggering collagen production by skin fibroblasts [71].
Excessive collagen deposition is also noted by histopathologic examina-
tion of hamartomas of the collagen type, as well as in keloids and
hypertrophic scars [72].

In attempts to elucidate the underlying molecular mechanisms leading
to collagen deposition in fibrotic skin diseases, a series of studies has been
published in The Journal of Investigative Dermatology [68,73-81]. These
studies have primarily examined collagen biochemistry in fibroblast
cultures established from patients with different forms of dermal fibrosis.
The conclusions derived from several of these studies attest to the possibility
that in many cases, collagen genes are overexpressed such that synthesis
exceeds degradation. As a result of this imbalance, collagen accumulates,
leading to a clinically recognizable fibrotic disease.

It is clear that fibrotic skin diseases comprise a heterogenous group of
clinical conditions [72], and they also demonstrate distinct differences in
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Figure 4. Biosynthesis of procollagen and the assembly of collagen molecules
into extracellular fibers. Abbreviations: mRNA, messenger RNA; aa’s, amino
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glucosylgalactose attached to a hydroxylysyl residue; S—S bonds, disulfide
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residue. (From Ref 208, with permission.)

the mechanisms of connective tissue accumulation. For example, in the
case of scleroderma, there is a coordinate activation of several matrix
genes, so that the expression of type | and Ill collagen, as well as
fibronectin genes is enhanced, resulting in generalized connective tissue
accumulation [73,82]. In contrast, fibroblast cultures established from



66S Uitto, Olsen, Fazio

THE JOURNAL OF INVESTIGATIVE DERMATOLOGY

Table II. Clinical Features, Biochemical Defects and Mode of Inheritance in Heritable Diseases with Collagen

Abnormalities

Disease® Major Clinical Features

Associated Biochemical Defect” Mode of Inheritance®

Ehlers-Danlos syndrome
fragility of tissues

Cutis laxa Loose, sagging skin

Osteogenesis imperfecta Fragility of bones, thin skin

Marfan syndrome Arachnodactyly and other skeletal
abnormalities, aortic dilatation and

dissection, heart valve abnormalities

Homocystinuria

Hyperextensible skin, loose jointedness,

Skeletal abnormalities, thrombosis of the

blood vessels, frequent mental retardation

Menkes’ syndrome

Alkaptonuria Degenerative changes of cartilage,

osteoarthrosis

Local areas of absence of dermis,
skeletal abnormalities

Focal dermal hypoplasia

Familial cutaneous collagenoma Multiple dermal nodules

Epidermolysis bullosa Fragility of the skin

Tortuosity of the blood vessels, brittle hair

Abnormalities in the structure or AR, AD, XR
metabolism of collagen or procollagen

Alterations in collagen or elastin AD, AR, XR, NH
Structural abnormalities in AD, AR

type | collagen or procollagen

Structural abnormalities in collagen, AD

elastin or possibly other connective

tissue components

Abnormal cross-linking of collagen AR

Defective cross-linking of collagen and XR

elastin

Deficient lysyl hydroxylation in collagen AR

Compromised growth potential XD
of skin fibroblasts

Accumulation of collagen in the skin AD

Increased collagenase activity in AD, AR
the dystrophic recessive form, decreased
glucosyl transferase in

one family with EB simplex

“This list includes only those inherited diseases in which there is some biochemical evidence of collagen abnormalities. Most of these conditions represent a

group of diseases with clinical, genetic, and biochemical heterogeneity.

The biochemical abnormalities have been demonstrated only in a limited number of patients in each group, and it is not known whether the molecular

aberrations are the same in each patient of any given type.

“AD: autosomal dominant; AR: autosomal recessive; NH: not hereditary; XD: X-linked dominant; XR: X-linked recessive.

keloid tissue demonstrate a selective activation of type | collagen genes,
resulting in a significantly altered ratio of type I/lll procollagens, as
determined at the mRNA level [36,78]. In some fibrotic diseases,
decreased collagen degradation, resulting from reduced collagenase
activity, contributes to the accumulation of collagen in tissues [79,81]. In
addition to collagens type | and Ill, a recent study [83] has demonstrated
enhanced expression of type IV procollagen genes in fibroblast cultures
established from a patient with lipoid proteinosis, a heritable disorder of
basement membrane accumulation in the skin and vascular tissues (see
below). All these studies suggest that altered expression of different
matrix genes can lead to clinically recognizable diseases.

Diseases with Reduced Collagen Content of the Skin:~Lack of collagen
deposition or increased degradation of collagen fibers by specific
collagenases [84,85] can also lead to a clinical disease. Of particular
interest to dermatologists has been epidermolysis bullosa (EB), a group of
heritable diseases where the hallmark is fragile skin [86-88]. Several
studies, have attested to the possibility that enhanced collagenase
expression might lead to dissolution of collagenous structures, thus
explaining the fragility of skin. In particular, collagenase activities in the
skin and fibroblast cultures from pateints with recessive dystrophic EB
have been shown to be elevated [89-93]. Thus, the degradation of
collagens, such as type VII collagen in the anchoring fibrils, may explain
the tissue fragility in some cases of EB [94]. It is clear, however, that EB is
both a clinically and biochemically heterogeneous group of diseases, and
it is expected that in several other cases a structural aberration in
basement membrane zone genes may be the underlying defect.

Loss of collagen is also a clinical feature of focal dermal hypoplasia,
an X-linked dominant disease with apparent lethality in hemizygous

males [95]. Examination of fibroblast cultures from a patient with focal
dermal hypoplasia has led to the suggestion that the primary abnormality
resides in the fibroblasts, rather than in collagen metabolism per se [96].
Specifically, the fibroblasts from this case were shown to have a reduced
proliferative capacity and lowered saturation density, phenomena which
might explain reduced collagen deposition in the dermal microenvironment.

Regulation of Collagen Gene Expression The above examples are clear
indications that the control of collagen deposition has to be closely
regulated in order to maintain physiologic levels of collagen. This notion
has been the impetus for a large number of studies which have addressed
the control mechanisms regulating the expression of genes coding for
collagen or collagenase. With respect to collagen gene expression,
several variables have been tested, including tissue culture environment
[97-103]. In particular, ascorbic acid has been shown to enhance
collagen production in skin fibroblast cultures by at least two
mechanisms. On the post-translational level, ascorbic acid is required
for hydroxylation of prolyl residues [100,102]. The presence of
hydroxyproline stabilizes the triple-helical conformation, a prerequisite
for secretion of collagen at an optimal rate. The triple-helical conforma-
tion also prevents degradation of collagen polypeptides by non-specific
proteases, thus leading to deposition of functional collagen fibers. The
second mechanism by which ascorbic acid increases collagen synthesis
involves enhanced transcription of at least type | and IIl collagen genes
[103]. As a result of enhanced rate of transcription, steady-sate levels of
the corresponding mRNAs are elevated and serve as a template for
translation of preproo-chains. As a result, more collagen is being
synthesized and deposited in the presence of ascorbic acid. Based on



VOL. 92, NO. 4, SUPPLEMENT, APRIL 1989

Table Ill. Classification of Cutaneous Diseases with
Dermal Fibrosis?
I. SCLERODERMA

A. Systemic Scleroderma
1. Progressive systemic sclerosis
2. CREST syndrome
B. Localized Scleroderma (Morphea)
1. Circumscribed morphea
2. Linear morphea
3. Guttate morphea
4. Generalized morphea
Il. SCLERODERMA-LIKE SKIN CHANGES IN SYSTEMIC DISEASES
A. Inflammatory Connective Tissue Diseases
1. Mixed connective tissue disease
2. Features of scleroderma in lupus erythematosus and dermatomyositis
3. Eosinophilic fasciitis
B. Metabolic and Immunologic Disorders
1. Chronic graft vs. host disease
. Porphyrias
. Phenylketonuria
. Carcinoid syndrome

. Scleredema with paraproteinemia

a1 A W

. Juvenile-onset diabetes mellitus
7. Acromegaly
C. Premature Aging Syndromes
1. Werner’s syndrome
IIl. CHEMICALLY INDUCED DERMAL FIBROSIS
A. Drugs
1. Bleomycin
2. Pentazocine
B. Chemicals
1. Polyvinyl chloride
2. Silicates
3. Organic solvents
4. Contaminated rapeseed oil (toxic oil syndrome)
IV.CONNECTIVE TISSUE HAMARTOMAS OF THE COLLAGEN TYPE
A. Inherited
1. Familial cutaneous collagenoma
2. Shagreen patches in tuberous sclerosis
B. Acquired
1. Isolated collagenomas
2. Eruptive collagenomas

V. KELOIDS AND HYPERTROPHIC SCARS

*Modified from reference 78.

these observations, ascorbic acid has been proposed to enhance collagen
synthesis in patients with EDS. In particular, in some cases of EDS VI, the
Km of lysyl hydroxylase with respect to ascorbic acid, a cofactor for the
enzyme, is increased [104]. Thus, feeding of these patients with relatively
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large quantities of ascorbic acid (2-4 g/day) may partially overcome the
genetic defect and lead to clinical improvement.

Pbarmacologic Inhibition of Collagen Deposition Based on the knowl-
edge emerging from the studies on regulation of collagen gene expression
in normal situations, attempts have also been made to develop
pharmacologic approaches to control excessive collagen deposition in
fibrotic skin diseases [105,106]. Although many of these compounds
have been effective in tissue or cell culture environment, their efficacy in
clinical situations has been compromised by toxicity. Thus, there has
been a distinct need for further development of novel approaches to
control collagen accumulation in patients with connective tissue
abnormalities. The progress in this area of dermatopharmacology was
reviewed in the Journal in 1982 [106], but several newer approaches
have been developed since then.

Inhibitors of Triple-Helix Formation: Particularly interesting are recent
attempts to interfere with collagen deposition by disrupting the formation
of triple-helical conformation. One of these approaches centers around
selective inhibition of prolyl hydroxylation by derivatives of 3,4-
dihydroxybenzoic acid, a specific inhibitor of prolyl hydroxylase with
respect to a-ketoglutarate, which is a cosubstrate in the hydroxylation
reaction [107,108]. Thus, inhibition of triple-helix formation leads to
enhanced degradation of collagen polypeptides reducing the deposition
of collagen fibers. It is of interest that doxorubicin, an anthracycline
compound used for cancer therapy, similarly inhibits collagen produc-
tion by inhibiting prolyl hydroxylation, in addition to its direct effects on
collagen synthesis on the transcriptional and translational levels [109].
The latter observations would explain the compromised wound healing
in patients treated with doxorubicin.

Inhibition of triple-helix formation has also shown to be the
mechanism of action of several proline analogues which inhibit collagen
deposition in tissues [106]. The proline analogues, and cis-4-hydroxyl-L-
proline and azetidine carboxylic acid in particular, unlike the naturally
occurring trans-4-hydroxy-L-proline, are incorporated into newly synthe-
sized preproa-chains in place of prolyl residues [110]. For steric reasons,
the presence of the analogues prevents the polypeptides from folding into
a stable triple helical conformation, and consequently synthesis of
extracellular collagen fibers is impaired. In addition to preventing the
triple-helix formation, cis-4-hydroxy-L-proline and azetidine carboxylic
acid reduce the plating efficiency and proliferation of human skin
fibroblasts, and another proline analogue, 3,4-dehydroproline, interferes
with the hydroxylation of prolyl residues to trans-4-hydroxy-L-proline
[106,110,111]. As a result of these effects, proline analogues inhibit
collagen deposition in cell or tissue cultures. Thus, development of these
compounds may provide a means to interfere with excessive collagen
deposition in fibrotic skin diseases.

Steroids: As the topical steroids are the most commonly used
therapeutic modality in dermatology, considerable interest has been set
forth in elaborating their effects on collagen synthesis in the skin. This
interest is partly due to the fact that prolonged topical cortico-steroid
therapy leads towards side effects, such as dermal atrophy and striae
distensae, which clearly involve connective tissue alterations [112]. Early
studies in animal models demonstrated that potent corticosteroids were
able to inhibit collagen production, thus explaining deficient accumula-
tion of collagen in steroid-treated animals [113,114]. Subsequently,
numerous studies have addressed the inhibition of collagen gene
expression utilizing skin fibroblast cultures (see Ref 112). In general,
the results indicate that fluorinated corticosteroids are more potent
inhibitors of collagen biosynthesis than their non-fluorinated counter-
parts, and that the therapeutic efficacy of these compounds roughly
parallels the inhibition of collagen synthesis [115,116]. The inhibition of
collagen gene expression by steroids apparently occurs both on the
transcriptional, translational and post-translational levels.

Retinoids: Recently, the effects of retinoids on connective tissue
biochemistry have also been examined using cell and tissue culture
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systems. These studies are based on the observations that connective
tissue fragility is associated with prolonged treatment with retinoids
[117]. Also, preliminary clinical observations have suggested that
retinoids might be helpful in the treatment of keloids [118] and
scleroderma [119], two conditions characterized by excessive collagen
deposition in tissues (see above).

Several studies utilizing in vitro incubation systems have attested to the
possibility that all-trans-retinoic acid and 13-cis-retinoic acid are potent
inhibitors of connective tissue formation [120-124]. Specifically, these two
retinoids have been shown to suppress collagen synthesis by cultured skin
fibroblasts and this inhibition appears to occur on the pre-translational level
[120,124]. These studies would also suggest that retinoids might be helpful
for treatment of connective tissue disorders. It should be noted, however,
that initial reports suggesting beneficial retinoid effects in patients with
scleroderma utilized an aromatic retinoid, RO-10-9359 [119]. This
particular retinoid was found to be ineffective in vitro in inhibiting collagen
production [124], and therefore, any clinically beneficial effect would
probably be unrelated to inhibition of collagen production, as noted in vitro.
It should be noted that topical application of all-trans-retinoic acid (Retin A)
has been suggested to increase collagen production in animal models of
solar elastosis, as judged by histology (see below). The discrepancy between
in vitro and in vivo observations has not been resolved as yet but may relate
to differential metabolization of retinoids in isolated tissues and cells vs
whole animals.

ELASTIC FIBERS

Investigative dermatologists have shown considerable interest in elastic
fibers during the 50 years of publication of the Journal. This curiosity is
well justified on the basis of our current understanding that elastic fibers
play an important role in the structure and function of the skin, providing
elasticity and resilience. Although the elastin content of normal adult skin
is only about 2-4% of its dry weight [4,125,126], alterations in the
mechanical properties of the skin accompanying aging or selected
heritable disorders are clearly associated with abnormalities in the elastic
fibers [127,128].

Fiber Structure Elastic fibers consist of two biochemically and
ultrastructurally distinct components: (a) Elastin, a well-characterized
connective tissue protein, and (b) the elastic-fiber-associated microfi-
brillar component, a less well-characterized complex of glycoproteins
[129], Visualization of elastic fibers by scanning electron microscopy,
after removal of other extracellular matrix components, reveals a
randomly oriented, interconnected fiber network (Fig 5). It is conceivable
that this network structure provides the elastic properties to the skin
through its ability to rapidly recoil after being mechanically stretched.
The soluble elastin precursor polypeptide, tropoelastin, consists of
approximately 700 amino acids, and the primary sequence of human,
bovine, rat, and chick elastin has been elucidated through sequencing of
the corresponding cDNAs (for human sequences, see Refs 130-132).
Examination of elastin gene structure reveals that tropoelastin sequences
are encoded by a large number of separate exons which correspond to
alternating hydrophobic and cross-link domains (Fig 6). These exons are
separated by unusually large in-trons, and consequently, only about 7%
of the elastin gene contains coding information [130,133,134]. An
interesting, and potentially important, phenomenon observed in the post-
transcriptional processing of elastin precursor mRNA molecules involves
alternative splicing, a phenomenon that results in the synthesis of mMRNAs
of slightly differing nucleotide sequences [130-132]. These mRNAs can
serve as templates for the synthesis of polypeptides which differ in their
primary sequences. As a result of alternative splicing, different isoforms
of elastin are synthesized, and the assembly of these polypeptides may
lead to formation of fibers that have different elastic properties.
Following translation of the tropoelastin mRNAs, the individual
polypeptides are secreted into the extracellular space, and together with
the microfibrillar component, they assemble to form an elastic fiber
network [135]. The fiber structure is stabilized by formation of covalent

THE JOURNAL OF INVESTIGATIVE DERMATOLOGY

Figure 5. Scanning electron microscopy of the elastic fibers in human skin
after removal of other extracellular matrix components. Note the randomly
oriented meshwork structure consisting of elastic fibers of varying widths.

cross-links, desmosines (desmosine and isodesmosine), in a reaction
catalyzed by lysyl oxidase [129]. These two amino acid derivatives are
not present in any other mammalian protein besides elastic fibers, and
consequently, desmosine can serve as a specific marker for the quantity
of crosslinked elastic fibers in tissues, such as skin [126,136].

As indicated above, the microfibrillar component is poorly char-
acterized, but it has been suggested to consist of aggregates of acidic,
cysteine-rich glycoproteins [137]. One such protein may be fibrillin, a
partially characterized glycoprotein that co-localizes with the elastic
fibers [138]. Although the role that fibrillin may play in the assembly of
elastic fibers is not currently understood, preliminary observations have
suggested a fibrillin deficiency in some patients with the Marfan
syndrome [139].

Aberrations in Diseases The Journal of Investigative Dermatology has
served as a forum for several publications elucidating elastin abnorm-
alities in both heritable and acquired cutaneous diseases. The progress in
understanding the basis of such diseases has been documented on several
occasions, including comprehensive review articles in 1979 and 1982
[127,129]. The progress since 1982 has been greatly accelerated by the
improvement in techniques available for biochemical and molecular
analysis of elastic fibers. For example, highly specific and sensitive
radioimmunoassays for desmosines have been utilized to quantitate the
amount of crosslinked elastic fibers in tissues [136]. Using computerized
morphometric analyses, a correlation can be made between the
histopathologic findings on elastic fibers and the concentration of
desmosine in human skin [126]. These techniques have been applied
to several cutaneous diseases. For example, the skin lesions of the
Buschke-Ollendorff syndrome, known as dermatofibrosis lenticularis
disseminata, which by histopathologic examination demonstrate an
increase in elastic fiber content, also contain elevated levels of
desmosine [140]. In addition to quantitation of elastic fibers by
desmosine assays, the availability of specific cDNAs encoding human
elastin sequences has allowed quantitation of elastin gene expression in
tissues and cell cultures [131,133,141]. An example of the utilization of
the techniques of molecular biology to study elastin is provided by cutis
laxa, a systemic disease which affects skin, lung, and the blood vessels. In
a recent study [142], skin fibroblast cultures established from patients
with autosomal recessive cutis laxa exhibited significant reductions in
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Figure 6. Schematic presentation of seven human skin fibroblast elastin cDNAs. Clones cHDEI through 7 are depicted below the composite cDNA. Open boxes
represent exons which are differentially spliced from the respective cDNAs. The bottom line represents a 3.5 kb scale corresponding to the full-length human
elastin mMRNA. The composite cDNA encompasses: (1) ~1kb of 3’ untranslated sequence (3'-UT) (ZZQ containing two polyadenylation signals (]); (2)

~2.2kb of translated sequence which includes two cysteinyl residues in exon 1, hydrophobic exons (£ZZ7), putative cross-link exons (Jilld, and the 78 bp
signal sequence (SS): and (3) a 49 bp 5’ untranslated sequence (5'-UT) (). Restriction endonucleases used: BamHI (B), Hindlll (H), Kpnl (K), Pstl (P), Sad (S),

Smal (Sm). (From Ref 132, with permission.)

elastin gene expression, demonstrated at the mRNA steady-state levels by
molecular hybridizations (Fig 7). Assuming an equal translational
efficiency of the individual mRNA species from the control and cutis
laxa cells, the reduced steady-state abundance of elastin mRNAs would
lead to deficient production of tropoelastin polypeptides, and conse-
quently, to reduced deposition of elastic fibers. This proposed scenario
would explain the paucity of elastic fibers in the affected tissues in cutis
laxa, and would correlate with the phenotypic characteristics of these
patients [126]. It should be noted that in some cases with cutis laxa, the
reduction in elastic fibers results from enhanced degradation by elastases
[143,144]. For example, in a case with severe cutis laxa and pulmonary
emphysema, significantly elevated levels of an elastase-like metallopro-
tease were noted in serum [144]. Although the origin of the serum
elastase-like metalloprotease has not been established, fibroblasts are
known to contain similar enzymes that are capable of degrading the
human skin elastic fiber system [145]. Furthermore, in patients with
acquired cutis laxa, with preceding inflammation, the release of
neutrophil elastases may play a role in elastolysis. Thus, either reduced
deposition or enhanced degradation of elastic fibers can lead to cutis laxa
with similar clinical phenotype.

Cutaneous Aging Investigative dermatologists have devoted consider-
able efforts toward disclosing the molecular mechanisms underlying
cutaneous aging. The early studies were primarily morphologic,
demonstrating accumulation of elastotic material in actinically damaged
skin and loss of elastic fibers during chronologic aging [146-148]. Recent
biochemical studies have indicated that cultured human skin fibroblasts
actively express the elastin gene, and these cells are the likely source of
dermal elastic fibers [131,141,142]. The synthesis of elastin is initiated
relatively late during fetal development and remains at a high level over
several decades of post-natal life [131,151]. However, around the sixth
decade, elastin synthesis appears to precipitously decline (Fig 8) [131].

This observation would account for loss of elastic fibers as part of innate
aging affecting skin. Mechanistically, innate aging may be somewhat
analogous to cutis laxa where elastic fibers can be deficient either as a
result of reduced synthesis or increased degradation (see above).

The mechanisms leading to accumulation of elastotic material in
actinically damaged skin, or even the exact composition of this material,
are not entirely clear at this point, although it has been suggested that it is
primarily composed of elastin and microfibrillar proteins with co-
distributing fibronectin [152]. It has been postulated that UV irradiation,
and UV-A irradiation in particular, might trigger fibroblasts to make
excessive amounts of elastin. However, because of aberrant, poorly
understood control mechanisms, these molecules do not assemble into
functional elastic fibers, but demonstrate a pleomorphic appearance
instead. The latter situation may be analogous to elastoderma, a disease
of aberrant elastin accumulation within the skin [153].

Several studies have also attempted to reproduce the actinic elastosis
in animal models using ultraviolet light irradiation. Many of these studies
have been successful in inducing accumulation of elastotic material in
the skin of the experimental animals. The accumulation of elastotic
material has been demonstrated both by morphologic assessment,
immunostaining, and biochemical analyses [154-162]. These animal
models have then served as a test system to study the prevention and
repair of actinic damage by compounds such as sunscreens and the
retinoids [163-165]. In particular, sunscreens and retinoids have been
shown to promote repair of actinically damaged skin by enhancing
synthesis of dermal collagen, which replaces the elastotic material in the
upper dermis. The biochemical mechanisms of this repair process have
not been elucidated as yet, but it is conceivable that similar repair
mechanisms may be operative in the skin treated with topical all-trans-
retinoic acid (Retin-A) for reversal of cutaneous aging. It is of interest that
the Journal served as forum for early publications on the development of
paraaminobenzoic acid as a sunburn-protecting agent [167,168]. These
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Figure 7. Northern transfer analysis of RNA isolated from cultured skin
fibroblasts and hybridized with human elastin cDNA. A: total RNA (15 ug per
lane) from control cells (lanes 7 and 2) and from three patients with autosomal
recessive cutis laxa (lanes 3-5, respectively) was electrophoresed on a 1%
agarose gel, transferred to nitrocellulose, and hybridized with a 2.5 kb human
elastin cDNA labeled with «[**PIdCTP. B: 1 ug of poly(A) " RNA (lane 1) or
10 ug of poly(A)™-RNA (lane 2) from the same control fibroblast strain as
shown in panel A, lane 1, was electrophoresed as in panel A, and hybridized
with an exon 1-specific 35-base oligomer 5'-end-labeled with y[*?P]ATP.
Both the elastin cDNA and exon 1-specific oligomer hybridize with mRNA
transcripts in the range of 3.5 kb, as estimated by parallel hybridizations with
a human pro-a1(1) (5.8 and 4.8 kb polymorphic transcripts) and f-actin (2.0 kb
mRNA) cDNAs. (From Ref 142, with permission.)

studies were authored by Dr. Stephen Rothman, considered by many to
be the father of modern investigative dermatology in the United States
[167,168].

THE BASEMENT MEMBRANE ZONE

The progress made in understanding the complexity of specialized matrix
structures within compartmentalized areas of the skin is best exemplified
by the characterization of the basement membrane zone defining the
dermal-epidermal junction. The basement membrane zone was early
recognized histologically as an amorphous, poorly defined structure
separating the epidermis and dermis, which matures during the seventh
fetal month [169]. The complexity of this specialized compartment was
initially suggested by immunologic observations demonstrating that sera
from patients with certain autoimmune diseases specifically stain the
basement membrane zone (Fig 9) [170-171]. It was clear, however, that
several different epitopes were involved, suggesting complexity and
molecular heterogeneity of the basement membrane zone [172], At the
present time, it is recognized that basement membrane is a highly
complex structure, containing at least eight distinct components,
including type IV and VII collagens, laminin, nidogen, heparan sulfate
proteoglycan, bullous pemphigoid antigen, fibronectin, and SPARC/BM-
40/osteonectin (Table 1).

Basement Membrane Components Individual components of the
basement membrane zone demonstrate specific interactions which result
in the formation of an organized, functional meshwork structure (Fig 10).
Specifically, the major component of the basement membrane zone, type

THE JOURNAL OF INVESTIGATIVE DERMATOLOGY

A
1 2 3 4 RNA (pg)
—_— - - - 0.4
- - - - 0.2
— - 01
- 0.05
B
06}
I 7
7 1
04t Z

o2t

Elastin mRANA Abundance (U/ug)

Z20MIMMMMIN

1
years

15
days years years

Age of Donor

Figure 8. Elastin mRNA steady-state abundance in skin fibroblast cultures
established from individuals of varying ages. A: Slot-blot hybridizations.
Poly(A) * RNA was isolated, dotted on the nitrocellulose filters, in varying
amounts as indicated at the right (0.4-0.05 ug) and hybridized with a human
elastin cDNA (cHE-1) labeled with [*?P]dCTP. The figure represents the
autoradiogram of the [**PlcDNA/mMRNA hybrids. Lanes 1-4 represent RNA
isolated from fibroblast cultures established from individuals with ages of 3 d,
15 years, 33 years, and 61 years, respectively. B: Quantitation of elastin
mRNA levels. The abundance of elastin mRNA was quantitated from the slot-
blot hybridizations shown in A by scanning densitometry. Values are
expressed as densitometric units (U)/ug of pon(A)*RNA dotted, and
corrected for the abundance of f-actin mRNA levels in the same preparations,
as determined by parallel hybridizations with **P-labeled human f-actin
cDNA. The values represent mean + SEM of three to five determinations in the
linear range of the mRNA hybridization curve from triplicate cultures of the
same cell strain. (From Ref 131, with permission.)

IV collagen, serves as an attachment site for basal keratinocytes [42]. At
the same time, type IV collagen interacts with type VII collagen present in
the anchoring fibrils (see above). These interactions apparently play a
major role in securing a stable association between the epidermis and
dermis in normal human skin [40].

Characterization of some basement membrane zone components
utilizing recombinant DNA technology, has demonstrated the power of
these state-of-the-art techniques. A good example of the utility of these
techniques is offered by the studies that have elucidated the primary
sequence and molecular structure of laminin [173-177]. This basement
membrane zone protein is present in tissues in minute quantities, and it is
insoluble and highly susceptible to proteolytic degradation. Conse-
quently, isolation of laminin from normal human tissues has proven
extremely difficult. Cloning of cDNAs corresponding to laminin
polypeptides has allowed us to define the exact primary sequence of
this glycoprotein, thus forming a basis for further delineation of the
structure-function relationships (see below). The cDNAs corresponding
to lamin sequences were initially isolated from recombinant cDNA
expression libraries by immunoscreening (see Refs 174-177), suggesting
that antibody detection utilizing antisera from patients with autoimmune
diseases might also be a feasible approach to characterize other
cutaneous structures which are present in minute quantities, and
therefore, not amenable to conventional biochemical procedures. Such
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Figure 9. Indirect immunofluorescence of the dermal-epidermal basement
membrane zone with a monoclonal antibody to an unidentified glycoprotein
of ~150kD. The staining is restricted to the dermal-epidermal basement
membrane zone and does not reveal any staining of the adnexal structures,
suggesting molecular heterogeneity of basement membranes. (From Ref 209,
with permission.)
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Figure 10. Schematic presentation of the dermal-epidermal basement
membrane zone. An area on the right has been expanded to show the
approximate spatial distribution of the components of the basement
membrane. (From Ref 210, with permission.)

approaches are currently underway to examine other components of
skin, where the disease entity has been defined by the presence of
specific autoantibodies, as in the case of pemphigus vulgaris, bullous
pemphigoid, and acquired epidermolysis bullosa [178-181].

As indicated above, cloning and sequencing of cDNAs corresponding
to laminin has allowed elucidation of the primary sequence of its subunit
polypeptides, A, Bl, and B2 chains [177]. These sequence data provide a
basis for the prediction of the tertiary structure of these molecules. These
structural data can then be related to known biologic activities of
laminin, and in this way, attempts to localize active domains within the
molecule can be made. For example, sequencing of human laminin A
chain ¢cDNAs [177] has revealed the presence of a peptide sequence,
arginine-glycine-aspartic acid (RGD), a sequence that has been shown to
be crucial for the interaction with specific cell surface receptors for a
variety of proteins, including fibronectin [182]. The RGD sequence in
human laminin was found in the C-terminal portion of the A chain [177].
A proteolytic fragment of mouse laminin A chain has been shown to
interact with a cell surface receptor [183]. Further biologic functions
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Figure 11. Northern transfer analysis of RNA isolated from human skin
fibroblast cultures. Poly(A) " RNA was isolated and electrophoresed on a 1%
agarose gel. The RNAs, 1 ug per lane, were transferred to nitrocellulose filters
and hybridized with type IV procollagen cDNAs (panel A) or laminim B1 and
B2 chain cDNAs (panel B). Panel A: Hybridizations with a1(1V) (lanes 1-3)
a2(lV) (lanes 4-6) chain cDNAs. Lanes 2 and 5 contain RNA from a 33-year
old male, while lanes 3 and 6 contain RNA from cultures isolated from a 14-
week old fetus. For comparison, in lanes 1 and 4, RNA from fibroblast cultures
established from a newborn male with perinatally lethal osteogenesis
imperfecta is shown; this cell line has been previously shown to synthesize
large quantities of type IV procollagen. Panel B: Hybridizations with human
laminin B1 (lanes T and 2) or B2 (lanes 3 and 4) chain cDNAs. Lanes T and 3
contain RNA from adult skin fibroblast cultures and lanes 2 and 4 contain
RNA from fetal cell cultures, as indicated in Panel A. The 5.8 and 4.8 kb
markers indicate the migration positions of polymorphic transcripts of human
pro-o1(l) collagen chain mRNA, while the 8.0 kb marker indicates the position
of fibronectin mRNA, as determined by parallel hybridizations of RNA blots
from the same electrophoretic runs. The mRNAs in lanes 2 and 5 of Panel A
are not readily visible with this exposure; however, upon extended exposure
to x-ray films, the bands are evident. These observations are consistent with
differential regulation of basement membrane components, type IV collagen
and laminin, during chronologic aging. (From Ref 186, with permission.)

attributed to the globular domains within the laminin subunits are
binding to basement membrane collagen type 1V, nidogen, as well as to
anionic heparin and heparan sulfate proteoglycans [173]. These
interactions play a major role in the supramolecular assembly of the
basement membrane zone components.

Cellular Origin of Extracellular Matrix Components Presently the
cellular source of several extracellular matrix components has been
identified using isolated dermal and epidermal cell cultures. Fibronectin,
one of the predominant proteins in skin is produced by both fibroblasts
and keratinocytes, as well as numerous other cell types in the skin and
other tissues [184]. Type IV procollagen, the major structural component
of the basement membrane, was initially thought to be a specific product
of the basal keratinocytes [185]. However, more recent studies utilizing
cDNA probes specific for the subunit polypeptides of type IV procollagen
have demonstrated expression of the corresponding genes by normal
dermal fibroblasts as well [83, 186]. In fact, fibroblast cultures
established from biopsies of fetal skin contain abundant levels of
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Figure 12. Slot-blot hybridizations of RNA isolated from control (C) or lipoid proteinosis (LP) fibroblast cultures. Poly(A) " RNA was isolated, and different
amounts, 0.4, 0.2, 0.1, 0.05, and 0.025 ug, were dotted onto nitrocellulose filters. The filters were hybridized with pro-«1(1V) and pro-a1(l) collagen, laminin B2
chain, or fibronectin cDNAs, and subjected to autoradiography for 7 d. Note the clearly detectable signal with a pro-a.1(1V) cDNA in LP fibroblasts, reflecting
elevated levels of the corresponding mRNA in comparison to control cells. Also note that the signal obtained with «1(1V) collagen and laminin B2 chain cDNAs
is much lower than that obtained with «1(1) and fibronectin cDNAs, indicating that the mRNAs for basement membrane zone components are significantly less
abundant than those for type | collagen and fibronectin in human skin fibroblasts (from Ref 83, with permission).

al(1 V) ind «2(IV) collagen mRNAs, whereas fibroblast cultures
established from adult skin express these two genes at very low levels
[186]. Laminin synthesis has been demonstrated by metabolic labeling
and immunoprecipitation or immunofluorescence both in keratinocyte
and fibroblast cultures [185,187]. The expression of laminin A, B1, and
B2 chain mRNAs by molecular hybridizations has confirmed the
synthesis of laminin by normal human dermal fibroblasts [83,177,186].
The bullous pemphigoid antigen, a protein which is unique to the skin, is
known to be a gene product of the basal keratinocyte [188,189], but the
recent cloning of cDNAs for this gene will allow further analysis of
potential expression of this protein by other skin cells [178,179]. Dermal
fibroblasts and epidermal keratinocytes both synthesize type VII
collagen, also known as the acquired epidermolysis bullosa antigen
[190,191]. It is of interest to note that the human fibrosarcoma cell line
HT 1080, which produces numerous basement membrane zone
marcomolecules, does not synthesize type VII collagen, whereas
epidermoid carcinoma and transformed amniotic cell lines do express
the type VIl collagen gene [192]. The cells responsible for the synthesis of
nidogen and osteonectin (also referred to as BM-40, SPARC) in the
dermal-epidermal basement membrane have not yet been defined.
Although both antigens can be detected by immunofluorescence in
mouse and human skin [193,194], neither dermal fibroblasts nor
keratinocytes in culture have been examined directly for the synthesis
of these proteins. Epithelial cells from other mouse tissues have been
shown to express these antigens, however [195,196]. Several different
proteoglycans are also synthesized by both fibroblasts and keratinocytes
[197,198].

The implications of these in vitro and in vivo findings are that not only
the basal keratinocytes, the cells which are juxtaposed to the basement
membrane, but also dermal fibroblasts have the capacity to synthesize
components of the basement membrane zone, and therefore contribute
to the synthesis of the dermal-epidermal basal lamina during skin
development.

Basement Membrane Zone Gene Expression Recently, we have
demonstrated that cultured human skin fibroblasts express the genes
encoding the basement membrane zone components, type IV collagen,

and laminin [83,186,187] (Fig 11). As discussed above, the expression of
these genes has been detected both at mRNA and protein levels.
Demonstration of basement membrane zone gene expression by cultured
fibroblasts allows the utilization of these gene probes and cell culture
systems to examine heritable disorders affecting the basement membrane
zone [83]. An example of such studies is the characterization of the
molecular defect accompanying lipoid proteinosis (LP), a rare autosomal
recessive condition of which one feature is reduplication of the basal
laminae of the skin and vascular structures [199,200]. In a study by us,
fibroblast cultures established from the lesional skin of a patient with LP
contained over 4.5-fold higher steady-state levels of a1(IV) procollagen
mRNAs than age-matched control cell cultures (Fig 12) [83]. The
overexpression of the o1(IV) procollagen gene appeared to be selective in
that the mRNA levels for the laminin B2 chain, fibronectin, type I
procollagen, and f-actin were unaltered in the lesional fibroblasts.
However, the mechanisms which result in the accumulation of type IV
procollagen mRNA in LP are not known. This alteration could reflect an
enhanced rate of transcription of type IV collagen gene or could result
from greater stability of the corresponding mRNA. It is of interest to note
that the laminin B2 chain mRNA levels remained unaltered in LP,
suggesting that the reduplicated basement membranes seen in this
disease may be deficient in laminin, and therefore, may not be entirely
functional. These observations suggest that alterations in the expression
of basement membrane zone genes can lead to clinically recognizable
disease, analogous to accumulation of interstitial collagen in fibrotic skin
diseases (see above).

Biologic Activities of Matrix Proteins Several extracellular matrix
macromolecules appear to play key roles in biologic activities
[201,202]. For example, during the early stages of the wound healing
processes, exposed collagen matrices stimulate aggregation of platelets.
Additionally, peptides derived from collagen, fibronectin, and elastin
have all been shown to possess chemotactic activity for mononuclear
cells. These cells in turn elaborate a variety of soluble factors capable of
amplifying the wound repair processes [203-205]. Fibronectin also
promotes several other aspects of cutaneous wound healing. During the
formation of granulation tissue, fibronectin is thought to provide a
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provisional matrix, along with type | and Il collagens, allowing the
reepithelializaton of the wound by keratinocytes at the margin of the
injury [201,202]. Fibronectin also acts as a non-specific opsonin of
cellular and bacterial debris during the initial inflammatory phase of the
wound healing process, thus aiding in the removal of the debris by
phagocytic cells [201].

The role of other noncollagenous glycoproteins, such as laminin,
nidogen, osteonectin, fibrillin and elastin, in the wound healing
processes has not yet been fully elucidated. As more is learned about
the primary structures of these proteins through cloning and sequencing
of their complementary DNAs and genes, specific biologic activities may
be assigned to certain domains within the molecules. This information
will undoubtedly provide valuable knowledge concerning their roles in
normal cutaneous biology and how aberrations in their structures may
result in cutaneous disorders.

FUTURE PERSPECTIVE

In the past five decades or so, much information has been gathered from
work by many investigators who have examined the extracellular
connective tissue matrix of the skin. The work has not been finished,
however, and much remains to be elucidated on the structure and function
of normal extracellular matrices. Even more strikingly, the extrapolations of
our knowldge on features of normal cutaneous extracellular matrix to
disease processes have been sparse, and our understanding of the molecular
defects in many heritable and acquired diseases affecting the cutaneous
structures is incomplete. It is clear that utilization of state-of-the-art
recombinant DNA technologies will allow molecular dermatologists to
pinpoint the underlying defects in the pathologic processes. Such
information will clearly be helpful in further development of approaches
for the diagnosis and treatment of skin diseases.
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