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Abstract

A hexagon quadrangle system of order n and index � [HQS�(n)] is a pair (X, H), where X is a finite set of n vertices and H

is a collection of edge disjoint hexagon quadrangles (called blocks) which partitions the edge set of �Kn, with vertex set X. A
hexagon quadrangle system is said to be a 4-nesting [N(4) − HQS] if the collection of all the 4-cycles contained in the hexagon
quadrangles is a �/2-fold 4-cycle system. It is said to be a 6-nesting [N(6) − HQS] if the collection of 6-cycles contained in the
hexagon quadrangles is a (

3�
4 )-fold 6-cycle system. It is said to be a (4, 6)-nesting, briefly a N(4, 6) − HQS, if it is both a 4-nesting

and a 6-nesting.
In this paper we determine completely the spectrum of N(4, 6) − HQS for � = 6h, � = 4h and � = 8h, h positive integer.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A �-fold m-cycle system of order n is a pair (X, C), where X is a finite set of n elements, called vertices, and C is a
collection of edge disjoint m-cycles which partitions the edge set of �Kn, complete graph with vertex set X and where
every pair of vertices is joined by � edges. In this case, |C| = �n(n − 1)/2m. When � = 1, we will simply say m-cycle
system. A 3-cycle is also be called a triple and so a �-fold 3-cycle system will also be called a �-fold 3-triple system.
When � = 1, we have the well known definition of Steiner triple system (or, simply, triple system).

Fairly recently the spectrum (i.e., the set of all n such that a m-cycle system of order n exists) has been determined
to be [1,3]:

(1) n�m if n > 1;
(2) n is odd and
(3) n(n−1)

2m
is an integer.

The spectrum for �-fold m-cycle system for ��2 is still an open problem.
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In what follows, a hexagon quadrangle will be a graph obtained from a 6-cycle (x1, x2, x3, x4, x5, x6) with the two
chords of vertices x1, x3 and x4, x6.

A hexagon quadrangle system of order n and index � [HQS�(n), or simply HQS(n) when � = 1] is a pair (X, H),
where X is a finite set of n vertices and H is a collection of edge disjoint hexagon quadrangles (called blocks) which
partitions the edge set of �Kn, with vertex set X.

A hexagon quadrangle system (X, H) of order n and index � is said to be a 4-nesting [N(4)− HQS] if the collection
of all the 4-cycles contained in the hexagon quadrangles is a �/2-fold 4-cycle system. We will say that this (�= �

2 )-fold
4-cycle system is nested in the HQS (X, H).

A hexagon quadrangle system (X, H) of order n and index � is said to be a 6-nesting [N(6)− HQS] if the collection
of 6-cycles contained in the hexagon quadrangles is a (� = 3�

4 )-fold 6-cycle system. This 6-cycle system is said to be
nested in (X, H).

A hexagon quadrangle system of order n and index � is said to be a (4, 6)-nesting, briefly a N(4, 6) − HQS, if it
is both a 4-nesting and a 6-nesting. In these cases, we say that the hexagon quadrangle system has indices (�, �, �),
which we will indicate by N(4, 6) − HQS(�,�,�)(n).

Remark 1. Observe that, in a N(4, 6) − HQS(�,�,�)(n) of blocks [(x1, x2, x3), (x4, x5, x6)], the triples (x1, x2, x3),

(x4, x5, x6) give necessarily a Steiner triple system of index � = 3
4�. So, the hexagon quadrangle system is 3-nesting

and it could also be indicated by N(3, 4, 6) − HQS�,�,�,�(n).

In the following examples the vertex set is Z7.

Example 1. The following HQS(7) is neither a 4-nesting or a 6-nesting.

Base blocks: [(0, 2, 1), (3, 4, 5)], [(0, 3, 4), (1, 2, 5)], [(0, 5, 3), (6, 2, 1)].

Example 2. The following HQS(7) is a 4-nesting but not a 6-nesting.

Base blocks: [(0, 6, 1), (3, 4, 2)], [(0, 3, 6), (2, 1, 5)], [(0, 6, 2), (5, 3, 1)].

Example 3. The following HQS(7) is a 6-nesting but not a 4-nesting.

Base blocks: [(0, 1, 3), (6, 4, 5)], [(0, 1, 3), (6, 5, 4)], [(1, 5, 2), (0, 4, 3)].

Example 4. The following HQS(7) is both a 4 and 6 nesting.

Base blocks: [(0, 4, 1), (2, 6, 3)], [(0, 1, 2), (4, 5, 6)], [(0, 5, 3), (6, 4, 2)].
In this paper we determine completely the spectrum of N(4, 6) − HQS(n) for � = 6h, � = 4h and � = 8h; h positive

integer.

2. Necessary conditions for N(4, 6) − HQS(�,�,μ)(n)

In this section we prove some necessary conditions for the existence of HQS(�,�,�)(n)s.

Theorem 2. Let (X, H) be a N(4, 6) − HQS(�,�,�)(n). Then:

(1) 3� = 4�, 2� = 3�, � = 2�;
(2) � ≡ 0 mod 4, � ≡ 0 mod 2, � ≡ 0 mod 3; and
(3) � = 4h, � = 3h, � = 2h, h is a positive integer.

Proof. Let (X, H) be a N(4, 6) − HQS(�,�,�)(n) of index � and let (X, C′) be the 6-cycle system of index � and
(X, C′′) the 4-cycle system of index �, nested in it.
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(1) It is immediate that:

|H | = |C′| = |C′′|,

|H | =
(

n
2

)
8

�, |C′| =
(

n
2

)
6

�, |C′′| =
(

n
2

)
4

�.

It follows that 3� = 4�, � = 2� and 2� = 3�
(2) From (1), the index � = 2�

3 must be an even number. So, since � = 2� and � = 3�
2 , it follows that � ≡ 0 (mod 4)

and � ≡ 3 (mod 0).
(3) From (2), directly. �

Theorem 3. Let (X, H)be aN(4, 6)−HQS(�,�,�)(n). If (�, �, �)=(4, 3, 2), thenn ≡ 0, 1 (mod 4) if (�, �, �)=(8, 6, 4)

then n ≡ 0, 1 (mod 2).

Proof. This follows from Theorem 2. �

3. N(4, 6) − HQS(8,6,4)(p) and N(4, 6) − HQS(8,6,4)(p + 1) for p a prime number. N(4, 6) − HQS(8,6,4)(d)

and N(4, 6) − HQS(8,6,4)(d + 1) for d odd and not divisible by 3 or 5

In this section we will examine the existence of N(4, 6) − HQS(�,�,�)(n) for (�, �, �) = (8, 6, 4) and n a prime
number or an odd number not divisible by 3 or 5.

Theorem 4. For every prime number p, p�7, there exist a N(4, 6) − HQS(p) with indices (�, �, �) = (8, 6, 4).

Proof. Let X = {0, 1, 2, . . . , p − 1} = Zp. Observe that if x, y ∈ H , x < y, then: y − x = � = {1, 2, . . . ,
p−1

2 }.
Consider the following families of hexagon quadrangles, 6-cycles and 4-cycles, respectively:

H =
{
bj,i =

[(
j,

i

2
+ j, i + j

)
,

(
2i + j,

5i

2
+ j, 3i + j

)]
: i ∈ �, i even, j ∈ Zp

}

∪
{
bj,i =

[(
j,

p + i

2
+ j, i + j

)
,

(
2i + j,

p + 5i

2
+ j, 3i + j

)]
: i ∈ �, i odd, j ∈ Zp

}
;

C′ =
{
cj,i =

(
j,

i

2
+ j, i + j, 2i + j,

5i

2
+ j, 3i + j

)
: i ∈ �, i even, j ∈ Zp

}

∪
{
cj,i =

(
j,

p + i

2
+ j, i + j, 2i + j,

p + 5i

2
+ j, 3i + j

)
: i ∈ �, i odd, j ∈ Zp

}
;

C′′ = {qj,i = (j, i + j, 2i + j, 3i + j) : i ∈ �, j ∈ Zp}.
We prove that (Zp, C′′) is a 4-cycle system of index � = 4. In fact, for every pair x, y ∈ Zp, x < y, if y − x = u, then
u ∈ � and the following blocks of C′′ contain the edge {x, y}:

qx,u = (x, y = x + u, x + 2u, x + 3u),

qx−u,x = (x − u, x, y = x + u, x + 2u),

qx−2u,x−u = (x − 2u, x − u, x, y = x + u).

Further, since p is a prime number

{3i : i ∈ �} =
{

3, 6, . . . ,
3(p − 1)

3

}
= �.

This implies that there exists an u′ ∈ � such that 3u′ = u and

qx,u/3 = (x, x + u′, x + 2u′, x + 3u′ = y) ∈ C′′.
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Since:

|C′′| = p(p − 1)

2
=

(
p
2

)
4

4,

the pair (Zp, C′′) is a 4-cycle system of index � = 4.
We prove that (Zp, C′) is a 6-cycle system of index � = 6. In fact, for every pair x, y ∈ Zp, x < y, if y − x = u, then

u ∈ �. Further, there are six blocks of C′ containing the edge {x, y}.
For u��p−1

4 � there are the cycles cx,2u, cx−u,2u, cx−4u,2u, cx−8u,2u among the blocks:{
cj,i =

(
j,

i

2
+ j, i + j, 2i + j,

5i

2
+ j, 3i + j

)
: i ∈ �, i even, j ∈ Zp

}
.

For u > �p−1
4 	 there are the cycles cx,p−u, cx−u,p−u, cx−4u,p−u, cx−5u,p−u among the blocks:

{cj,i = (j,
p+i

2 + j, i + j, 2i + j,
p+5i

2 + j, 3i + j) : i ∈ �, i odd, j ∈ Zp}. Further, since p is a prime
number, there are two cycles (x1, x2, x3, x4, x5, x6) such that {x1, x6} = {x, y} and {x3, x4} = {x, y}, respectively.

Since: |C′| = p(p−1)
2 =

(
( p

2 )
6

)
6, the pair (Zp, C′) is a 6-cycle system of index � = 6. It follows that (Zp, H) is a

N(4, 6) − HQS(8,6,4)(p). If we delete, in every bj,i ∈ H , the edges {j, i + j} and {2(i + j), 3(i + j)}, we obtain
the 6-cycle system (Zp, C′) of index � = 6. If we delete, in every bj,i ∈ H , the edges {j, i

2 + j}, { i
2 + j, i + j} and

{2i + j, 5i
2 + j}, { 5i

2 + j, 3i + j}, in the case i even, and the edges {j, p+i
2 + j}, {p+i

2 + j, i + j} and {2i + j,
p+5i

2 +j},
{p+5i

2 + j, 3i + j}, in the case i odd, we obtain the 4-cycle system (Zp, C′′) of index � = 4. This completes
the proof. �

Theorem 5. For every prime number p, p�7, there exist N(4, 6) − HQS(p + 1) having order p + 1 and indices
(�, �, �) = (8, 6, 4).

Proof. Let X = {0, 1, 2 . . . , p − 1} = Zp, X∗ = X ∪ {∞}, � = {1, 2 . . . ,
p−1

2 }, (X, H), where

H =
{
bj,i =

[(
j,

i

2
+ j, i + j

)
,

(
2i + j,

5i

2
+ j, 3i + j

)]
: i ∈ �, i even, j ∈ Zp

}

∪
{
bj,i =

[(
j,

p + i

2
+ j, i + j

)
,

(
2i + j,

p + 5i

2
+ j, 3i + j

)]
: i ∈ �, i odd, j ∈ Zp

}
.

From Theorem 4, (X, H) is a N(4, 6) − HQS(8,6,4)(p) of order p, p a prime, which defines a 6-cycle system (X, C′)
and a 4-cycle system (X, C′′), where:

C′ =
{
cj,i =

(
j,

i

2
+ j, i + j, 2i + j,

5i

2
+ j, 3i + j

)
: i ∈ �, i even, j ∈ Zp

}

∪
{
cj,i =

(
j,

p + i

2
+ j, i + j, 2i + j,

p + 5i

2
+ j, 3i + j

)
: i ∈ �, i odd, j ∈ Zp

}
;

C′′ = {qj,i = (j, i + j, 2i + j, 3i + j) : i ∈ �, j ∈ Zp}.
Consider bj,1,bj,(p−1)/2 ∈ H , for j ∈ Zp and define the following blocks:

bj,∞,1 =
[
(j, ∞, j + 1),

(
2 + j,

p + 5

2
+ j, 3 + j

)]
, j ∈ Zp;

bj,∞,2 =
[(

j, j + p − 1

2
, ∞

)
,

(
j + p − 1, j + �, j + 3

p − 1

2

)]
: j ∈ Zp;

bj,∞,3 =
[(

j, 	 + j, j + p − 1

2

)
,

(
p − 1 + j, j + 3

p − 1

2
, ∞

)]
: j ∈ Zp;
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where

� =
⎧⎨
⎩

5(p − 1)

4
if

p − 1

2
is even,

7p − 5

4
if

p − 1

2
is odd,

	 =
⎧⎨
⎩

p − 1

4
if

p − 1

2
is even,

3p − 1

4
if

p − 1

2
is odd.

Observe that, if we indicate by b = [(x1, x2, x3), (x4, x5, x6)] the blocks of H , then the blocks bj,∞,1, bj,∞,2, bj,∞,3
are constructed starting from the blocks bj,1, bj,(p−1)/2 of H , by the same edges, with the same multiplicity and
such that the edges {∞, j}, for j ∈ Zp, are repeated 6 times in the cycles (x1, x2, x3, x4, x5, x6) of bj,∞,1, bj,∞,2,
bj,∞,3, 4 times in the cycles (x1, x3, x4, x6) and 8 times in bj,∞,1, bj,∞,2, bj,∞,3. So, if H ∗ = H\{bj,1, bj,(p−1)/2} ∪
{bj,∞,1, bj,∞,2, bj,∞,3}, it is possible to verify that (X∗, H ∗) is a N(4, 6) − HQS(�,�,�)(p + 1), completing the
proof. �

The results of Theorems 4 and 5 can be extended to N(4, 6) − HQS(n) of indices (8h, 6h, 4h), by repetition of
blocks.

Theorem 6. For every odd number d, not divisible by 3 or 5, there exist N(4, 6) − HQS(�, �, �) having order d and
indices (�, �, �) = (8, 6, 4).

Proof. Consider the same families of hexagon quadrangles defined in Theorem 4, where � = {1, 2, . . . , d−1
2 }:

H =
{
bj,i =

[(
j,

i

2
+ j, i + j

)
,

(
2i + j,

5i

2
+ j, 3i + j

)]
: i ∈ �, i even, j ∈ Zp

}

∪ bj,i =
[(

j,
p + i

2
+ j, i + j

)
,

(
2i + j,

p + 5i

2
+ j, 3i + j

)]
: i ∈ �, i odd, j ∈ Zp

}
;

C′ =
{
cj,i =

(
j,

i

2
+ j, i + j, 2i + j,

5i

2
+ j, 3i + j

)
: i ∈ �, i even, j ∈ Zp

}

∪
{
cj,i =

(
j,

p + i

2
+ j, i + j, 2i + j,

p + 5i

2
+ j, 3i + j

)
: i ∈ �, i odd, j ∈ Zp

}
;

C′′ = {qj,i = (j, i + j, 2i + j, 3i + j) : i ∈ �, j ∈ Zp}.
These families define a N(4, 6) − HQS(8,6,4)(n), (Zd, C), nesting both the 6-cycle system (Zd, C′) and the 4-cycle
system (Zd, C′′). Observe that all the edges of the hexagon quadrangles are obtained by difference methods, starting
from the following base blocks:

b0,1, b0,2, . . . , b0,d−1/2,

c0,1, c0,2, . . . , c0,d−1/2,

q0,1, q0,2, . . . , q0,d−1/2.

It is necessary to observe that, since d is not divisible by 3 or 5, there is not any repetition of vertices in the blocks:[(
j,

i

2
+ j, i + j

)
,

(
2i + j,

5i

2
+ j, 3i + j

)]
for i even, i ∈ � and j ∈ Zd ,

[(
j,

d + i

2
+ j, i + j

)
,

(
2i + j,

d + 5i

2
+ j, 3i + j

)]
for i odd, i ∈ � and j ∈ Zd .

Therefore, the conclusion follows as in Theorem 4. �
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Theorem 7. For every odd number d, not divisible by 3 or 5, there exist N(4, 6) − HQS(8,6,4) of order d + 1.

Proof. The statement follows from Theorems 4 and 5, directly. �

4. Construction v → 3v and construction v → 3v − 2

In this section we give two constructions for N(4, 6)−HQS(8,6,4)(n). In this case these constructions can be extended
to N(4, 6) − HQS(n) of indices (8h, 6h, 4h).

Theorem 8. N(4, 6) − HQS(8,6,4)(3n)s can be constructed from N(4, 6) − HQS(8,6,4)(n).

Proof. Let (Zn, H) be a N(4, 6) − HQS(8,6,4)(n) of order n, n�7. Let X = Zn × {1, 2, 3} and let (Zn,i , Hi) be the
HQS(8,6,4)(n), for i = 1, 2, 3, such that Zn,i = Zn × {i}, and [((a, i), (b, i), (c, i)), ((�, i), (	, i), (
, i))] ∈ Hi if and
only if [(a, b, c), (�, 	, 
)] ∈ H . Let H ∗ be the collection of hexagon quadrangles defined on X by

H1 ⊆ H ∗, H2 ⊆ H ∗, H3 ⊆ H ∗.

Further, if

�123 = {[((i, 1), (j, 2), (u, 3)), ((i + 1, 1), (j + 1, 2), (u + 1, 3))] : i, j, u ∈ Zn},
�231 = {[((i, 2), (j, 3), (u, 1)), ((i + 1, 2), (j + 1, 3), (u + 1, 1))] : i, j, u ∈ Zn},
�312 = {[((i, 3), (j, 1), (u, 2)), ((i + 1, 3), (j + 1, 1), (u + 1, 2))] : i, j, u ∈ Zn},

then

�123 ⊆ H ∗, �231 ⊆ H ∗, �312 ⊆ H ∗.

To begin with (X, H ∗) is a N(4, 6) − HQS(8,6,4)(3n). It is easy to see that all the edges of type {(x, i), (y, i)} are
contained in Hi with the correct repetition. In fact, (Zn,i , Hi) is a N(4, 6) − HQS(8,6,4)(n) and no edge {(x, i), (y, i)}
is contained in any of the blocks of �123 ∪ �213 ∪ �312, which contains blocks with edges of type {(x, i), (y, i)}, for
i 
= j .

If we consider an edge of type {(x, i), (y, i)} with i 
= j , then:
if the edge is of type {(x, 1), (y, 2)}:
• it is contained 2-times in the blocks of �123 and in both cases it is an edge of a 6-cycle of type: ((i, 1), (j, 2), (u, 3),

(i + 1, 1), (j + 1, 2), (u + 1, 3));
• it is contained 2-times in the blocks of �312 and in both cases it is an edge of a 6-cycle of type: ((i, 3), (j, 1), (u, 2),

(i + 1, 3), (j + 1, 1), (u + 1, 2));
• it is contained 4-times in the blocks of �213 and in all of these cases it is an edge of a 4-cycle of type

((i, 2), (u, 1), (i + 1, 2), (u + 1, 2)).

If the edge is of type {(x, 2), (y, 3)} or {(x, 3), (y, 1)} an analogous argument holds.
We observe that the number of blocks of H ∗ is

|H ∗| = |H1| + |H2| + |H3| + |�123| + |�231| + |�312|

= 3
(

n
2

)
8

8 + 3n2 = 3n(n − 1)

2
+ 3n2

= 6n2 + 3n2 − 3n

2
= 9n2 − 3n

2

which is exactly the number of blocks of a N(4, 6) − HQS(8,6,4)(3n):(
3n
2

)
8

8 = 3n(3n − 1)

2
= 9n2 − 3n

2
.

So, the proof is completed. �
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Theorem 9. N(4, 6) − HQS(8,6,4)(3n − 2)s can be constructed from N(4, 6) − HQS(8,6,4)(n).

Proof. Let (Zn, H) be a N(4, 6) − HQS(8,6,4)(n), of order n, and let x = n − 1 ∈ Zn. If Zn−1,i = Zn−1 × {i}
and X = (Zn−1 × {1, 2, 3}) ∪ {x}, then |X| = 3n − 2. Further, let (x, 1) = (x, 2) = (x, 3) = x and let (Zn−1,i ∪
{x}, Hi) be the HQS(8,6,4)(n) for i = 1, 2, 3, such that [((a, i), (b, i), (c, i)), ((�, i), (	, i), (
, i))] ∈ Hi if and only if
[(a, b, c), (�, 	, 
)] ∈ H .

We define a collection H ∗ of hexagon qradrangles on X, as follows:

H1 ⊆ H ∗, H2 ⊆ H ∗, H3 ⊆ H ∗.

Further, let

�123 = {[((i, 1), (j, 2), (u, 3)), ((i + 1, 1), (j + 1, 2), (u + 1, 3))] : i, j, u ∈ Zn−1 ∈ H ∗},
�231 = {[((i, 2), (j, 3), (u, 1)), ((i + 1, 2), (j + 1, 3), (u + 1, 1))] : i, j, u ∈ Zn−1 ∈ H ∗},
�312 = {[((i, 3), (j, 1), (u, 2)), ((i + 1, 3), (j + 1, 1), (u + 1, 2))] : i, j, u ∈ Zn−1 ∈ H ∗}.

Just as in Theorem 8, it is possible to verify that the pair (X, H ∗) is a N(4, 6) − HQS(8,6,4)(3n − 2). The number of
blocks in H ∗ is

|H ∗| = |H1| + |H2| + |H3| + |�123| + |�231| + |�312|

= 3
(

n
2

)
8

8 + 3(n − 1)2 = 3n(3n − 1)

2
+ 3(n − 1)2 = 9n2 − 15n + 6

2
.

This is exactly the number of blocks of a N(4, 6) − HQS(8,6,4)(3n − 2). Further(
3n−2

2

)
8

8 = (3n − 2)(3n − 3)

2
= 9n2 − 15n + 6

2

which completes the proof. �

5. Non-existence of N(4, 6) − HQS(8,6,4) of order 6. Existence of N(4, 6) − HQS(8,6,4) of orders 9, 10, 15, 16

We prove that the minimum value for the existence of N(4, 6) − HQS(8,6,4) is n = 7. Further we give examples of
N(4, 6) − HQS(8,6,4) of orders 9, 10, 15, 16.

Theorem 10. Does not there exist a N(4, 6) − HQS(8,6,4) of order n = 6.

Proof. Suppose that (Z6, H) is a N(4, 6) − HQS(8,6,4) of order n = 6 and let (X, C′) be the 6-cycle system of index
� = 6 and (X, C′′) the 4-cycle system of index � = 4, both nested in it. Indicate by [(a, b, c), (�, 	, 
)] the blocks of
H . Consider a 2-colouring

f : Z6 → {A, B}
defined as follows:

f (x) =
{

A if x = 0, 1, 2,

B if x = 3, 4, 5.

Observe that

(1) every x ∈ Z6 belongs to all the blocks of H and, if T is the number of blocks of H containing x as element of
degree two and M the number of blocks having x as element of degree three, then{

T + M = 15,

2T + 3M = 40

from which T = 5, M = 10;
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(2) a fixed pair {x, y} ∈ Z6 is contained:
(i) 2 times as an edge of 4-cycles of C′′, but not of 6-cycles of C′;

(ii) 2 times as an edge of both 6-cycles of C′ and 4-cycles of C′′;
(iii) 4 times as an edge of 6-cycles of C′, but not of 4-cycles of C′′; in fact, if (i) or (ii) is not true, then � = 6 and

� = 4 imply � 
= 8;
(3) in every block of H there exists at least an edge whose vertices have the same colour; so, if [(a, b, c), (�, 	, 
)] ∈

H , the sequence of the colours of the blocks of H can be
(1) [(A, A, A), (B, B, B)];
(2) [(A, B, A), (B, B, A)];
(3) [(A, A, B), (B, B, A)];
(4) [(A, A, B), (A, B, B)];
(5) [(A, B, A), (B, A, B)].

Now, denote by

• v1 the number of blocks of H of type (1), where 3 edges have both the vertices coloured by A,
• v2 the number of blocks of type (2) and (3), where 2 edges have both the vertices coloured by A,
• v3 the number of blocks of type (4) and (5), where only one edge has both the vertices coloured by A.

From (2i) and (2ii), since there are no pairs of type (2ii) in the blocks of type (1), (4) and (5), it follows necessarily that
y = 6. So, after all, we have

{
v1 + v2 + v3 = 15,

3v1 + 2v2 + v3 = 24,

v2 = 6

and this does not give positive integer solutions. �

Theorem 11. There exist N(4, 6) − HQS(8,6,4)(n), for n = 9, 10, 15, 16.

Proof. Case n = 9. Let H be the family of hexagon quadrangles defined on Z9 as follows:

H = {bj,1 = [(j, j + 3, j + 1), (j + 5, j + 6, j + 2)] : j ∈ Z9}
∪ {bj,2 = [(j, j + 3, j + 4), (j + 1, j + 6, j + 8)] : j ∈ Z9}
∪ {bj,3 = [(j, j + 7, j + 6), (j + 4, j + 8, j + 5)] : j ∈ Z9}
∪ {bj,4 = [(j, j + 5, j + 7), (j + 8, j + 2, j + 3)] : j ∈ Z9}.

Observe that the hexagon quadrangles of H can be obtained by difference methods, starting from the base blocks b0,1,
b0,2, b0,3, b0,4. It is possible to verify that (Z9, H) is a N(4, 6) − HQS(8,6,4) of order 9.

Case n = 10. Let Z9 ∪ {∞} and let

bj,∞,1 = {[(∞, j + 5, j + 7), (j + 8, j + 2, j + 3)] : j ∈ Z9};
bj,∞,2 = {[(j, j + 5, j + 7), (∞, j + 2, j + 3)] : j ∈ Z9};
bj,∞,3 = {[(j, ∞, j + 6), (j + 4, j + 8, j + 5)] : j ∈ Z9}.

If

H ∗ = (H − {bj,3, bj,4}) ∪ {bj,∞,1, bj,∞,2, bj,∞,3},

then it is possible to verify that (Z9 ∪ {∞}, H ∗) is a N(4, 6) − HQS(8,6,4) of order 10.
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Case n = 15: Let H be the family of hexagon quadrangles defined on Z15 as follows:

H = {bj,1 = [(j, j + 14, j + 2), (j + 8, j + 10, j + 1)] : j ∈ Z15}
∪ {bj,2 = [(j, j + 8, j + 1), (j + 6, j + 4, j + 2)] : j ∈ Z15}
∪ {bj,3 = [(j, j + 3, j + 2), (j + 9, j + 5, j + 1)] : j ∈ Z15}
∪ {bj,4 = [(j, j + 8, j + 3), (j + 9, j + 13, j + 4)] : j ∈ Z15}
∪ {bj,5 = [(j, j + 13, j + 4), (j + 9, j + 6, j + 3)] : j ∈ Z15}
∪ {bj,6 = [(j, j + 6, j + 1), (j + 8, j + 3, j + 2)] : j ∈ Z15}
∪ {bj,7 = [(j, j + 8, j + 3), (j + 7, j + 11, j + 12)] : j ∈ Z15}.

Observe that the hexagon quadrangles of H can be obtained by difference methods, starting from the base blocks
b0,1, b0,2, b0,3, b0,4, b0,5, b0,6, b0,7. It is possible to verify that (Z15, H) is a N(4, 6) − HQS(8,6,4) of order 15.

Case n = 16: Let Z15 ∪ {∞} and let

bj,∞,1 = [(∞, j + 8, j + 3), (j + 7, j + 11, j + 12)] : j ∈ Z15};
bj,∞,2 = [(j, j + 8, j + 3), (∞, j + 11, j + 12)] : j ∈ Z15};
bj,∞,3 = [(j, ∞, j + 6), (j + 14, j + 4, j + 13] : j ∈ Z15}.

If

H ∗ = (H − {bj,6, bj,7}) ∪ {bj,∞,1, bj,∞,2, bj,∞,3},
then it is possible to verify that (Z15 ∪ {∞}, H ∗) is a N(4, 6) − HQS(8,6,4) of order 16. �

6. Use of PBDs to construct HQS(8,6,4)

Let K be a set of positive integers and let � be a positive integer. A pairwise balanced design of order v with block
sizes from K , briefly a PBD(v, K; �) or (K, �)-PBD, is a pair (X, B), where X is a finite set (points) of cardinality v

and B is a family of subsets (blocks) of X which satisfy the properties:

(i) if E ∈ B, then |E| ∈ K;
(ii) every pair of distinct elements of X occurs in exactly � blocks of B. The integer � is the index of the PBD. A

PBD(v, K) is a PBD of index �=1. The following theorem is a consequence of the important “Wilson Fundamental
Construction” for PBDs.

Theorem 12. Let (X, B) be a PBD(v, K), where K = {n1, n2, . . . , nr}. If, for every ni ∈ K , there exists a N(4, 6) −
HQS(�,�,�) of order ni , then there exists a N(4, 6) − HQS(�,�,�) of order v defined on X.

Proof. For every pair x, y ∈ X, x 
= y, there exists exactly one block E ∈ B, such that x, y ∈ E. If |E| = ni ,
there exists a N(4, 6) − HQS(�,�,�) of order ni . The conclusion follows from the fact that no other block of B

contains x, y. �

In the following theorems, we will consider the sets W1, W2 defined below.

W1 = {10, . . . → . . . , 48} ∪ {51, . . . → . . . , 55} ∪ {59, . . . → . . . , 62} and

W2 = {93, . . . → . . . , 111} ∪ {116, 117, 118, 132}{138, . . . → . . . , 168}}
∪ {170, . . . → . . . , 223} ∪ {228, 229, 230} ∪ {242, . . . → . . . , 279}
∪ {283, 284, 285, 286, 298, 299, 300, 303, 304, 305, 306, 307}
∪ {311, . . . → . . . , 335}} ∪ {339, 340, 341, 342}.

Theorem 13 (Colbourn and Dinitz [2]). If K = {7, 8, 9}, then for every v ∈ N , v�7, there exist PBD(v, K) of order
v, with the exceptions of v ∈ W1 and the possible exceptions of v ∈ W2 (See [2, p. 209]).
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Theorem 14. There exists a N(4, 6) − HQS(�,�,�) of order v, for every v ∈ N , v�7, with the possible exceptions of
v ∈ W1 ∪ W2.

Proof. The statement follows from Theorems 4 (existence for v = 7), 5 (existence for v = 8), 11 (existence for v = 9),
12 and 13. �

7. Conclusions

Collecting together the results of the previous sections, we have the following result:

Theorem 15. There exists a N(4, 6)−HQS(�,�,�) of order v, for every v ∈ N , v�7, with the possible exceptions of the
following values: 26, 35, 55, 95, 105, 116, 146, 155, 165, 176, 185, 206, 215, 245, 266, 275, 285, 305, 315, 326, 335.

Proof. The statement follows directly from Theorems 4–9,11 and 14. �

If Q�7 = {n ∈ N : n prime power, n�7}, V = {10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39,
40, 42, 44, 45, 46, 48, 51, 52, 54, 55, 60, 62}, we can see in [2, p. 210] that:

Theorem 16. For every v ∈ N , v�7, v /∈ V , there exists a PBD(v) having blocks of cardinality k ∈ Q�7.

As a consequence of this result we have the following theorem.

Theorem 17. There exists a N(4, 6) − HQS(�,�,�) of order v, for every v ∈ N , v�7, v 
= 26, 35.

Proof. From Theorem 15, it is possible to verify that for every prime power k, k�7, there exists a N(4, 6)−HQS(8,6,4)

of order k. From Theorem 16 it follows that, if v is a positive integer v�7, v /∈ V , there exists a PBD of order v having
blocks of cardinality k, for k a prime power, k�7. So, from Theorem 13, the statement follows. �

Theorem 18. There exist N(4, 6) − HQS(8,6,4)(n), for n = 26, 35.

Proof. Case n = 35. Let H be the family of hexagon quadrangles defined on Z35 as follows:

H = {bj,1 = [(j, j + 18, j + 1), (j + 2, j + 3, j + 4)] : j ∈ Z35}
∪ {bj,2 = [(j, j + 1, j + 2), (j + 4, j + 32, j + 8)] : j ∈ Z35}
∪ {bj,3 = [(j, j + 19, j + 3), (j + 6, j + 10, j + 12)] : j ∈ Z35}
∪ {bj,4 = [(j, j + 2, j + 4), (j + 8, j + 10, j + 16)] : j ∈ Z35}
∪ {bj,5 = [(j, j + 23, j + 5), (j + 10, j + 25, j + 20)] : j ∈ Z35}
∪ {bj,6 = [(j, j + 3, j + 6), (j + 12, j + 33, j + 24)] : j ∈ Z35}
∪ {bj,7 = [(j, j + 4, j + 8), (j + 16, j + 9, j + 32)] : j ∈ Z35}
∪ {bj,8 = [(j, j + 22, j + 9), (j + 18, j + 12, j + 1)] : j ∈ Z35}
∪ {bj,9 = [(j, j + 23, j + 11), (j + 22, j + 14, j + 9)] : j ∈ Z35}
∪ {bj,10 = [(j, j + 6, j + 12), (j + 24, j + 3, j + 13)] : j ∈ Z35}
∪ {bj,11 = [(j, j + 24, j + 13), (j + 26, j + 4, j + 17)] : j ∈ Z35}
∪ {bj,12 = [(j, j + 8, j + 16), (j + 32, j + 13, j + 29)] : j ∈ Z35}
∪ {bj,13 = [(j, j + 26, j + 17), (j + 34, j + 25, j + 33)] : j ∈ Z35}
∪ {bj,14 = [(j, j + 7, j + 21), (j + 28, j + 11, j + 14)] : j ∈ Z35}
∪ {bj,15 = [(j, j + 21, j + 28), (j + 14, j + 10, j + 7)] : j ∈ Z35}
∪ {bj,16 = [(j, j + 5, j + 15), (j + 30, j + 10, j + 25)] : j ∈ Z35}
∪ {bj,17 = [(j, j + 15, j + 10), (j + 20, j + 30, j + 5)] : j ∈ Z35}.
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Observe that the hexagon quadrangles of H can be obtained by difference methods, starting from the base blocks
b0,1, b0,2, . . . , b0,17. It is straight forward to verify that (Z35, H) is a N(4, 6) − HQS(8,6,4) of order 35.

Case n = 26: Let Z25 ∪ {∞}, j ∈ Z25 and let

bj,∞,1 = [(∞, j + 15, j + 5), (j, j + 6, j + 12)],
bj,∞,2 = [(∞, j + 20, j + 5), (j, j + 10, j + 15)],
bj,∞,3 = [(j + 15, ∞, j + 20), (j + 10, j + 5, j)],

bj,1 = [(j, j + 13, j + 1), (j + 2, j + 15, j + 3)],
bj,2 = [(j, j + 1, j + 2), (j + 4, j + 5, j + 6)],
bj,3 = [(j, j + 14, j + 3), (j + 6, j + 20, j + 9)],
bj,4 = [(j, j + 3, j + 6), (j + 12, j + 15, j + 18)],
bj,5 = [(j, j + 16, j + 7), (j + 14, j + 5, j + 21)],
bj,6 = [(j, j + 4, j + 8), (j + 16, j + 20, j + 24)],
bj,7 = [(j, j + 17, j + 9), (j + 18, j + 10, j + 2)],
bj,8 = [(j, j + 18, j + 11), (j + 22, j + 15, j + 8)],
bj,9 = [(j, j + 2, j + 4), (j + 16, j + 14, j + 12)],

bj,10 = [(j, j + 6, j + 12), (j + 16, j + 21, j + 11)].
If

H = {bj,∞,1, bj,∞,2, bj,∞,3, bj,1, . . . , bj,10 : j ∈ Z25},
then it is possible to verify that (Z25 ∪ {∞}, H) is a N(4, 6) − HQS(8,6,4) of order 26. �

Finally, we can enunciate the following conclusive theorem:

Theorem 19. There exists a N(4, 6) − HQS(8,6,4) of order v, for every v ∈ N , v�7.

Proof. It is sufficient to see the statements of Theorems 17 and 18. �
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