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a b s t r a c t

Accurate remaining useful life (RUL) prediction of machines is important for condition
based maintenance (CBM) to improve the reliability and cost of maintenance. This paper
proposes artificial neural network (ANN) as a method to improve accurate RUL prediction
of bearing failure. For this purpose, ANNmodel uses time and fittedmeasurementsWeibull
hazard rates of root mean square (RMS) and kurtosis from its present and previous points
as input. Meanwhile, the normalized life percentage is selected as output. By doing that,
the noise of a degradation signal from a target bearing can be minimized and the accuracy
of prognosis system can be improved. The ANN RUL prediction uses FeedForward Neural
Network (FFNN) with Levenberg Marquardt of training algorithm. The results from the
proposed method shows that better performance is achieved in order to predict bearing
failure.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The manufacturing and industrial sectors of the world are facing an exponentially increasing demand to produce goods
at better quality while keeping their operating process at maximum yield. The manufacture of such typical products as
textiles, aircraft, automobiles and appliances involve a large number of complex processes and nonlinear dynamic systems.
Therefore, these processes are not well understood, and the operation is usually understood using experience rather than
through the application of scientific principles. Failures occurring during production operation, results in several negative
implications such as increase in downtime, low productivity and sometimes can even cause safety risks. Therefore, amethod
to detectmachinery faults has evolved frompreventivemaintenance to condition basedmaintenance (CBM) in order tomake
sure that the production operation can reach maximum capacity.
CBM is growing in popularity in industrieswith significant increase in hardware and software. Nowadays, there is notable

growth in the variety of forms of CBM techniques for electrical machine monitoring and fault prognosis. However, irrespec-
tive of the particular CBM technique used the principle of CBM is the same, condition data needs to be interpreted and appro-
priate actions should be taken accordingly. Therefore prognosis system is used to predict the RUL time of a machine failure.
The existing prognosis or RUL prediction methods can be classified into 3 categories, which are physics based prognosis

models, data driven prognosis models and integration of reliability and prognosis system. The common physics based
prognosis is a crack growth modeling, which combines mechanical knowledge, defect growth modeling and CBM data to
provide sufficient knowledge of a prognosis output. Li et al. [1,2] proposed amethod to estimate RUL of a bearing based on its
defect growth. The fatigue crack propagation is then compared to the estimation from the diagnostic model. To validate the
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Nomenclature

C Connection matrix from the hidden layer to the output layer.
B Connection matrix from the input layer to the hidden layer.
K Number of data points.
F(t) Cumulative density function.
H Hessian matrix.
J Jacobian matrix.

proposedmethod, an experimental studywith vibrationmeasurementwas performed. Finally, Li et al. concluded their work
can performed effectively in order to predict the bearing defect process without requiring a prior knowledge of prognosis
model parameters. Li and Lee [3] used Paris’ law tomodel gear fatigue crack growth. Thismodelwas then testedwith the data
of other gear tests, where its performance error between actual and predicted RUL was smaller than 7%. The advantage of
physics based prognosis is that it requires less data than that of data driven technique, but in real application, this technique
is too stochastic and complex for modeling process.
On the other hand, data driven prognosis model does not require assumption of physics parameter, thus it is easy to

apply. But this technique needs a large amount of data to make the system as close to real application as possible. ANN is
most commonly found as a data driven technique in prognosis system. Normally, ANN consists of input layer, one or several
hidden layers and output layer. Many researchers have proposed different types and structures of ANN to overcome their
targeted problems. For instance Tian [4], developed ANN to achieve more accurate RUL of a pump bearing by selecting the
age and multiple measurement values from condition monitoring as input for ANN. Meanwhile, the life percentage of a
pump bearing is used as an output. Vachtsevanos and Wang [5] used dynamic wavelet neural network (DWNN) to predict
rolling elements of a bearing failure whichwas compared to auto regression (AR)model. Satish and Sarma [6] demonstrated
the methods which combines the ANN and fuzzy logic as a hybrid system to identify the condition of a bearing at present
condition and its RUL. Themerit of ANN is that it does not consider the analytical model of damage propagation. It only aims
to model damage propagation based on the data collected during CBM.
The conventional data drivenmodel can also be obtained from a simplemodel such as degradation featuresmodel ofma-

chine as it was done by Liao et al. [7]. They proposed the proportional hazard model and logistic regression model to predict
the RUL of amachine.Meanwhile, Tran et al. [8] presented an approach to predict the condition of amachinewhich combines
the classification and regression trees (CART)with adaptive neuro-fuzzy inference system (ANFIS). These combinationmeth-
ods are then associated with direct prediction technique to determine multi-step ahead prediction of a machine condition.
As a comparison, the integration of reliability and prognosis techniques, utilizes the available information more fully in

increasing the accuracy of a prognosis system, which can be used in prognosis for the longer range. This technique requires
both event and condition data formodeling process, thus the systembecomesmore complex. There are several paperswhich
used these techniques as in [9–11]. Jozwiak [9] presented in his work that in order to solve the reliability of the system, the
associated variables in the system must be considered. The Cox and Weibull models are studied, in which the method to
estimate the parameters in these models is presented. Tian et al. [10] developed a method to find optimum maintenance
schemewhen the systems havemultiple objective conditions. The decisionmaker from their system can gave good tradeoff
between cost and reliability objective function. The reliability analysis of the condition monitoring takes into account the
measurement information (vibration and temperature analysis, etc) in order to establish the optimal replacement scheme.
Thismeasurement information is considered as a covariate parameter [11], which is an important parameter in determining
the RUL of a machine.
In this paper, we propose ANN to achieve accurate RUL of a predicted machine failure. To achieve this objective, the ANN

model uses time and fitted measurements Weibull hazard rates of RMS and kurtosis from its present and previous points
as input and normalized life percentage as output. By doing that, the noise due to degradation from a target bearing can
be minimized and the accuracy of the prognosis can be improved. This research attempts to address the development of
prognosis system which can predict the RUL of machine timely to avoid sudden bearing failure.

2. Experimental setup

In industries, bearings are important components and are regularly used. The root causes of bearing failures are normally
attributed to improper installations, poor lubrication practices, excessive balance and alignment tolerances, poor storage and
handling techniques. Monitoring the above failures is very important for early warning signs before the bearings approach
failure stage. This will avoid serious damages which might lead to potentially hazardous situations.
Today, various methods are available to detect and monitor such failures. These include vibration and acoustic emission

techniques. But in this research, the vibration will be utilized to acquire initial signal fault on a target bearing [4]. Features
such as mean, kurtosis, skewness and RMS are utilized as important features representing fault signals of a bearing [12]. In
literature,manymethods such as ANN, fuzzy logic, evolutionary algorithmand several othermethods have successfully been
proven to diagnose bearing failures [13–15]. However, most of the papers discussed how to diagnose bearing failure only in
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Fig. 1. Bearing test rig.

Fig. 2. Vibration signal.

specific failure boundary. In this work, fitted measurement Weibull hazard rate is used instead of the actual measurement
to represent the fault signal from a target bearing. The hazard rate (instantaneous failure rate) is an appropriate analytical
measure in assessing the reliability of a specific machine or component.
The vibration signals used in this paper were provided by the Center for Intelligent Maintenance Systems (IMS),

University of Cincinnati. A schematic of experimental rig is shown as in Fig. 1 [16]. Four Rexnord ZA-2115 double row
bearings are installed on one shaft. The shaft is driven by an AC motor and coupled by rub belts. The rotational speed is
set at 2000 rpm, and its radial load is 6000 lbs which is applied to the shaft and bearing by a springmechanism. The bearings
have 16 rollers in each row, a pitch diameter of 2.815 inch, roller diameter of 0.331 inch and a tapered contact angle of
15.17°. All the bearings are force lubricated by using an oil circulation system. On each bearing, two accelerometers are
installed in which one is at vertical Y and one at horizontal X . The vibration signal from each bearing is collected for one
second every 10minwith the sampling rate of 20 kHz and the data length of 20,480 points as shown in Fig. 2. Data collection
is done using a National Instruments LabVIEW program. It takes a total of 7 days until the bearing fail. At the end of the test,
an outer race failure occurs on Bearing 1.
From the vibration signal, we can extract the measurement values or features which represent the degradation of the

bearing. Two measurement values that commonly used in order to detect bearing failure [7], which are RMS and kurtosis
can be defined as in (1) and (2),

RMS =

√√√√√ K∑
k=1
(x(k))2

K
(1)
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Fig. 3. Block diagram of FFNN.

kurtosis =

K∑
k=1
(x(k)− xm)4

(K − 1)x4std
(2)

where x(k) is a signal series for k = 1, 2, . . . , K , and K is the number of data points. Standard deviation, xstd andmean value,
xm of the signal can be represented as in (3) and (4),

xstd =

√√√√√ K∑
k=1
(x(k)− xm)2

K − 1
(3)

xm =
1
K

K∑
k=1

x(k). (4)

3. Review of FFNN

Three layer (sometimes called two layer) FFNN are commonly encountered models found in many scientific papers [17].
Fig. 3 shows configuration of FFNN, where the network is divided into 3 layers; input, hidden and output layers. Lines
represents weighted connections and the bias thresholding nodes are represented by squares.
Mathematically, the typical FFNN can be expressed as

yi = ϕo[Cϕh(Bui + bh)+ bo] (5)

where yi is the output vector corresponding to input vector ui, C is the connectionmatrix ofweights between twonodes from
the hidden layer to the output layer and B is the connectionmatrix from the input layer to the hidden layer.Meanwhile bh and
bo are the bias vector for the hidden and output layer. ϕh(·) and ϕo(·) are the vector valued functions, which corresponds
to the activation (transfer) functions of the nodes in the hidden and output layers, respectively. In Matlab, the transfer
function can be logsig (log-sigmoid), tansig (tangent-sigmoid) and purelin (linear). FFNN models also have the general
structure of

yi = f (u) (6)

where f (·) is a nonlinear mapping. FFNN is structurally similar to nonlinear regression models.
To introduce FFNN for identification of dynamic systems or prediction of time series, a vector comprising of a moving

window of past input values (delayed coordinates) must be used as inputs to the network. This procedure yields a model
analogous to a nonlinear finite impulse response model where

yi = yt and ui = [ut , ut−1, . . . , ut−m] or yt = f ([ut , ut−1, . . . , ut−m]). (7)

The lengths of the moving window must be long enough to support the system dynamics for each variable in practice.
The duration of the data windows are determined by trial and error, and each individual input and output variable might
have a separate data window for optimal performance.
Levenberg Marquardt (LM) learning algorithm is one of the earliest and the most common method used as a training

algorithm for FFNN. LM algorithm is used to train nonlinear, multilayered networks (FFNN) to successfully solve many
difficult and diverse problems.
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Table 1
Results of parameter estimates.

Weibull hazard rate Parameter estimates

RMS γ1 = 0.4077 η1 = 1.2017
Kurtosis γ2 = 0.4360 η2 = 1.2970

4. The proposed ANN RUL prediction method

The RUL of a bearing is a nonlinear function. To predict it, we need the powerful tool which can determine the mapping
relationship between the input data obtained from the bearing and theRUL of a bearing. To achieve this, theANN is proposed;
as it is a very powerful tool that can determine the nonlinear function of the system. The proposed ANNmodel uses the fitted
measurement values as inputs instead of realmeasurement values. The reason is that, themeasurement data taken from real
application usually has external noise that can affect the measurement data [4]. Here, we propose the fitted measurements
data as the input to represent the deterioration features of the bearing. The fitted measurement use theWeibull hazard rate
function which is a very powerful function to represent the reliability of machine failure. The equation of Weibull hazard
rate is as follows

h(t) =
f (t)

1− F(t)
(8)

where f (t) is the probability density function and

F(t) = 1− exp
[
−

(
t
γ

)η]
t ≥ 0 (9)

is a cumulative density function, with γ and η being scale and shape parameters respectively. Table 1 shows the results of
parameter estimates of Weibull hazard rate function of RMS and kurtosis values. Weibull hazard rate for RMS and kurtosis
during current and previous inspection can be defined as follow;
Weibull hazard rate for RMS
Current inspection;

z1i =
f 1i (t)

1− F 1i (t)
. (10)

Previous inspection;

z1i−1 =
f 1i−1(t)

1− F 1i−1(t)
. (11)

Weibull hazard rate for kurtosis
Current inspection;

z2i =
f 2i (t)

1− F 2i (t)
. (12)

Previous inspection;

z2i−1 =
f 2i−1(t)

1− F 2i−1(t)
. (13)

For ANN training, there are 6 inputs fed into the network. Input, ti and ti−1 are the time values at the current and previous
inspection respectively. z1i and z

1
i−1 are RMS values of fitted measurements at the current and previous inspection while z

2
i

and z2i−1 are kurtosis values of fitted measurements at the current and previous inspection respectively. In this work we
take into account the time, RMS and kurtosis value. The time value at present and previous value is important for ANN
in estimating the RUL of a bearing. Two other fitted measurements at present and previous are useful in representing the
bearing’s condition [7].
For output of ANN, the life percentage (normalized) is preferred and is denoted as Ti. The life percentage (normalized)

is the best option in mapping the bearing’s health condition, which is proportional to time. This means that the bearing is
totally damaged when it reaches 100% of the life percentage. The structure of the proposed ANN model is shown in Fig. 4.
While, the measurements value of RMS and kurtosis are depicted in Fig. 5(a) and (b).
Training neural networks is a data-analytic procedure. Under this condition, it is necessary to stop training once an

overfit is indicated. The overfitting problem is defined as themodel or systemwhich gives good performance during training
process, but when it is tested with unseen data, the model gives worse performance. One way to overcome this problem
is by using cross-validation. Two different sets of data are required for training and validating the network. During overfit
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Fig. 4. Structure of the proposed ANN model.

a

b

Fig. 5. (a) RMS and (b) kurtosis value.

situation, mean square error (MSE) for the validation set decreases first, but then comes to minimum and later increases
though the MSE of the training set continues to decrease. When the MSE of the validation set increases, it is assumed that
the regression algorithm is overfitting the training data. Thus, the training is stopped as soon as MSE over the validation set
begins to increase. For the selection of FFNN topology, there is no specific method. Trial and error search method is the best
option to select the optimum topology for the prediction.
In this work, we divide the data into two sets, the training and a validation sets in order to overcome the above problem.

The training set uses the original data set from input but the validation set is perturbed with+5% of the feed. Furthermore,
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the actual FFNN output is normalized between 0 and 1 in order to get the same order of magnitude variables and to avoid
numerical instability problems. The ANN is trained and validated in order to find theminimum validation error. The training
and validation for ANN are setup from two to twenty hidden nodes. The network which produces a minimum validation
error will be selected as the optimum one. The reason is that, the network can still give a good performance even when the
input is perturbed within a certain feed.
The configuration of ANN model uses logsig (log-sigmoid) transfer function in its hidden layer and purelin (linear)

transfer function in its output layer. With this combination, the network can approximate to any function. Meanwhile, the
ANN network training technique for optimization, uses Levenberg Marquardt (trainlm) algorithm because it gives better
performance among other network training algorithms.
This algorithm is designed for minimizing functions that are sums of squares of nonlinear functions and it has the ability

to approach second-order convergence point without need to calculate the Hessian matrix. If the performance function
reaches a sum of squares, then the approximation of Hessian matrix can be expressed as;

H = JT J (14)

and the gradient, g = JT e can be computed, where J is the Jacobianmatrix, which contains first derivatives of network errors
with respect to the weights and biases. This algorithm can be computed using a standard backpropagation technique that
is easier than calculating using the Hessian matrix. While e is a vector of network errors.
The Levenberg–Marquardt algorithm uses the Hessian matrix approximation in the Newton-like update as follows;

xk+1 = xk
{
−
[
JT J + µI

]−1}
JT e. (15)

In case where scalar µ is zero, this update will resemble Newton’s method using the approximate Hessian matrix.
However, it becomes gradient descent method with a small step size, if µ is large. Newton’s method is faster and more
accurate near an error minimum; therefore, the main target is to shift toward Newton’s method as quickly as possible.
Therefore, during reduction of performance for every update step, µ is decreased and vice versa. As a conclusion, the
performance function is always reduced at each iteration of the algorithm [18].
MSE is used to present the network performance in order to define the best network [17]. The equation is stated as;

MSE =
1
N

N∑
i=1

(ei)2 =
1
N

N∑
i=1

(ti − ai)2 (16)

where

ei = Error ai = Actual value
ti = Desired value N = Number of data.

The overall procedure of this proposed method can be illustrated in a flow chart as in Fig. 6 and explained as follows;

1. The input data used in this work contains time and measurement values (RMS and kurtosis).
2. Each measurement value is fitted with Weibull hazard rate function. The time and fitted measurements are used as
training data set for ANN.

3. To validate the performance of ANN, we construct validation data set which is perturbed with +5% from the training
data set. The validation data set is also used to avoid the overfitting problem during training process.

4. ANN is trained based on the training and validation data set, in which the Levenberg Marquardt algorithm is used as
training algorithm.

5. After the ANN training is done, and when the minimum MSE error is met, the proposed network is used to predict the
percentage of the bearing’s life.

6. If the new measurement data (RMS and kurtosis) is available, it needs to be fitted with Weibull hazard rate function,
before it is fed into a proposed ANN.

5. Result

The proposed networks are trained and validated to indicate their performance. The results for both training and
validation are shown as in Table 2. The training error for this network is 9.99e−13 and the validation error is 3.1e−12.
As it can be seen, the proposed network gave minimum error for both training and validation processes with 2 hidden
nodes. The training and validation performance can be seen as in Fig. 7(a) and (b). The ‘+’ sign indicates the actual output
and the ‘•’ sign indicates the predicted output. The x axis indicates the RUL of a bearing and y axis indicates the life
percentage of a bearing in a normalized form. For instance, if we want to know the life percentage after the bearing is
ran for 6000 min, the life percentage shows about 60%. The RUL of bearing would be around 40%. From Fig. 7, both (a)
training and (b) validation performances show very good performance, inwhich the actual and predicted outputs are almost
same.
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Fig. 6. Flow chart of the proposed method.

Table 2
Training and validation error of proposed model.

Network model Hidden node Training error Validation error

FNNN 2 9.99E–13 3.10E–12

In order to confirm that our proposed method is the optimum network, we tested it with certain unseen data. In this
process, we generated 100 data points randomly from the training set and perturbed it with +10% of feed. This data was
then used as input for our FFNN model. The output performance of testing process can be seen as in Fig. 8. Observation
from this figure shows that the actual and predicted outputs are same for every single output. This performance obviously
shows that the proposed FFNN model, which uses time and hazard rates of RMS and kurtosis from present and previous
points as input and normalized life percentage as output, is suitable to use as an optimum ANNmodel in predicting bearing
failures.
As a discussion, this proposed ANN method predicts the life percentage of bearing failure, in which we do not consider

the failure threshold as many researchers suggested in their papers. The bearing will totally fail after it reaches 100% of its
life percentage.

6. Conclusions

The accurate RUL of a machine is important to CBM in order to improve the reliability and cost of maintenance. This
paper proposes ANN in achievingmore accurate estimate RUL of a bearing failure. In this case, the ANNmodel uses time and
Weibull hazard rates of RMS and kurtosis from present and previous points as input for ANN. Furthermore, the normalized
life percentage is selected as output. By doing this, the noise of degradation from a target bearing can be minimized and
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Fig. 7. Result of (a) training and (b) validation.

Fig. 8. The output performance of testing process.

the accuracy of prognosis can be improved. From the results, it shows that the proposed ANN gave good performance in
predicting RUL of a bearing failure. In this paper we did not take into account the failure threshold, which many other
researchers proposed. The bearing will fail after it reaches 100% of its life percentage.
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