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a  b  s  t  r  a  c  t

The  synfire  chain  model  of  brain  organization  has  received  much  theoretical  attention  since  its  introduc-
tion  (Abeles,  1982,  1991).  However  there  has been  no  convincing  experimental  demonstration  of  synfire
chains  due  partly  to  limitations  of recording  technology  but also  due  to  lack  of  appropriate  analytic  meth-
ods  for  large  scale  recordings  of  parallel  spike  trains.  We  have previously  published  one  such  method
eywords:
ultiple spike trains

ynfire chains
etection and analysis algorithms
epeating spike patterns
ctive identity intersection matrix

based  on  intersection  of  the  neural  populations  active  at two  different  times  (Schrader  et al.,  2008).  In the
present  paper  we  extend  this  analysis  to deal  with  higher  firing  rates  and  noise  levels,  and  develop  two
additional  tools  based  on properties  of  repeating  firing  patterns.  All  three  measures  show  characteristic
signatures  if synfire  chains  underlie  the  recorded  data.  However  we  demonstrate  that  the  detection  of
repeating  firing  patterns  alone  (as used  in  several  papers)  is  not  enough  to infer  the  presence  of synfire
chains.  Positive  results  from  all three  measures  are  needed.
. Introduction

Ever since Hebb’s (1949) book there is general agreement that
eurons do not act alone and that they join dynamically into func-
ional assemblies both for computation and representation. Despite
ast amounts of information about anatomy and connectivity in
he real nervous system, the formation of such assemblies, their
unction and their interaction remain obscure. One interesting the-
retical suggestion for the organization of assemblies is the “synfire
hain” as proposed by Abeles (1982, 1991).  In its original and sim-
lest form the synfire chain of length l consists of l sub-assemblies
r links of w neurons each (the synfire chain width), with full uni-
irectional excitatory connectivity between successive links. Such

 chain structure can propagate near-synchronous activity in the
rst or input link to successive links like a row of dominoes. With
uitable conditions the synchrony of firing in a link increases as the
ctivity passes down the chain.

Theoretical studies have defined detailed properties of various

ersions of such systems. Stability properties and temporal behav-
or have been examined as well as structural variations such as
artial link to link connectivity or feedback when a given neuron
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occurs in more than one group (Aertsen et al., 1996; Diesmann
et al., 1999; Mehring et al., 2003; Aviel et al., 2003; Goedeke and
Diesmann, 2008; Gewaltig et al., 2001; Tetzlaff et al., 2005, 2009;
Trengove et al., 2010b, 2012). There also have been studies of par-
tially interconnected or overlapping synfire chains to define the
conditions in which activity can be transmitted between chains
(Hayon et al., 2004, 2005). Further theoretical studies have shown
that coupled synfire chain structures can produce compositional-
ity, the hierarchical representation of complex entities in terms of
parts and their relations (Bienenstock, 1995; Hayon et al., 2004;
Schrader et al., 2007, 2011).

As yet there has been little search for and no convincing
demonstration of synfire chains in real nervous systems. Such
searches require new analysis methods for multi-neuron spike
train recordings and identification of the corresponding syn-
fire chain signatures. One appropriate method is our previously
described algorithm (Schrader et al., 2008) that directly detects and
shows many details about synfire chains if they are present in the
recorded data. The computation is based on intersecting the iden-
tities of neurons active within any one time window (like 3 ms)
with those at all other time windows. The resulting matrix M(i,j)
of intersection values at times i,j shows the orderly progression of
firing in a synfire chain run as a short diagonal stripe of high value

Open access under CC BY-NC-ND license.
pixels. Details, controls and some sensitivity studies are in Schrader
et al. (2008).  With low background activity, that work showed that
if a synfire chain comprises about 5% of the large (40k) neuronal
net, detection would require a random sample of about 100–200
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eurons. One purpose of the present paper is to extend the inter-
ection algorithm so as to achieve comparable sensitivity in the
resence of higher background activity.

A second purpose of this paper is to examine the use of repeating
patio-temporal patterns as a signature of synfire chains. Exist-
ng pattern programs (Abeles and Gerstein, 1988; Abeles and Gat,
001; Gerstein, 2004; Shmiel et al., 2006; Patnaik et al., 2008; Louis
t al., 2010a)  sort spike patterns whose duration is less than some
riterion into groups according to pattern complexity and repeti-
ion number and identify those groups whose count significantly
xceeds corresponding counts found in surrogate data (Gerstein,
004; Louis et al., 2010b)  or by using conditional probabilities
Sastry and Unnikrishnan, 2010). Such repeating patterns have
een suggested as evidence for synfire chains (Abeles et al., 1993;
ram et al., 1999; Ikegaya et al., 2004; Shmiel et al., 2005; Luczak
t al., 2007), and indeed synfire chains will generate many repeat-
ng patterns. However other mechanisms can be envisioned also
s demonstrated toward the end of this paper. To uniquely iden-
ify the presence of synfire chains from repeating patterns requires
urther demonstration that the various repeating patterns have the
nterleaving temporal structures expected in synfire chain activity.
sing data from simulated nets with embedded synfire chains we
escribe tools for this purpose when parallel recordings from some
undreds of neurons are available.

. Test data generation and description

Much of the test data for the spike train analyses described
n this paper were originally generated by a large scale simu-
ation program which contained 40 thousand excitatory and 10
housand inhibitory point neurons arranged into 50 synfire chains
ach 100 wide and 20 long. Each neuron participated in an aver-
ge of 2.5 different chains (Schrader et al., 2008). For some of
he present purposes we edited such spike train data so that the
dentities and connectivity of only one synfire chain remained

hile all other neurons were replaced by independent spike trains
ith gamma 4 interval distribution and either high (8 Hz) or low

1.7 Hz) firing rates as an unstructured background. Individual fir-
ng rates were modulated to mimic  the average rate fluctuations
f the original data file. Further editing in some cases involved
andom choice of smaller populations out of these single chain
ata sets. Since neuron identities had been randomly assigned,
uch smaller populations always contained a sample of the chain
eurons.

Additional test data for parts of Figs. 6 and 7 came from two
ifferent simulations with 80 thousand excitatory and 20 thou-
and inhibitory point neurons. In the “111” data set there were
79 chains each 130 wide and (on average) 100 long. Each neuron
articipated in 62 chains. In addition each chain was connected to
wo “successor” chains in which it could probabilistically initiate
ctivity, thus forming a large, complicated and probabilistic tree in
hich the activity could propagate. In effect this produced activity

n synfire chains of varying length depending on when (proba-
ilistically) a particular activation would die out (Trengove et al.,
010b). In the “558959” data set there were 914 chains each 148
ide and 32 long. Each neuron participated in 52 chains. All but

ne of these chains received 3 stimulations during the run. A sin-
le selected chain received 240 stimulations, in effect making it the
nly active chain in the data. Background rates were 10 Hz. This is

 variant of a recent model demonstrating large-scale embedding
f synfire chains (Trengove et al., 2010a, 2012).
Test data for Fig. 8 came from a simulation of a single chain
ith 20 links of 100 neurons. The data were edited so that the
ear-synchronous (within 3 ms)  firing of each link was maintained,
ut so that the activity each group was independently dithered by
ience Methods 206 (2012) 54– 64 55

±100 ms  relative to the orderly sequence of the original synfire
activity. An additional 4000 background neurons fired with gamma
4 interval distributions and rates of 1.7 Hz.

3. Signal to noise and firing rate in the intersection
algorithm

We  have previously described a sensitive algorithm for detect-
ing synfire activity if present in a multi-neuron spike train recording
(Schrader et al., 2008). The basic computation detects repetitive
activations of a synfire chain, by searching for repeated sequences
of synchronous activities. In comparing any two runs of a particular
synfire chain similar sets of neurons from link 1, then link 2, etc.
would be active. We  search for repeats of such activity by first bin-
ning the data on a scale that corresponds to the expected inter-link
delay (usually 3 ms), and list the identities of all neurons whose
spikes fall into a given time bin along the data; call the list S(i) at
time bin i. We  then compare the activities at time bins i and j by cal-
culating the size of the intersection of S(i) and S(j), i.e. the number
of neuron identifications that appear in both sets. After appropriate
normalization the result is shown as a matrix, called the intersec-
tion matrix, with shading proportional to the normalized sizes of
the i,j list intersections. This is also essentially equivalent to treating
each list as a (0,1) vector V(i) at time bin i and computing the angles
within all possible vector pairs. The normalizations in both formu-
lations are essential to deal with possible rate variations along the
data.

The matrix entry at times i,j with appropriate normalizations
can therefore be formally expressed in two ways:

MS(i, j) = |S(i) ∩ S(j)|
min(|S(i)|, |S(j)|) (1)

MV (i, j) = V (i) · V (j)√
|V (i)|2|V (j)|2

(2)

Each pair of runs of any particular synfire chain involves a repeti-
tion of an ordered sequence of identity lists, and therefore leads to
a short diagonal stripe of high values in the intersection matrix.
Length of the stripe corresponds to the number of links in the
chain. Note that this result is independent of different time delays
along the synfire chain as long as the two chain runs have the
same time and identity properties. The short diagonal stripe might
have moire-like variations of value if the original data binning does
not quite correspond to the average inter-link delay in the synfire
chain. If the two runs of the chain differ in timing values, the cor-
responding short diagonal stripe may  shift among several adjacent
diagonals and appear somewhat crooked. For N runs of the synfire
chain there will be N(N − 1)/2 run-pairs and therefore a systematic
array of that number of short diagonal stripes in the intersection
matrix. Detailed explanations and examples are given in Schrader
et al. (2008).

In that paper we  also examined signal to noise performance,
i.e. the extent to which such short diagonal stripes stand out over
the general background values in the matrix which result from the
random (non-synfire) intersections of activity. We  showed that the
signal to noise increases with the ratio of sample to total population
while its variability decreases. With a single synfire chain of 2000
neurons out of a total population of 50,000 neurons (i.e. 4%) and low
background firing rates (1–2 Hz) reliable detection of the synfire
activity requires observation of about a 100–200 neuron random
sample.

Now consider two 50,000 neuron data sets with identical runs of

one synfire chain (as above), but with different firing rates in all the
non-synfire neurons. For pixels on one of the short diagonal stripes
the numerator of Eq. (1) will differ little since most of the contribu-
tion to these list intersections will come from the synfire activity.
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Fig. 1. Detection of synfire chain activity is harder with higher background firing rates. Two-dimensional analysis of simulation data that contains a single synfire chain and
38  thousand independent neurons with gamma  4 interval distributions. The left half data has independent neuron firing rate of 1.7 Hz, right half 8 Hz.  Top panels are the
intersection matrices for an arbitrarily chosen 0.4 s in the full data sets. The short diagonal stripes at the times of pairs of synfire runs are much fainter relative to background
at  the 8 Hz background rate. Middle panels are signal to noise analysis using total pixel value sum on or off a known short diagonal stripe. Each data point represents 40
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andom samples of the indicated size. On-stripe pixel values are lower and off-strip
eft  and right middle panels.) Bottom panels are the corresponding contrast and sho

ut the length of lists in the denominator will depend directly on
he background firing rates, and if this is high will reduce the pixel
alues on the short diagonal stripe. In addition, with higher back-
round rates there will be more random intersections, and pixels
ot on the short diagonal stripes will have increased values. Both
hese effects of background rate are demonstrated in the matri-
es of the top two panels of Fig. 1, comparing background rates of
.8 and 8 Hz for data with four closely spaced runs (and hence 6

un-pairs) of a synfire chain.

A more rigorous depiction of the signal/noise situation can be
ade by repeat calculations using varying numbers of randomly

hosen neurons and comparing the average and standard deviation
es higher at the 8 Hz background rate. (Note that the y-axis calibration differs in the
 reduction in contrast and increase in variability as the background rate increases.

of intersection matrix values on and off a small diagonal stripe
which had been detected with the full large data set. In order to
have reasonable statistics we  calculate over 40 disjoint random
choices of each sample number of neurons and in each iteration
calculate the average value over 15 pixels along 45 degrees both on
and off the known short diagonal stripe location. Comparisons of
results for 1.8 and 8 Hz background rates are in Fig. 1. The middle
panels show mean pixel values on and off a (typical) short diagonal

stripe (note the different ordinate scale at the different background
rates), and the lower panels show the corresponding contrast. At
the higher rate the mean pixel value on the short diagonal stripe is
about 1/3 of that for the low rate, and the off-stripe values are about
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wice as high; the corresponding contrast drops from 1.0 to 0.6.
eliable detection of the synfire activity requires only 50 neurons
ith the low background rate, but 200 neurons at the high rate.

A simple way to improve the detection is to calculate inter-
ections of activity lists at three instead of two times. The formal
alculation is given by Eq. (3)

S(i, j, k) =
∣∣S(i) ∩ S(j) ∩ S(k)

∣∣

min(|S(i)|, |S(j)|, |S(k)|) (3)

Any three runs of a synfire chain will produce repeating
equences of identity lists, and hence a short diagonal stripe of high
ixel values in the 3-dimensional matrix. For the same data set with

 runs of one chain as used above, the top panels of Fig. 2 show
he short diagonal stripes for the corresponding 4 run-triples in a
-dimensional display. (Note that pixels in these displays do not
ave gray levels as in the 2-dimensional matrix display; all pixels
bove a threshold are shown at the same intensity.) The increased
umber of background pixels when data have higher background
ate is clearly visible.

The quantitative analysis of signal to noise is in the lower panels
f Fig. 2. As in the 2-dimensional analysis the pixel values on the
hort diagonal stripe are reduced at high background rates, but the
ff-stripe pixels remain low. As a result the contrast stays at 1.0
ven at the high background rate, and the synfire chain detection
evel remains at samples of 50 neurons. Thus the 3-dimensional
nalysis is more sensitive than the 2-dimensional analysis in the
ace of higher background rates.

With the network and synfire chain parameters used above,
pproximately 5% of the neurons in each analyzed sample were
embers of the same chain. Thus inclusion of 3–5 chain neurons in

 sample is needed for detection. Although not shown, if the data
re diluted so that less than 5% of the overall network are chain
eurons, detection requires a compensating increase in the sample
ize so that the necessary 5 or so chain neurons are included.

In the above study of sensitivity we compared pixel values on
nd off a short diagonal stripe whose location was  determined from
nalyzing the full data set of 50,000 neurons (see the upper panels in
igs. 1 and 2). Obviously this is not applicable to experimental data
imited by current technology to less than 200 neurons. However
s shown previously (Schrader et al., 2008) the 2-dimensional short
iagonal stripes become visually detectable (possibly with the aid
f appropriate spatial filtering of the matrix) at around sample sizes
f 100 neurons at low background firing rates. High background
ates require larger samples of the population for synfire detection.

. Repeating pattern spectrum richness with chains

We have previously described algorithms for finding all repeat-
ng temporal patterns among simultaneous recordings of multiple
pike trains (Abeles and Gerstein, 1988). The basic idea is to rep-
esent the multiple observed spike trains as holes in an old time
aper computer tape, different neuron identities across the tape,
ime along its length. Two copies of this tape are shifted in time
along the length) and regions where holes superimpose represent
epeating spatial-temporal patterns. Our implementation extracts
he longest repeating patterns that fall within a specified duration.
t does not also count the repetitions of sub-patterns of the detected
atterns as do the published methods based on bottom up data
ining algorithms (Shmiel et al., 2005; Patnaik et al., 2008).
The results of our programs are presented as a pattern repetition

pectrum as shown in Fig. 3. Here we have a bar plot of the logarithm

f the number of detected patterns as a function of complexity and
epetition number. Complexity is the number of spikes that are
nvolved in a given pattern; this is not a measure of how many
ndividual spike trains (neurons) are involved.
ience Methods 206 (2012) 54– 64 57

Examination of significance of counts in the pattern repetition
spectrum can be based on multiple repetition of the spectrum
computation with surrogate data. The generation of appropri-
ate surrogates requires matching the original rate and inter-spike
interval structures but destroying only patterning. Useful ways to
do this depend on dithering of each individual spike, i.e. mov-
ing it some relatively small distance in time (Date et al., 1998;
Hatsopoulos et al., 2003). However, additional details of the dither
can produce better preservation of rate and interval. We  have
shown that a dither probability shape based on the square root
of the joint interval histogram (JIH) of that spike train is very effec-
tive in preserving interval structure (Gerstein, 2004) although the
rate structure is somewhat distorted. If there is a repeating under-
lying rate structure even better results can be obtained if the joint
interval histogram is used in operational time (Louis et al., 2010b).
Other types of significance test for patterns have been suggested
using conditional probabilities (Sastry and Unnikrishnan, 2010).
Some work using different surrogate generating methods (Baker
and Lemon, 2000; Baker et al., 2001) concludes that repeating pat-
terns in some experimental data occur at chance levels.

In Fig. 3A we show the pattern repetition spectrum for 500 inde-
pendent spike trains, each with inter-spike interval distributions
of gamma  order 4 and with a rate of 1.7 Hz and slow rate modu-
lation mimicking our original simulation with synfire chains. Note
that all repeating patterns are clustered at low complexity and low
repetitions. In Fig. 3B we show the pattern spectrum for 500 ran-
domly chosen neurons from the original full data set with 50 synfire
chains. There is now an extraordinary richness of patterns of high
complexity and repetition. A similar sample in Fig. 3C from the data
set that contains only one synfire chain of the 50 with the rest of the
net independent, shows fewer but still very many patterns at high
complexity and repetition. Finally in Fig. 3D we  show the pattern
spectrum from the same 50 chain data set as in Fig. 3B but dithered
with a flat distribution in a ±5 ms  window. With these data the
pattern richness has reverted to clustering at low complexity and
repetition similar to the result from independent neurons.

The comparison of Fig. 3B and D also demonstrates that the high
pattern counts at complexity >3 and repetition >2 in 3B are highly
significant, since a dither surrogate almost completely eliminates
them. This result might depend on data length or rates, so that it is
always wise to make the simple dither test; if met it is generally not
necessary to go through the procedure of many repeated surrogate
calculations to assess significance.

It is interesting to examine what neurons participate in patterns
of any particular complexity and repetition. From the data used in
Fig. 3B we arbitrarily chose the five patterns at complexity 8 and
repetition 19. These patterns are analyzed in the five panels of the
left two columns of Fig. 4. Time structure of each pattern in millisec-
onds is indicated above its panel; neuron identities are different for
each pattern but are omitted for space reasons. Recall that these
data contained 50 synfire chains. In each panel we show how many
neurons of the analyzed pattern (indicated in the title of the panels)
belong to a particular chain. Since in these data each neuron partic-
ipated in 2–3 different synfire chains we expect that the neurons in
each pattern would be members of various chains (the low bars).
However for every pattern all 8 neurons participating in that pat-
tern are members of one particular chain, different for each pattern
(the high bar). The panels in the right two  columns of Fig. 4 show
the same analysis for the data used in Fig. 3C with a single syn-
fire chain. Here we arbitrarily chose the 7 patterns of complexity 5
and repetition 11. For each pattern all 5 neurons were members of
chain 35 (the only one in these data). Although not shown, when

the detected pattern includes intervals <2 ms some of the neurons
are members of the same link in the chain.

Similar analyses (not shown) of the same data for the neuron
identities in patterns represented at the edges and near the
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Fig. 2. Analysis of the same simulated data carried out with the 3-dimensional version shows that detection is less affected by background firing rate. Pixels in the 3-
d  short
a he off-
c ven w

o
l
e
a
p
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n

imensional matrix indicate overlap of active neuron identities at three times. The
nalysis in the middle panels differs from the 2-dimensional results mainly in that t
alibration differs in the left and right middle panels.) The contrast remains at 1.0 e

rigin of the plane, i.e. with complexity 3 and/or repetition 2 (i.e.
ow complexities and repetition), would usually include or be
ntirely composed of non-synfire neurons. As in the examples
bove, the neuron identities in patterns towards the center of the

lane (complexity >3, repetition >2) are entirely from the synfire
hain.

These data had low spontaneous firing rates of the non-chain
eurons. As will be shown below, increasing these firing rates
 diagonal stripes remain strong at the higher background rate. The signal to noise
stripe pixel count remains low with the 8 Hz background rate. (Note that the y-axis
ith the high background rate.

results in patterns at complexity >3 and repetition >2 that also
include non-chain neurons.

The total number of repeating patterns depends both
on analysis parameters and on properties of the data. Rel-

evant analysis parameters include maximum allowed pat-
tern length, bin width or time resolution, and the random
sample size drawn from the total population. Relevant data prop-
erties include data length, the percentage of synfire neurons in the
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Fig. 3. Pattern repetition spectra for 500 randomly chosen neurons from each of four different simulations. Synfire chain data shows a rich set of patterns at high complexity
and  repetition. (A) Independent firing of 40 thousand neurons each with gamma  4 interval distribution and mean rate of 1.7 Hz. (B) 40 thousand neurons arranged as 50
synfire  chains. Each neuron participated in an average of 3.5 chains. Chains were stimulated by independent Poisson sequences at a rate of 1 Hz. (C) One  synfire chain and 38
thousand independently firing neurons as in (A). (D) The same data as in (B) but with each spike time dithered by ±5 ms.

Fig. 4. Chain membership of neurons that participate in patterns arbitrarily chosen from the regions of complexity >3 and repetition >2 in Fig. 3. Each panel shows for one
particular pattern how many neurons (y-axis) of the pattern are members of a particular synfire chain (x-axis: chain ID). Left panels: 5 different patterns of complexity 8 and
repetition 19 from data with 50 synfire chains shown in Fig. 3B. The assignment of each neuron to several different chains produces the low bars; but in each panel all eight
neurons come from some single chain (the high bar). Right panels: the same analysis for the 7 patterns of complexity 5 and repetition 11 from Fig. 3C. All five neurons in
each  different pattern come from the single synfire chain in the data.
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ig. 5. Dependence of the total number of patterns for complexity >3 and repetition
2  (i.e. the center region of the complete pattern spectrum) on sample size (number
f neurons) and the fraction of chain to non-chain neurons in the data.

otal population (and in the random sample) and the properties of
he non-synfire neurons (like rates, ISIs, temporal modulation, cor-
elated firing, etc.). Using data sets similar to that used for Fig. 3C,
ig. 5 demonstrates the dependence of the total number of com-
lexity >3, repetition >2 patterns on sample size and percentage of
ynfire neurons in the data set. Increase of either parameter pro-
uces a monotonic increase of the total number of patterns in the
enter part of the plane. Reciprocal changes of these parameters
an keep the number of patterns constant.

Although not shown, we have examined pattern properties
hen the two parameters of rate and regularity are varied. Intu-

tively the number of patterns should increase with regularity,
oing to extremely high numbers for a clocklike set of neurons.
or this investigation we  used simulations with a single synfire
hain as in Fig. 3C, and edited the properties of the 38,000 non-
hain neurons. Regularity was specified by the order of the gamma
unction used to generate their inter-spike intervals. Higher gamma
orresponds to a narrower ISI distribution and therefore higher reg-
larity. For the non-chain neurons we varied gamma  from 4 to 12,
nd rates from 1.7 Hz (same as in the single synfire chain) to 7 Hz.

Gamma  order in this range produces smaller changes in total
attern counts or c > 3, r > 2 pattern counts than the variability pro-
uced by random selection of 500 neurons from the data. It is likely
hat much higher values of the gamma  order would have a visible
ffect. By contrast increasing the rate of the non-chain neurons in
he range examined increases the total pattern count by a factor
f approximately 400, but cuts the c > 3, r > 2 counts in half. This
ast observation can be explained by recalling that at the original
ow rate of 1.7 Hz and gamma  order 4 most of the c > 3, r > 2 patterns
riginate from the synfire chain as shown in Fig. 4. As the firing rate
f the non-chain neurons is increased there is an increasing likeli-
ood that additional (non-chain) spikes will appear in the existing
ynfire patterns and that this will occur repetitively. When this hap-
ens the assignment of the pattern moves on the plane to a higher
omplexity and a lower repetition (usually only r = 2). Thus, as also
hown in Figs. 1 and 2, the effects of higher rates and/or very high
egularity in the non-chain neurons tend to obscure the signature
f synfire activity, and make its detection that much harder.

.1. Pattern timing issues
In the above we have demonstrated that networks contain-
ng synfire chains produce a rich spectrum of patterns with high
omplexity and repetition. The converse, however, is not true.
ome repeating patterns with complexity >3 and repetition >2 do
ience Methods 206 (2012) 54– 64

occur randomly. Furthermore many such repeating patterns can be
generated by other means than synfire chains. An example using
approximately synchronous firing within each of several indepen-
dent neural groups (cortical columns?) is given towards the end of
the paper. Thus finding repeating patterns is by itself not enough to
infer the presence of synfire chains. Additional measurement of the
time structure of the repeating patterns is essential in order to make
that inference. In order to develop these requirements we examine
the detailed time structures of patterns observed in simulated nets
with synfire chains as above.

For this investigation we have used four different large scale
simulations (40,000 or 80,000 excitatory neurons) with one or more
embedded synfire chains. (Parameter details for these simulations
are in the section on data generation.) The pattern spectra of our
four example simulations are shown in Fig. 6, with the left column
for the simulations with many chains and the right column for the
simulations with only a single chain. In each case a random sam-
ple of 100 neurons (repeated to check stability but repetitions not
shown) was  used to mimic  the current limits of recording tech-
nology. All four spectra show many patterns at complexity >3 and
repetition >2, i.e. the middle of the plane excluding the upper edge
and right edge values. The effect of sample sizes on pattern counts
is seen by comparing Fig. 3B with Fig. 6A and Fig. 3C with Fig. 6B and
is explicitly shown in Fig. 5. The pattern richness is characteristic
(but not unique) for synfire chains; simulations with only indepen-
dent spike trains show spectra with patterns mainly at the edges
and origin of the plane (see Fig. 3A).

For each such spectrum calculation we have examined temporal
characteristics of all patterns of complexity >3 and repetition >2 by
constructing (1) a raster of when each pattern (represented as a
point) occurs in the data set; (2) each full pattern displayed as a
raster and as a spike time histogram (like a PST histogram) in time
lock (i.e. alignment) to the known synfire chain stimuli; (3) each
full pattern displayed as a raster and as a spike time histogram
both aligned on the first spike of the pattern.

The first of these measures, the overall raster, is useful to assess
temporal heterogeneity, including for real data the possible mod-
ulation associated with behavior or the existence of recording
problems. However this is of little use here since we  are using sim-
ulations that are fairly steady state. The second measure, locking
detected patterns to synfire chain initiating stimuli, indeed demon-
strates that most patterns in these data are associated with runs of
the synfire chain(s). However this measure depends on knowledge
of the stimuli times which would generally not be available in an
experimental situation. The third measure, aligning patterns on the
first spike, turns out to be sensitive to the delay between links in the
synfire chain. This should be applicable to experimental data. With
simulated data this measure also clearly identifies some patterns
which in part include firing of non-chain neurons.

For each of the four data sets in Fig. 6 the corresponding spike
time histogram of complexity >3, repetition >2 aligned patterns is
shown in Fig. 7. In each case there are prominent peaks which tend
to fall in bins (1ms width) with spacing of about 3 ms.  This is the
time for propagation between successive links in the chain models
used in these simulations so that patterns arising from synfire chain
activity would have multiples of this basic timing in their interval
structure. The background in the histograms below the peaks repre-
sents the patterns which involve the activity of non-chain neurons.
Note also that the large peaks come early in the pattern except in
case C. All these simulations have variability built into the link to
link delays. These temporal variations build up during each run of
a chain, so that exactly repeating patterns (to 1 ms  time resolution)

in two  or more runs of the chain can originate only from a limited
portion of the full chain length and thus have a duration less than
that of a full chain run. The spaced peak structures in each panel of
Fig. 7 are therefore an additional signature of synfire chain activity.
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Fig. 6. Pattern repetition spectra for 100 randomly chosen neurons from four different simulations. (A) Same data as Fig. 3B. (B) Same data as Fig. 3C. These two panels
demonstrate the effects of sample size on pattern numbers. (C) 100 thousand neurons in a multiply branching tree of synfire chains. (D) 100 thousand neurons arranged
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s  many overlapping chains; in effect only one chain is stimulated. See section on
pectrum at complexity >3 and repetition >2 characteristic of synfire chains.

. Group synchrony without chain structure

Several papers in the literature have claimed evidence for syn-
re chain activity based on repeating patterns or sequences (Euston
t al., 2007; Ikegaya et al., 2004; Yosimura et al., 2005; Prut et al.,
998; Shmiel et al., 2005, 2006; Abeles et al., 1993). In some of
hese papers various surrogates were used to assess significance of
he pattern counts. In this section we analyze simulation data that
roduces many complexity >3, repetition >2 patterns, but contains
o synfire chains. Such data can be distinguished from synfire-
ontaining spike trains by the two additional measurements set
ut in this paper: (1) the matrix of neuron identity intersections
nd (2) the time structure of the detected repeating patterns.

The data consist – as the above synfire chain simulations – of
ctivity from 20 groups of 100 neurons (same parameters as used
n many of the above synfire chain simulations) with the neurons in
ach group firing in near synchrony (within 3 ms)  but without the
roups being sequentially activated. The data were generated from
he simulated data containing one synfire chain but here the syn-
hronous spikes from the individual links were together dithered
n time within a window of ±100 ms.  A raster display of a 0.7 s

egment of the firing activity of the 20 groups is shown in Fig. 8A.
here is no ordered sequential firing of the several groups as would
e the case for links in a synfire chains. (Comparable rasters of sim-
lated orderly synfire chain activity are in Schrader et al., 2008).
simulation for details of C and D. All four panels show the rich pattern repetition

The data also contained 4000 independent neurons firing at 2.7 Hz
with gamma  4 interval distributions.

The neuron identity intersection matrix is for an arbitrary
700 ms  segment of the data is shown in Fig. 8B. Unlike the matri-
ces in the top panels of Figs. 1 and 2, there are no orderly short
diagonal stripes of pixels, just an apparently random distribution
of single pixels. This of course is expected, since these data have no
repeating sequential ordering to the activity of the several groups.

The pattern spectrum of a random 100 neurons chosen from
this activity is in Fig. 8C, and shows considerable repeating pattern
counts for complexity >3, repetition >2. Since we have full knowl-
edge of this simulation data, examination of the neuron identities
contributing to these patterns (as in Fig. 4) shows that most patterns
originate within some single group (not explicitly shown). There
are few patterns with members spread among one or more groups
and background activity as is the case in the ordered sequences of
synfire activity. This prevalence of single group origin of patterns is
made obvious by the histogram of spike times in aligned patterns
shown in Fig. 8D. Unlike the synfire data in Fig. 7, many patterns
here have durations of less than 3 ms,  indicating their origin in a
single group. Note that the other repeating patterns have a con-

tinuous distribution of inter-spike times. This contrasts with the
spaced peaks in the histograms of spike times in aligned patterns
shown in Fig. 7 which correspond to the delay structure of a synfire
chain.
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Fig. 7. Histograms of spike times in patterns aligned to first spikes. Data and arrangement are identical to Fig. 6, but only patterns of complexity >3 and repetition >2 are
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onsidered. Bin width of the histograms is 1 ms.  Each panel shows various numbers
he  several synfire simulations.

Thus with at least this one counterexample, repeating patterns
lone are not enough to infer synfire activity. It is also essential to
xamine the matrix of active neuron identity intersections as well
s the time structure of the detected repeating patterns.

. Discussion

The synfire chain is an intriguing theoretical concept with
nteresting properties that should make it very applicable to under-
tanding many aspects of brain function. Unfortunately there has
o date been no convincing experimental demonstration of synfire
hains due partially to the difficulties of multi-neuron recording
ut also to the lack of appropriate analytic tools. We  have previ-
usly published one such analysis tool (Schrader et al., 2008). In the
resent paper, using simulated data, we have extended that work
nd in addition examined two new tools for detecting the presence
f synfire chain activity in neuronal spike train recordings. Such
nalyses require data from at least one hundred simultaneously
ecorded spike trains, although larger samples would be preferred
n order to improve reliability and sensitivity.

There are serious methodological difficulties in obtaining the
ecessary data. Of the currently available recording methods the
ultiple electrode approaches all suffer to some degree from the

roblem of clean separation of spike waveforms (Warren et al.,
001; Csicvari et al., 2003) from different neurons detected on the
ame electrodes (Harris et al., 2000). Such mixing of spike trains
eriously degrades and makes ambiguous any inference from
easurements of spike timing (Gerstein, 2000; Pazienti and Grün,
006), and depending on the degree of contamination, would
mpact all three methods developed in the present paper. The
lder dye based optical methods have either spatial or temporal
esolution difficulties as well as problems with bleaching and
minent peaks with 3 ms spacing. This corresponds to the interlink delays built into

opto-kinetic damage to the neurons. There is hope however in the
newer techniques with 2-photon calcium dye methods as well as
with the rapidly developing genetically engineered fluorescent
protein approaches (Knöpfel et al., 2003; Ohki et al., 2005, 2006;
Miri et al., 2011; Miyawaki, 2005).

In a previous paper (Schrader et al., 2008) we described a simple
analysis of the active neuron populations in the data that yields a
unique signature of synfire activity if it exists. In the present paper
we have further studied the signal to noise properties of this anal-
ysis and have extended it to the detection of triples rather than
pairs of synfire chain runs. This has provided a considerable gain in
sensitivity and particularly reduced problems with relatively high
rate background neurons. Our signal to noise studies compared
matrix pixel values on and off a short diagonal stripe whose loca-
tion was determined by analyzing the large full set of simulated
neurons. This obviously cannot be done in an experimental situa-
tion. However, results from the procedure should be applicable to
the threshold for visual detection of short diagonal stripes (possibly
aided by appropriate spatial filtering of the matrix) for experimen-
tal data. We  have previously shown that visual threshold is about
100 neurons in the 2-dimensional pair analysis at low background
rates. The 3-dimensional analysis of chain run triples with its better
signal to noise properties should maintain this performance even at
higher background firing rates. Nevertheless the sampling problem
remains critical especially with high background rates.

Our second approach to detecting synfire chain activity is based
on finding repeating patterns of firing. Methods for finding all such
repeating patterns are well known (Abeles and Gerstein, 1988;

Shmiel et al., 2005; Patnaik et al., 2008) and can be top down or bot-
tom up. Data from simulations containing multiple synfire chains
or even with a single synfire chain in a great sea of background neu-
rons (Figs. 3 and 6) show a great richness of patterns of complexity
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Fig. 8. Analysis of simulation data containing synchronous groups (3 ms precision), that were not active sequentially in time. The data were generated from simulated data
containing one synfire chain. Same synfire chain data as in Fig. 3C but here the synchronous spike responses of the 20 individual groups of 100 neurons are dithered in time
within  a window of ±100 ms  instead of being sequentially ordered as in the original synfire chain. (A) Raster display showing the activity of the 20 groups over an arbitrary
0.7  s interval. Activity of the remaining 4000 gamma  4 background neurons is not shown. (B) Activity intersection matrix of an arbitrary 700 ms segment of the data. This is a
similar time scale to that used in Fig. 1, but shows only randomly arranged individual pixels rather than short diagonal stripes. (C) Corresponding pattern repetition spectrum
for  a random sample of 100 neurons. (D) Corresponding time histogram of spikes in aligned complexity >3 repetition >2 patterns. The single peak at 1–2 ms  indicates that
m atter
c re act

>
t
b
h
e
s
r

o
T
t
a
t

a
o
r
h
n
d
i
t
s
i

embers of a given repeating pattern were mostly in some single group. Repeating p
hain  delays. Thus repeating patterns per se are not necessarily an indicator of synfi

3 and repetition >2. We  have demonstrated in Fig. 4 for synfire data
hat the neurons involved in each such pattern are usually mem-
ers of some single chain. Although directly unverifiable, one would
ope this would also be true in patterns high complexity, high rep-
tition data when found in experiments. Comparable multi-neuron
pike trains from simulations of independent neurons do show
epeating patterns but mostly at complexity 3 and/or repetition 2.

Our third approach to detecting synfire chain activity is based
n examining the detailed time structure of any repeating patterns.
he most useful such measure is to align the repeating patterns to
heir first spike. With synfire data a histogram of spike times of such
ligned patterns tends to show peaks with spacing corresponding
o the interlink delays of a synfire chain (Fig. 7).

The detection methods presented here also apply to a gener-
lization of synfire chains known as braids (Bienenstock, 1995)
r polychrony (Izhikevich, 2006) which are characterized by the
ule that all direct and indirect paths between any two neurons
ave the same delay. In these feed-forward structures the neurons
eed not be grouped into discrete links, and they support repro-
ucible, precisely timed spike sequences that need not be grouped
nto synchronous packets. The delays on the feed-forward connec-
ions preserve the key property of synfire chains that, during spike
equence re-activation, each neuron receives synchronously arriv-
ng spikes from upstream neurons. Repeated activations of braids,
ns with longer intervals do not show the discrete structure corresponding to synfire
ivity.

just as for chains, will give rise to diagonal stripes in the intersection
matrix and will produce temporal patterns with high complexity
and repetition. However, the comb-like structure seen in Fig. 7,
being specific to chains, would not generally be found in braids.

Although synfire chains produce many high complexity, high
repetition patterns so can other mechanisms. We  have demon-
strated one such situation with a simulation of near synchronous
firing within neural groups but with each such group active at ran-
dom times. Such data (Fig. 8) show rich patterning at complexity
>3 and repetition >2, but as expected the intersection matrix has
only randomly arranged pixels rather than short diagonal stripes.
The histogram of spike times in aligned patterns reflects the preva-
lence of patterns limited to the near synchronous firing within each
group. Patterns with longer intervals have continuously distributed
intervals rather than preferred discrete values which would corre-
spond to the chain delay structure.

Finally we  suggest that experimental detection of synfire chains
cannot rest exclusively on the demonstration of repeating firing
patterns. It is necessary in addition to demonstrate an activity inter-
section matrix with short diagonal stripes, and a histogram of spike

times in aligned patterns that shows that many patterns have a
structure appropriate for expected inter-link delays in a synfire
chain. We  have so far had access to four multiple neuron recording
data sets from four different laboratories and preparations. All of



6 urosc

t
m
i

A

t
N
s
P

R

A

A

A

A

A

A

A

B

B

B
C

D

D

E

G

G

G

G

H

H

H

H

H

I

I
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hem show repeating patterns, but none of them have intersection
atrices with short diagonal stripes or appropriate spaced peaks

n the spike times of aligned patterns. The search continues.
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