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Infrared Yang–Mills theory as a spin system.
A lattice approach
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Abstract

To verify the conjecture that Yang–Mills theory in the infrared limit is equivalent to a spin system whose excitations are knot
solitons, a numerical algorithm based on the inverse Monte Carlo method is proposed. To investigate the stability of the effective
spin field action, numerical studies of the renormalization group flow for the coupling constants are suggested. A universality
of the effective spin field action is also discussed.

 2001 Elsevier Science B.V.

1. It was conjectured [1] that theSU(2) Yang–Mills
theory in the infrared region can be described as a spin
system with the following action

(1)S =
∫

dx
{
m2(∂µn)2 + g−2[n · (∂µn × ∂νn)

]2}
,

wheren2 = 1 (boldface letters stand for three-vectors).
The path integral representation of the effective ac-
tion (1) can be deduced from the Yang–Mills theory
path integral via an implicit change of integration vari-
ables [2]. The analysis can be extended to theSU(N)

case [3,4]. Nonperturbative excitations of the effec-
tive theory are knot solitons [5]. Knot solitons look
more like stringy excitations, which is believed to be a
right physical picture of nonperturbative excitations of
gauge fields. Yet, if the effective action (1) turns out to
be a good approximation to the Yang–Mills theory in
the infrared limit, the nonperturbative dynamics can be
studied by quantum soliton theory methods. The mass
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gap in the spectrum of quantum Yang–Mills theory
would therefore naturally be introduced as the lowest
energy bound in the quantum soliton spectrum. A few
important questions are to be addressed to validate or
invalidate this attractive picture. First, what is the ac-
tual value of the mass scalem2 which determines the
low energy bound (in the classical soliton theory) [6]?
Second, is the effective action stable from the point of
view of the renormalization group flow of its coupling
constants? Third, how big are the higher order correc-
tions to (1)? The purpose of this Letter is to set up a
numerical approach to answer these questions.

The existence of degrees of freedom whose dy-
namics dominates in the infrared region of Yang–
Mills theory was established in numerical simulations
[7–9] of lattice Yang–Mills theories some time ago. It
was observed that dominant contributions to the string
tension come from topological defects (monopoles)
which occur in typical vacuum configurations of gauge
fields when the latter are taken in a special gauge
known as the maximal Abelian gauge. Topological de-
fects unavoidably occur in any gauge that breaks the
gauge group to its maximal Abelian subgroup [10]. In
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classical theory, it is evident from the fact that the ho-
motopies of the gauge group and its maximal Abelian
subgroup are different [11] (see more on the gauge fix-
ing problem in quantum gauge theories in [12]). The
importance of the above numerical discovery is that
the defects alone are sufficient to reproduce essential
nonperturbative features of Yang–Mills theory. The
numerical procedure of singling out topological de-
fects in Abelian projections of the lattice Yang–Mills
theory can therefore be used in a theoretical analysis
to parameterize the relevant degrees of freedom of the
Yang–Mills connection and compute their effective ac-
tion. It should be noted that the gauge fixing here does
not serve its conventional purpose—removing non-
physical degrees of freedom—but rather it becomes an
auxiliary tool to identify the degrees of freedom rele-
vant for the infrared physics of the Yang–Mills theory.
After a change of variables, that splits all the Yang–
Mills degrees of freedom into the “infrared relevant”
ones and the rest, is found, the effective action can
be computed in any convenient gauge and its gauge
invariance can be established by the standard BRST
technique [2,3].

In our earlier works [2,3], a relation between the
spin fieldn and topological defects of the connection
in the maximal Abelian gauge has been found

(2)Aµ = g−1∂µn × n + nCµ + Wµ,

where Wµ satisfies the following conditions. It is
perpendicular ton and

∂µWµ + (αµ + nCµ) × Wµ

(3)≡ ∇µ(α + nC)Wµ = 0.

Hereαµ = g−1∂µn × n is the connection introduced
in [13]. Relation (2) is a change of variables in the
space of connections. Indeed, the original variables
Aµ have 12 independent scalar functions. There are
two independent scalar functions inn, four inCµ, and,
hence, there must be six independent scalar functions
in Wµ. This is the case indeed because 12 components
of Wµ satisfy six independent conditions: four in
n · Wµ = 0 and two in (3). Note that ifWµ is
perpendicular ton, then covariant derivatives ofWµ

with respect the connectionαµ + nCµ is always
perpendicular ton. The inverse transformation can be
found by multiplying (2) byn using first the dot and
then cross products. The obtained relations allow one

to expressCµ and Wµ as functions ofAµ and n.
Substituting them into (3), an equation forn as a
functional of Aµ is derived. It has been shown that
for a givenAµ, the corresponding spin field can be
computed as [2]

(4)n = 1

2
tr
(
τΩ

†
Aτ3ΩA

)
, τ = (τ1, τ2, τ3),

whereτi are the Pauli matrices, tr(τiτj ) = 2δij andΩA

is a group element which depends onAµ so that the
gauge transform ofAµ with ΩA satisfies the maximal
Abelian gauge. Topological numbers of the defects
have an integral representation via the spin fieldn [2].

The gauge transformationΩA is in general singular
(it might not even be single valued in spacetime).
In other words, for a typical vacuum configuration
of gauge fields, the maximal Abelian gauge can
only be achieved by a singular gauge transformation.
According to numerical simulations [7], the third
component of the gauge fixed configurationAΩ

µ ,
which is associated with the unbrokenU(1) subgroup,
carries Dirac magnetic monopoles. The monopoles
alone contribute about 90% to the energy of the flux
tube (string) between static sources in the Yang–
Mills theory. The monopole spacetime trajectories
are determined by singularities ofΩA. Hence, by
taking Abelian connections of the monopoles and
applying the inverse gauge transformationΩ†

A to
them, one can parameterize the relevant (or “monopole
producing”) degrees of freedom of a generic Yang–
Mills connection. The result of this procedure is
given by Eqs. (2) and (3). By construction, the spin
field n carries all the information about the spacetime
distribution of the defects, and, hence, its effective
theory should describe the infrared physics of the
original Yang–Mills theory.

Using the path integral representation of the spin
field effective action [2], one-loop calculations have
been done in [14].2 They show that the action (1) is to
be modified by adding terms containing higher order
time derivatives (which might be a source of instability
of knot solitons). The one-loop renormalization group
flow for the effective action parameters also indicates
that the effective action might be stable in the infrared
region [14]. The results of [14] seems encouraging

2 See also [15] where different approaches, not related to the
observations in lattice gauge theories, have been explored.
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and deserve further studies, particularly, by some
nonperturbative methods.

Since the topological defects in the gauge-fixed the-
ory are not solutions to the classical equations mo-
tion with a finite energy or action, it is rather hard to
give them an accurate mathematical meaning in con-
tinuum quantum theory. The nonlinear change of vari-
ables (2) makes sense for classical connections whose
values are well-defined almost everywhere in space-
time. Typical quantum fields that form support of the
path integral measure are distributions rather than clas-
sical smooth functions. The change of variables (2) is,
in fact, ill-defined (because it involves products of dis-
tributions) unless some short-distance regularization is
implemented. This can be achieved either by defining
the path integral perturbatively with an ultraviolet cut-
off, or by using the lattice (nonperturbatively defined)
path integral for gauge theories. This latter approach
is adopted in the Letter.

Here we develop the idea, first suggested in [2], of
using the inverse Monte Carlo method [16] to find out
whether (1) is indeed a good approximation to the in-
frared Yang–Mills theory. Within the framework of
lattice Yang–Mills theory, an explicit numerical algo-
rithm is proposed to compute and study the effective
action for the spin field and the renormalization group
flow of its parameters, which comprises the main goal
of the Letter.

2. In lattice gauge theories, the dynamical variables
are group elementsuxµ ≡ ul ∈ SU(2) associated with
each link, wherex enumerates lattice sites, andµ
indicates the direction of the link from the sitex. Let
{ul} be a Wilson ensemble of link variables distributed
with the Boltzman probabilityZ−1

W e−SW with SW

being the Wilson action of link variables andZW

the normalization factor (the partition function). The
first step of the proposed numerical simulations is to
generate an ensemble of the spin field from the Wilson
ensemble. The spin field in the decomposition (2)
is defined by Eq. (4). Thus, for every configuration
ul one has to find a configuration of gauge group
elementsΩx(ul) such that the gauge transformed
configuration

(5)uΩ
l = ΩxulΩ

†
x+µ,

satisfies the maximal Abelian gauge. Herex + µ

denotes the lattice site next tox in the directionµ. The

group elementsΩx(ul) can be found by maximizing
the function [17]

(6)χu(Ω) =
∑
l

tr
[
τ3

(
uΩ
l

)†
τ3u

Ω
l

]
,

for each configurationul of the Wilson ensemble. The
collection of group elementsΩx at all lattice sites is
regarded as variables, whileul are just parameters.
For every configurationul the functionχu can have
many local maxima. This is an evidence of the Gribov
problem in lattice gauge theories (see for a review [12]
and references therein). For every element of the
Wilson ensembleul , one should takeΩx(u) at which
χu attains its absolute maximum. Finding an absolute
maximum ofχu is a difficult, if not impossible, task
in the numerical gauge fixing. The state-of-the-art
extrapolation toward the global maximum ofχu can
be found in [9]. The ensemble of the spin field is then
computed asnx(ul) = 1

2 tr(τΩ
†
x τ3Ωx).

It is also possible to find the lattice version of
the change of variables (2) and therefore to obtain a
system of cubic equations whose solution defines the
spin field components as functions of link variables
(the lattice analog of the equations for the spin
field suggested in [2]). Define an algebra element at
each sitenx = Ω

†
x τ3Ωx which satisfies the constraint

trn2
x = 2. Combining (5) and (6) and introducing

the Lagrange multiplierξx to take into account the
constraint onnx , the extreme value problem for (6)
is equivalent to the extreme value problem for the
function

χ̃u(n) =
∑
x

{∑
µ

tr
[
nx+µu

†
l nxul

]

(7)+ ξx

(
1

2
trn2

x − 1

)}
.

Setting the variations of̃χu(n) with respect tonx

andξx to zero, the following equation fornx can be
deduced

ϕx(n,u) ≡
∑
µ

(
u

†
x−µ,µnx−µux−µ,µ + ux,µnx+µu†

x,µ

)
(8)+ 2ξxnx = 0.

Now assume thatΩx(u) is a local maximum of (6)
and, hence,nx is a solution to (8), thenuΩ

l satisfies
the maximal Abelian gauge and, by construction,nx =
nx · τ . The Lagrange multiplierξx = ξx(u,n) is fixed
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by multiplying (8) bynx and taking the trace. After
the substitution ofξx = ξx(u,n) into (8), one gets the
equation for the components of the spin field. Only
two scalar equations in (8) are independent. They
determine two independent components of the spin
field as functions of the link variables.

As has been mentioned above, the group elements
Ωx and hence the spin field are not regular everywhere
in space in the continuum theory. It is not difficult to
give an example ofΩx and the corresponding spin
field nx such that the connectionαµ coincides with
the Wu–Yang monopole (e.g., taken = x/r, r =
|x|) which, in the maximal Abelian gauge, contains
a Dirac monopole at the origin. The spin field is ill-
defined at the position of the monopole. In the lattice
gauge theory, the topological defects occur on the
dual lattice sites [17]. For every configurationul , the
configurationΩx(ul) and, hence,nx are well-defined
and contain all the information about locations of
the defects (magnetic monopoles) on the dual lattice
and their topological numbers (magnetic charges).
Consider an elementary cube of the spatial lattice
and spins on its vertices. Frankly speaking, with
an isolated defect present at the cube center, the
spins are directed outward (or inward) the cube. In
the confinement phase the monopole–antimonopole
pairs (or monopole loops, when describing topological
defects by their spacetime trajectories) are condensed
(no isolated defects), therefore the above simple visual
picture would not be valid. However,nx is still well-
defined at each lattice site and its dynamics can be
studied.

3. The configurations of gauge fieldsul are dis-
tributed with the Boltzman probabilityZ−1

W e−SW . The
spin field configurations obtained from the Wilson en-
semble must also be distributed with some probability
Z−1

s e−S whereS is the unknown effective action of
the spin field. The problem is therefore: given an en-
semble ofnx , find the corresponding probability or the
effective actionS(n).

Any correlator of the spin field can be computed by
the Monte Carlo method since the ensemble is known〈
F(n)

〉
n
≡ Z−1

s

∫
Dn e−SF (n)

(9)= 1

M

∑
{n}

F(n) + O
(
M−1/2),

where the sum is taken over the ensemble of the
spin field, Zs = ∫

Dn e−S is the partition function,
Dn = ∏

x dnx and the integration over a spin at each
site implies the integration over a unit two-sphere.
Parameterizing the spin vector by the spherical angles

(10)nx = (cosφx sinθx,sinφx sinθx,cosφx),

we getdnx = dφx dθx sinθx whereφx ∈ [0,2π) and
θx ∈ [0,π]. The expectation value (9) is also realized
as an expectation value with respect to the original
Wilson ensemble. Note that Eq. (8) defines the spin
field as a function of link variablesnx = nx(u).
Hence,

(11)
〈
F(n)

〉
u

= Z−1
W

∫
Due−SW (u)F

(
n(u)

)
,

whereZW is the partition function for the Wilson ac-
tion. In principle, this observation can be used to deter-
mine the effective action directly via the original Wil-
son ensemble. The idea is the same as in the contin-
uum case [2]. Define the function∆(u,n) by the con-
dition

(12)
∫

Dn∆(u,n)
∏
x

δ
(
ϕx(n, u)

) = 1,

where ϕx = 1
2 tr(τϕx) (see (8)), which leads to

∆(u,n) = det(∂ϕa
x/∂n

b
y). The parameterization (10)

must be used to compute the derivatives and also
the identity ϕx · nx = 0 is to be taken into ac-
count when computing the determinant. In space-
time the matrix∂ϕa

x/∂n
b
y appears to be sparse be-

cause nonzero elements can only occur fory = x,
x ± µ. Substituting the identity (12) into the inte-
grand in (11), changing the order of integration and
comparing it with (9), it is not difficult to deduce
that

(13)S(n) = − ln

〈
∆(u,n)

∏
x

δ
(
ϕx(n, u)

)〉
u

,

wherenx is now held fixed in the average over the
Wilson ensemble.

Although (13) defines the spin field effective action
as an expectation value of some function of the link
variables, we are interested only in its behavior in the
infrared region. In the continuum case this amounts
to the so-called gradient expansion of the (nonlocal)
effective action. In the numerical approach, the action
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is sought in the form

(14)S ≈
∑
i

λiSi,

whereSi are some specified functions of the spin field,
whereas the coupling constantsλi are to be deter-
mined. Since we are interested to compare the effec-
tive action with (1), we first find all possible local and
independent terms that are of the forth order in deriva-
tives and might contribute to the gradient expansion
of S. In addition to the two terms in (1) it is nec-
essary to include∂2

µn · ∂2
νn and [(∂µn)2]2. The four

terms are all independent Lorentz and isotopic invari-
ant terms containing up to four derivative operators.
In fact, there is one more invariant term which can
be built by contracting the Lorentz tensor∂µn × ∂νn

with its dual (like aθ -term in the Yang–Mills action).
Higher order terms can be classified accordingly by
contracting invariant irreducible tensors of the isotopic
and Lorentz groups with isotopic tensor products of
the spin field and its derivatives. Then the renormal-
ization group flow of the constantsλi must be studied
as high momentum components of the spin field are
removed (integrated out). The renormalization group
flow would show whether or not the effective action
is stable (or, in other words, is a good approximation
to (13)) in the infrared limit, and thereby validate or
invalidate the conjecture.

We set

(15)Si = 1

mi

∑
x

Six,

where mi is the number of spins involved into a
local interactionSix . Let sx,µ = nx+µ −γxµnx , where
γxµ = nx+µ ·nx is defined by the conditionsx,µ ·nx =
0 to make the correspondence with the continuum
theory∂µn ·n = 0. Leta be a lattice spacing. The local
spin interactions are written as

(16)S1x = a2
∑
µ

[
s2
x,µ + s2

x−µ,µ

]
,

(17)S2x =
[∑

µ

s2
x,µ

]2

+
[∑

µ

s2
x−µ,µ

]2

,

(18)

S3x =
∑
µ,ν

[
(sx,µ × sx,ν)

2 + (sx−ν,µ × sx−ν,ν)
2

+ (sx−µ,µ × sx−µ,ν)
2],

(19)

S4x =
[∑

µ

(sx,µ − sx−µ,µ)

]2

+ [
x → x ′ = x + µ

] + [
x → x ′ = x − µ

]
.

In the continuum limit, the action (15) goes into (1)
with the additional terms described above. Theθ -term
has the same form asS3x where instead of the sum of
squares, the sum of the dot products of each vector and
its Lorentz dual has to be taken. Local spin interactions
giving rise to terms with higher powers of∂µ in the
continuum limit can be constructed similarly by using
the correspondence rule:∂µn → sx,µ, 2∂µ∂νn →
sx+µ,ν − sx,ν + sx+ν,µ − sx,µ, etc.

Note that two terms inS1x give the same contri-
bution as the sum overx is taken in (15) and there-
fore m1 = 2. Similarly, each of three terms inSix

(i = 2,3,4) gives the same contribution to (15) and
mi = 3. The reason the equivalent term are given in
Six is thatSix is the part of the actionSi that contains
all terms involving the spinnx at a fixed sitex. This
representation will be useful in what follows.

4. Here we formulate the inverse Monte Carlo al-
gorithm for computingλi . The inverse Monte Carlo
method is well-known in studies of the real space
renormalization group of spin systems [16]. It has also
been applied to compute an effective action for mono-
pole currents in the maximal Abelian projection [18].
The use of the spin field order parameternx rather
than the monopole current is more appealing because
of several reasons (relations to the quantum soliton
theory, similarities between strings and knot solitons)
pointed out after (1).

Let Sx denote all terms inS that contain the spinnx

at a fixed sitex, Sx = ∑
i λiSix . For everySi(n) we

construct a new function

(20)

�Si(n, λ) = 1

mi

∑
x

Z−1
x

∫
dnx e−Sx Six ≡

∑
x

�Six,

where Zx = Zx(n) = ∫
dnx e−Sx . The bar in �Six

denotes an expectation value carried out with respect
to the effective action〈· · ·〉n but calculated for only
one spin, nx . The environment (i.e., neighboring
spins) is held fixed. So,�Six depends only on the spins
at the sites neighboring withx, i.e., on nx±µ and
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nx±2µ. Taking the expectation value of�Si , we find the
identity

(21)
〈
Si(n)

〉
u

= 〈�Si(n, λ)
〉
u
.

Using the Monte Carlo method (9), the l.h.s. of (21)
can be computed, while the r.h.s. cannot. The inte-
gral overnx in (20) cannot be computed for given
configurations of neighboring spins because the true
values ofλi are not known. Had the coupling con-
stants been known, the ordinary integral in (20) could
have been computed, for instance, numerically for any
givennx±µ andnx±2µ.

Suppose some trial valuesλ̃i of the coupling con-
stants are taken to compute the r.h.s. of (20). The
equality

(22)
〈�Si(n, λ)

〉
u

= 〈�Si

(
n, λ̃

)〉
u
,

holds if and only if λi = λ̃i . This is used to set
up an iterative algorithm to find the true coupling
constants. Eq. (22) is regarded as a system of nonlinear
equations where the l.h.s. is known (cf. (21)). It can be
solved numerically by Newton’s method or some of its
alterations. For̃λi ≈ λi we have

〈Si〉u − 〈�Si

(
n, λ̃

)〉
u

(23)≈
∑
j

〈
∂

∂λj

�Si(n, λ)

〉
u

∣∣∣∣
λ=λ̃

(
λj − λ̃j

)
.

Using the definition (20), it is not difficult to show that

(24)
∂

∂λj

�Si = �Sj
�Si − SjSi .

The functionSjSi is defined by (20) whereSix is
replaced bySjxSix . The true values of the coupling
constants are computed by the iterating procedure

(25)bi

(
λ(n)

) =
∑
j

Aij

(
λ(n)

)(
λ
(n+1)
j − λ

(n)
j

)
,

(26)bi

(
λ(n)

) = 〈
Si(n)

〉
u
− 〈�Si

(
n, λ(n)

)〉
u
,

(27)Aij

(
λ(n)

) = 〈�Si
�Sj − SiSj

〉
u

∣∣
λ=λ(n),

whereλ(0)
i = λ̃i andλ

(n)
i → λi asn → ∞.

The convergence depends on the choice of the trial
constants̃λi . If iterations take many cycles, statisti-
cal errors are likely to introduce instabilities in the
solution. A similar problem was encountered in [19].
The solution there was to find the iteration limit

through a linear mapping of the space ofλi . Another
method to compute the coupling constants is to use
the Schwinger–Dyson equations [20]. In principle, the
coupling constants can be compared with their “exact”
values defined through (13). The expectation value in
the r.h.s. of (13) can be expanded into a series over the
spin field around some specific spin field configura-
tion. The expansion coefficients can be computed my
the Monte Carlo method in the Wilson ensemble. For
instance, the mass scaleλ1 can be obtained by taking
the second derivative of (13) with respect to the spin
field at the particular configurationna

x = δ3a (as was
suggested in the continuum case [2]). This procedure
involves, however, computations of the determinant,
which is very costly. Eq. (11) can be used to measure
the goodness of the approximation (15)–(19).

5. Having found the coupling constants, the renor-
malization group flow for them has to be investigated
to prove the stability of the effective action in the limit
of large wave lengths. With this purpose, we use the
representation (10) to take into account the constraint
n2
x = 1. Let the matrixfxk be a discrete Fourier trans-

form associated with the lattice,
∑

x f ∗
k′xfxk = δk′k

and
∑

k f ∗
x ′kfkx = δx ′x . The sum overk implies the

sum over all momentum vectors allowed by the lattice.
Given the ensemble ofθx andφx , the Fourier compo-
nentsθk andφk can be computed.

Next the spin field ensemble can be generated for
all momenta bounded from above by some scaleΛ1

(28)θx(Λ1) =
∑
k∈K1

fxkθk.

Similarly for φx(Λ1). The sum in (28) is extended
over those vectorsk whose norm does not exceed
the scaleΛ1. This subset in the momentum space
is denotedK1. The ensemblenx(Λ1) can be used
as the input for the inverse Monte Carlo procedure
described in the previous section to compute new
coupling constantsλi(Λ1).

Repeating this procedure for successively smaller
scalesΛk+1 < Λk we can obtain the sequence of
the coupling constantsλi(Λk), k = 0,1,2, . . . , where
k = 0 corresponds to the coupling constants computed
with the original spin field ensembles. By truncating
the sum over momenta in (28) we generate a spin field
ensemble in the infrared region (large wave lengths).
Hence the sequenceλi(Λk) describes the behavior
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of the coupling constants as functions of the scale
Λ that restricts allowed momenta from above in the
effective theory, i.e., asΛ decreases, the infrared limit
is approached.

The explicit removal of Fourier modes can be
strongly affected by the breaking of rotational sym-
metry on coarse lattices or for largerΛ’s. So, the
block spin decomposition [16,21] might be a more at-
tractive procedure to study the renormalization group
flow. The idea is to average spins over elementary cells
(blocks) of the original lattice. For instance, the an-
gular variablesθx andφx are specified at elementary
cubic cell vertices. Consider a new lattice with mesh
2a which is constructed as follows. Let the pointy be
the center of the elementary cell. The neighboring sites
are theny ±2µ. So, each sitey of the new lattice is in-
side an elementary cubeCy of the original lattice, and
the cubesCy andCy ′ do not have common vertices if
y �= y ′, while Cy andCy ′ coincide ify = y ′. Define

(29)θy = 2−D−1
∑
x∈Cy

θx,

and similarly forφy , whereD is the lattice dimen-
sion. That is,θy is an average value ofθ over all ver-
tices of one elementary cube. The spin fieldny is de-
fined by (10) wherex → y. The averaging (29) is also
equivalent to removing short wave length components
of the spin field. Doing this procedure for a succes-
sively larger lattice spacing (2a, 4a, etc.) and com-
puting the coupling constants on each step, we can
again generate the renormalization group flowλi(Λk)

(whereΛk ∼ 2−k/a).
The behavior ofλi(Λ) allows one to verify whether

the effective action (1) (possibly with extra terms) is
stable in the infrared region as was observed in [14] in
the one-loop approximation. For instance, it is critical
to observe the right signs ofλ1,3 (cf. (1)) becauseλ1
sets the mass scale for knot solitons, whileλ3 should
reproduce the running gauge coupling constantg in
the continuum limit. Relatively large (and growing)
values ofλ2,4 would mean instability of knot solitons.
It would also indicate that the approximation (1) is
not justified and the higher order spin interactions are
relevant for the spin field dynamics. In this case more
higher order terms have to be included into (15) and
the renormalization group flow of the corresponding
coupling constants is to be computed.

It should also be noted that the lattice size becomes
important in studies ofλi(Λ). It is clear thatΛmax =
Λ0 ∼ 1/a andΛmin ∼ 1/L wherea is a lattice mesh
andL = Na with N being the number of lattice sites
in one direction. Values ofΛ cannot be taken too close
to Λmin because the characteristic scaling behavior of
the dimensionalλi in the continuum limit [22] must
still be observable.

Let us summarize the essential steps of the algo-
rithm. First, a Wilson ensemble of the link variables is
generated. Then the spin field ensemble is computed.
For every element of the ensemble the functions�Si are
computed for some trial coupling constants. The inte-
gral over a spin field at a fixed sitex involved in the
definition of�Si has to be done numerically. Then the
iterating algorithm is applied to compute the coupling
constants. Finally, the procedure is repeated for several
ensembles of the spin field which are obtained from
the original ensemble by truncating (integrating out)
short wave length components. This gives the renor-
malization group flow of the coupling constants which
can tell us about the stability of the effective action in
the infrared limit. Using an appropriate scaling ofλ1 in
the continuum limit, one can compute the mass scale
of knot solitons supported by the effective action (1),
while the coefficients at the additional terms would de-
termine their stability.

As a final remark, it should be noted that the choice
of the spin field ensemble suggested above is associ-
ated with the maximal Abelian gauge. It might be in-
teresting to investigate the effective action if different
Abelian gauges are used to obtain the spin field ensem-
ble. The purpose of such a study is to seek a numeri-
cal evidence that the effective dynamics of Yang–Mills
fields in the infrared region is indeed governed by con-
figurations that exhibit topological defects when taken
in any Abelian gauge [23]. A generalization of (8)
for the spin field ensemble can be defined as follows.
Let Ωx(u) be a gauge transformation such thatuΩ

l

satisfies some Abelian gauge. The latter implies in
particular that there exists a field defined at eachx,
�Φx = �Φx(u

Ω) which is diagonal[τ3, �Φx ] = 0 and also
�Φx(u

Ω) = Ω
†
xΦx(n,u)Ωx . Therefore, a general equa-

tion for the spin field reads

(30)
[
Φx(n,u),nx

] = 0,

whereΦx is any function ofnx andul which trans-
forms according to the adjoint representation of the
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gauge group. An example of the fieldΦx(n,u) is given
by the first two terms in Eq. (8), and Eq. (8) itself is
clearly equivalent to (30). Link variables in two dif-
ferent Abelian gauges are related to each other by a
singular gauge transformation. Eq. (30) is covariant
under such transformations and, hence, represent the
most general equation for the spin field components.

The simplest class of Abelian gauges is obtained
by taking Φx to be independent of the spin field.
In this case, the spin field is identified as a solu-
tion of (30): nx = Φx(u)/|Φx(u)| where the verti-
cal bars mean the norm with respect the trace scalar
product in the Lie algebra. This is the case of the
Polyakov Abelian gauge [24] and the so-called Lapla-
cian Abelian gauge [25]. The spin field ensemble in
the case of the Polyakov Abelian gauge is probably
the simplest one to generate. In fact it is possible to
average over all such choices ofΦ in the Yang–Mills
path integral (dynamical Abelian gauge [26]) by using
a supersymmetric extension of the theory.

The SU(N) generalization of (30) is also straight-
forward. TakeN − 1 orthonormal and commutative
spin fields, (na

x, n
b
x) = δab and [na

x, n
b
x ] = 0 where

a, b = 1,2, . . . ,N − 1. They should satisfy the equa-
tion [Φx(n,u),n

a
x] = 0 where Φx is some opera-

tor that transforms under the adjoint representation.
In the simplest case whenΦx depends only on the
link variables, the solution for the spin fields is
obtained by orthogonalizing the commutative fields
Φa

x ∼ d
(a)
i1i2···ia+1

ei1Φ
i2
x · · ·Φia+1

x whereei is an orthog-

onal basis in the Lie algebrasu(N), Φx = eiΦi
x and

d
(a)
i1i2···ia+1

are theN − 1 symmetric irreducible invari-
ant tensors ofsu(N). Since for any Lie algebra ele-
mentΦx it always possible to constructN −1 linearly
independent elementsΦa

x (using the tensorsd(a)) that
commute withΦx and amongst each other, the spin
field can also be specified by[Φb

x (n,u),n
a
x ] = 0 for

some choice ofΦb
x (n,u). A generalization of Eq. (8)

to the SU(N) case is simple. One has to replacenx

by na
x in the first two terms (this definesΦa

x (n,u))
andξxnx by

∑
b ξab

x nb
x in the third one whereξab

x =
(Φa

x , n
b
x).

Note added

After submission of the paper for publication, I have
learned that the group of A. Wipf have done numerical

simulations on a 164 lattice [27]. The mass gap in
the spin field spectrum and possible globalSO(3)
symmetry breaking (a preferable direction of the spin
field) have been reported so far. The existence of
the mass gap around the lowest glueball mass should
certainly be expected because of the Abelian (and
monopole) dominance. The interesting question of the
renormalization group flow of the coupling constants
is still to be studied.
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