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Abstract

To verify the conjecture that Yang—Mills theory in the infrared limit is equivalent to a spin system whose excitations are knot
solitons, a numerical algorithm based on the inverse Monte Carlo method is proposed. To investigate the stability of the effective
spin field action, numerical studies of the renormalization group flow for the coupling constants are suggested. A universality
of the effective spin field action is also discussed.

[0 2001 Elsevier Science B.®@pen access under CC BY license.

1. Itwas conjectured [1] that th8J (2) Yang—Mills gap in the spectrum of quantum Yang—Mills theory
theory in the infrared region can be described as a spin would therefore naturally be introduced as the lowest

system with the following action energy bound in the quantum soliton spectrum. A few
important questions are to be addressed to validate or

S =/dx {m2@,m)2 + g 2[n- @un x w7}, (1) invalidate this attractive picture. First, what is the ac-
tual value of the mass scale’ which determines the

wheren? = 1 (boldface letters stand for three-vectors). low energy bound (in the classical soliton theory) [6]?
The path integral representation of the effective ac- Second, is the effective action stable from the point of
tion (1) can be deduced from the Yang—Mills theory view of the renormalization group flow of its coupling
path integral via an implicit change of integration vari- constants? Third, how big are the higher order correc-
ables [2]. The analysis can be extended toSHEN) tions to (1)? The purpose of this Letter is to set up a
case [3,4]. Nonperturbative excitations of the effec- numerical approach to answer these questions.
tive theory are knot solitons [5]. Knot solitons look The existence of degrees of freedom whose dy-
more like stringy excitations, which is believed to be a namics dominates in the infrared region of Yang—
right physical picture of nonperturbative excitations of Mills theory was established in numerical simulations
gauge fields. Yet, if the effective action (1) turns outto [7-9] of lattice Yang—Mills theories some time ago. It
be a good approximation to the Yang—Mills theory in was observed that dominant contributions to the string
the infrared limit, the nonperturbative dynamics can be tension come from topological defects (monopoles)
studied by quantum soliton theory methods. The mass which occur in typical vacuum configurations of gauge
fields when the latter are taken in a special gauge
T E-mail address shabanov@phys.ufl.edu (S.V. Shabanov). known as th_e maximal Apelian gauge. Topological de-
1 0On leave from Laboratory of Theoretical Physics, JINR, fects unavoidably occur in any gauge that breaks the
Dubna, Russia. gauge group to its maximal Abelian subgroup [10]. In
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classical theory, it is evident from the fact that the ho-
motopies of the gauge group and its maximal Abelian
subgroup are different [11] (see more on the gauge fix-
ing problem in quantum gauge theories in [12]). The
importance of the above numerical discovery is that

the defects alone are sufficient to reproduce essential

nonperturbative features of Yang—Mills theory. The
numerical procedure of singling out topological de-
fects in Abelian projections of the lattice Yang—Mills

theory can therefore be used in a theoretical analysis
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to expressC,, and W, as functions of4, andn.
Substituting them into (3), an equation far as a
functional of A,, is derived. It has been shown that
for a givenA,, the corresponding spin field can be
computed as [2]

(4)

wherer; are the Pauli matrices(i; t;) = 26;; ands$24
is a group element which depends dp so that the

n= Etr(r.@;rsQA), T = (11, 72, 13),

to parameterize the relevant degrees of freedom of the 93U9€ transform o, with 2, satisfies the maximal

Yang—Mills connection and compute their effective ac-
tion. It should be noted that the gauge fixing here does
not serve its conventional purpose—removing non-
physical degrees of freedom—nbut rather it becomes an
auxiliary tool to identify the degrees of freedom rele-
vant for the infrared physics of the Yang—Mills theory.
After a change of variables, that splits all the Yang—
Mills degrees of freedom into the “infrared relevant”
ones and the rest, is found, the effective action can

be computed in any convenient gauge and its gauge X . .
Tcarries Dirac magnetic monopoles. The monopoles

invariance can be established by the standard BRS
technique [2,3].

In our earlier works [2,3], a relation between the
spin fieldr and topological defects of the connection
in the maximal Abelian gauge has been found

Ay=g Ymxn4+nC,+W,, 2

where W, satisfies the following conditions. It is
perpendicular ta and

oW, + (e, +nCy) x Wy

=V, (@+nC)W, =0. ®3)

Herea, = g~13,n x n is the connection introduced

in [13]. Relation (2) is a change of variables in the
space of connections. Indeed, the original variables
A, have 12 independent scalar functions. There are
two independent scalar functionsinfourin C,,, and,

Abelian gauge. Topological numbers of the defects
have an integral representation via the spin fie[@].

The gauge transformatiad, is in general singular
(it might not even be single valued in spacetime).
In other words, for a typical vacuum configuration
of gauge fields, the maximal Abelian gauge can
only be achieved by a singular gauge transformation.
According to numerical simulations [7], the third
component of the gauge fixed configuratiotﬁ,
which is associated with the unbrokgiil) subgroup,

alone contribute about 90% to the energy of the flux
tube (string) between static sources in the Yang-—
Mills theory. The monopole spacetime trajectories
are determined by singularities a24. Hence, by
taking Abelian connections of the monopoles and
applying the inverse gauge transformati@h} to
them, one can parameterize the relevant (or “monopole
producing”) degrees of freedom of a generic Yang—
Mills connection. The result of this procedure is
given by Egs. (2) and (3). By construction, the spin
field r carries all the information about the spacetime
distribution of the defects, and, hence, its effective
theory should describe the infrared physics of the
original Yang—Mills theory.

Using the path integral representation of the spin
field effective action [2], one-loop calculations have
been done in [14F They show that the action (1) is to

hence, there must be six independent scalar functions®® modified by adding terms containing higher order
in W, Thisis the case indeed because 12 componentst'me derivatives (which might be a source of instability

of W, satisfy six independent conditions: four in of knot solitons). The one-loop renormalization group
n-W, =0 and two in (3). Note that ifW, is flow for the effective action parameters also indicates

perpendicular toz, then covariant derivatives d¥ , that the effective action might be stable in the infrared
with respect the connectior,, + nC, is always region [14]. The results of [14] seems encouraging
perpendicular tae. The inverse transformation can be

found by multiplying (2) byn U.Sing first t.he dot and 2 see also [15] where different approaches, not related to the
then cross products. The obtained relations allow one observations in lattice gauge theories, have been explored.
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and deserve further studies, particularly, by some group elements2,(x;) can be found by maximizing
nonperturbative methods. the function [17]

Since the topological defects in the gauge-fixed the-
ory are not sglutiogns to the clas;sicalg eq?Jations mo- Xu(£2) = Ztr[f3(“19)Tf3“19]v (6)
tion with a finite energy or action, it is rather hard to !
give them an accurate mathematical meaning in con- for each configuration; of the Wilson ensemble. The
tinuum quantum theory. The nonlinear change of vari- collection of group element®, at all lattice sites is
ables (2) makes sense for classical connections whoseegarded as variables, while are just parameters.
values are well-defined almost everywhere in space- For every configuration; the functiony, can have
time. Typical quantum fields that form support of the many local maxima. This is an evidence of the Gribov
path integral measure are distributions rather than clas-problem in lattice gauge theories (see for a review [12]
sical smooth functions. The change of variables (2) is, and references therein). For every element of the
in fact, ill-defined (because it involves products of dis- Wilson ensemble;, one should take2, («) at which
tributions) unless some short-distance regularization is y, attains its absolute maximum. Finding an absolute
implemented. This can be achieved either by defining maximum ofx, is a difficult, if not impossible, task
the path integral perturbatively with an ultraviolet cut- in the numerical gauge fixing. The state-of-the-art
off, or by using the lattice (nonperturbatively defined) extrapolation toward the global maximum gf can
path integral for gauge theories. This latter approach be found in [9]. The ensemble of the spin field is then
is adopted in the Letter. computed ag, (u;) = %tr(r[);mﬂx).

Here we develop the idea, first suggested in [2], of It is also possible to find the lattice version of
using the inverse Monte Carlo method [16] to find out the change of variables (2) and therefore to obtain a
whether (1) is indeed a good approximation to the in- system of cubic equations whose solution defines the
frared Yang-Mills theory. Within the framework of  spin field components as functions of link variables
lattice Yang—Mills theory, an explicit numerical algo- (the lattice analog of the equations for the spin
rithm is proposed to compute and study the effective field suggested in [2]). Define an algebra element at
action for the spin field and the renormalization group each siter, = Q;ffggx which satisfies the constraint
flow of its parameters, which comprises the main goal trn)zc = 2. Combining (5) and (6) and introducing
of the Letter. the Lagrange multipliek, to take into account the

constraint orn,, the extreme value problem for (6)

2. In lattice gauge theories, the dynamical variables s equivalent to the extreme value problem for the

are group elemenis,,, = u; € SU(2) associated with  fnction

each link, wherex enumerates lattice sites, and

indicates the direction of the link from the site Let Fu(n) = Z{Ztr[”xw“;r”x“l]
{u;} be a Wilson ensemble of link variables distributed x U

with the Boltzman probabilityZv_Vle‘SW with Sy 1
being the Wilson action of link variables any +5x(§tr")zc - 1>} (7)
the normalization factor (the partition function). The

first step of the proposed numerical simulations is to Setting the variations ofy,(n) with respect ton,
generate an ensemble of the spin field from the Wilson andé, to zero, the following equation for, can be
ensemble. The spin field in the decomposition (2) deduced

is defined by Eq. (4). Thus, for every configuration . +

u; one has to find a configuration 03:‘ gaugge group Px(n, 1) = Z(”x*“’“n*’_“”““’“ +”x’“n*’+“u;“)
elements$2, (1;) such that the gauge transformed o

configuration +25cn, =0. (8)
2_ ool 5 Now assume thaf2, («) is a local maximum of (6)
= St e ) and, henceg, is a solution to (8), them® satisfies

satisfies the maximal Abelian gauge. Heret+ u
denotes the lattice site nexttdn the directionw. The

the maximal Abelian gauge and, by construction=
n, - . The Lagrange multiplie§, = &, (u, n) is fixed
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by multiplying (8) byn, and taking the trace. After
the substitution of, = &, (u, n) into (8), one gets the
equation for the components of the spin field. Only
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where the sum is taken over the ensemble of the
spin field, Z; = fDn e~S is the partition function,
Dn =[], dn, and the integration over a spin at each

two scalar equations in (8) are independent. They site implies the integration over a unit two-sphere.
determine two independent components of the spin Parameterizing the spin vector by the spherical angles

field as functions of the link variables.

As has been mentioned above, the group elements?tx = (COSpx SiNGy, SiNg, SiN6.;, COSP,),
£2, and hence the spin field are not regular everywhere

in space in the continuum theory. It is not difficult to
give an example of2, and the corresponding spin
field n, such that the connectiam, coincides with
the Wu-Yang monopole (e.g., take= x/r, r =
|x]) which, in the maximal Abelian gauge, contains
a Dirac monopole at the origin. The spin field is ill-
defined at the position of the monopole. In the lattice

gauge theory, the topological defects occur on the

dual lattice sites [17]. For every configuratiop the
configurations2, («;) and, hencen, are well-defined
and contain all the information about locations of

(10)

we getdn, = d¢, db, sind, whereg, € [0, 27) and

0, € [0, w]. The expectation value (9) is also realized
as an expectation value with respect to the original
Wilson ensemble. Note that Eq. (8) defines the spin
field as a function of link variableg, = n,(u).
Hence,

(Fm), = z;ﬁ/ Due™ "™ F(n(w)), (11)
whereZy is the partition function for the Wilson ac-

tion. In principle, this observation can be used to deter-
mine the effective action directly via the original Wil-

the defects (magnetic monopoles) on the dual lattice g5, ensemble. The idea is the same as in the contin-

and their topological nhumbers (magnetic charges).
Consider an elementary cube of the spatial lattice
and spins on its vertices. Frankly speaking, with

an isolated defect present at the cube center, the DnA(u,n)l_[(S(q)x(n,u))zl,

spins are directed outward (or inward) the cube. In

the confinement phase the monopole—antimonopole

pairs (or monopole loops, when describing topological

uum case [2]. Define the functiof(u, r) by the con-
dition

(12)

X

where @, = 3tr(rgs) (see (8)), which leads to

. ' ) . b ot
defects by their spacetime trajectories) are condensedA («, #) = detd¢{/dny). The parameterization (10)
(noisolated defects), therefore the above simple visual Must be used to compute the derivatives and also

picture would not be valid. Howeven,, is still well-

the identity ¢, - n, = 0 is to be taken into ac-

defined at each lattice site and its dynamics can be count when computing the determinant. In space-

studied.

3. The configurations of gauge fields are dis-
tributed with the Boltzman probabilitz‘;,le*SW. The
spin field configurations obtained from the Wilson en-
semble must also be distributed with some probability
Z;71e=S whereS is the unknown effective action of
the spin field. The problem is therefore: given an en-
semble ofi,, find the corresponding probability or the
effective actionS(n).

Any correlator of the spin field can be computed by
the Monte Carlo method since the ensemble is known

(Fm), zzglfDn e SF(n)

L > F(m)+0(M~*?),

{n}

= ©

time the matrixagojj/an’; appears to be sparse be-

cause nonzero elements can only occur fo& x,

x £ p. Substituting the identity (12) into the inte-

grand in (11), changing the order of integration and

comparing it with (9), it is not difficult to deduce

that

S(n) = —|n<A(u,n)l_[8((pX(n, u))> , (13)
X u

wheren, is now held fixed in the average over the

Wilson ensemble.

Although (13) defines the spin field effective action
as an expectation value of some function of the link
variables, we are interested only in its behavior in the
infrared region. In the continuum case this amounts
to the so-called gradient expansion of the (nonlocal)
effective action. In the numerical approach, the action
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is sought in the form
S~ Zk,-S,-,
i

whereS; are some specified functions of the spin field,
whereas the coupling constants are to be deter-

(14)
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2
Sax = |:Z(sx,p. - sxu,;/.):|
"

+[x>x=x+u]l+[x>x'=x—pul
(19)
In the continuum limit, the action (15) goes into (1)

mined. Since we are interested to compare the effec- ith the additional terms described above. Phterm

tive action with (1), we first find all possible local and
independent terms that are of the forth order in deriva-
tives and might contribute to the gradient expansion
of S. In addition to the two terms in (1) it is nec-
essary to include?n - 92n and [(d,n)?]%. The four
terms are all independent Lorentz and isotopic invari-
ant terms containing up to four derivative operators.
In fact, there is one more invariant term which can
be built by contracting the Lorentz tens@yn x d,n
with its dual (like af-term in the Yang—Mills action).
Higher order terms can be classified accordingly by
contracting invariantirreducible tensors of the isotopic
and Lorentz groups with isotopic tensor products of
the spin field and its derivatives. Then the renormal-
ization group flow of the constants must be studied
as high momentum components of the spin field are
removed (integrated out). The renormalization group
flow would show whether or not the effective action
is stable (or, in other words, is a good approximation
to (13)) in the infrared limit, and thereby validate or
invalidate the conjecture.

We set

Si Z%ZSixv
1

X

(15)

where m; is the number of spins involved into a
local interactionS; .. Lets, ;, = nyx4, — yxultx, Where
Yxu = Ry - By 1S defined by the conditiosy, , -n, =

0 to make the correspondence with the continuum
theoryd,.n-n = 0. Leta be a lattice spacing. The local
spin interactions are written as

S1x ZQZZ[S)ZML +s)2€—M’M]’ (16)
"
2 2
e = [Zsf,ﬂ} ) [22} | )
© I
S3x = Z[(sx,p, X sx,v)2 + (sx—v,p, X sx—v,v)z
1w,
+ (sx—p,,u X sx—u,v)z]v (18)

has the same form &, where instead of the sum of
squares, the sum of the dot products of each vector and
its Lorentz dual has to be taken. Local spin interactions
giving rise to terms with higher powers 6f, in the
continuum limit can be constructed similarly by using
the correspondence ruleéyn — s, ,, 20,0,n —
Sx+p,v — Sx,v T+ Sx+v,u — Sx s etc.

Note that two terms inS1, give the same contri-
bution as the sum over is taken in (15) and there-
fore m1 = 2. Similarly, each of three terms if;,

(i = 2,3,4) gives the same contribution to (15) and
m; = 3. The reason the equivalent term are given in
Six is thatS;, is the part of the actiol§; that contains
all terms involving the spim, at a fixed sitex. This
representation will be useful in what follows.

4. Here we formulate the inverse Monte Carlo al-
gorithm for computing);. The inverse Monte Carlo
method is well-known in studies of the real space
renormalization group of spin systems [16]. It has also
been applied to compute an effective action for mono-
pole currents in the maximal Abelian projection [18].
The use of the spin field order parametgr rather
than the monopole current is more appealing because
of several reasons (relations to the quantum soliton
theory, similarities between strings and knot solitons)
pointed out after (1).

Let S, denote all terms ir$ that contain the spin,
at a fixed sitex, Sy =) ; A;Six. For everysS;(n) we
construct a new function

1 _
; Z Z;J-/dnx eisxSix = Z Sixs
i
x X (20)

where Z, = Z,(n) = [dnye 5. The bar in S,
denotes an expectation value carried out with respect
to the effective action---), but calculated for only
one spin,n,. The environment (i.e., neighboring
spins) is held fixed. Sas;, depends only on the spins
at the sites neighboring witly, i.e., onn,4+, and

Si(n, A) =
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n.+2,. Taking the expectation value 6f, we find the through a linear mapping of the spaceief Another

identity method to compute the coupling constants is to use
— the Schwinger—Dyson equations [20]. In principle, the
(Si (")>u = ( Si(n, M>u- (21) coupling constants can be compared with their “exact”

Using the Monte Carlo method (9), the Lh.s. of (21) Values defined through (13). The expectation value in
can be computed, while the r.h.s. cannot. The inte- the r.h.s. of (13) can be expanded into a series over the
gral overn, in (20) cannot be computed for given spin field around_ some s_p(_acific spin field configura-
configurations of neighboring spins because the true tion. The expansion coefficients can be computed my
values ofA; are not known. Had the Coup"ng con- the Monte Carlo method in the Wilson ensemble. For
stants been known, the ordinary integral in (20) could instance, the mass scalg can be obtained by taking
have been computed, for instance, numerically for any the second derivative of (13) with respect to the spin

givenn,s, andn,to,. field at the particular configuratiosf, = 834 (as was
Suppose some trial valuds of the coupling con- suggested in the continuum case [2]). This procedure

stants are taken to compute the r.h.s. of (20). The involves, however, computations of the determinant,

equality which is very costly. Eq. (11) can be used to measure

. o the goodness of the approximation (15)—(19).
(Sim. 1), =(Si(n. 1)) (22)
holds if and only if 4; = ;. This is used to set
up an iterative algorithm to find the true coupling
constants. Eq. (22) is regarded as a system of nonlinea
equations where the I.h.s. is known (cf. (21)). It can be
solved numerically by Newton’s method or some of its
alterations. Fok; ~ ; we have

u’

5. Having found the coupling constants, the renor-
malization group flow for them has to be investigated
to prove the stability of the effective action in the limit
fof large wave lengths. With this purpose, we use the
representation (10) to take into account the constraint
n? = 1. Let the matrixf,, be a discrete Fourier trans-
form associated with the latticé),, S fak = Swk

(Si)u — (E’(ﬂﬁ))w and}) ", i fex = 8xx. The sum overk implies the_
sum over all momentum vectors allowed by the lattice.
~ Z<i Si(n, A)> (rj — 5\]). (23) Given the ensemble &f, and¢,, the Fourier compo-
; OAj ula=x nentsd; andgy can be computed.

Next the spin field ensemble can be generated for

Using the definition (20), it is not difficult to show that all momenta bounded from above by some sctde

0 — _—_
o S =578 = S;Si. 24 6:(A) =) fubr. (28)
J _ keK1

The function §;S; is defined by (20) wheres;, is Similarly for ¢ (A1). The sum in (28) is extended
replaced byS;. Six. The true values of the coupling  oyer those vectoré whose norm does not exceed
constants are computed by the iterating procedure the scaleAr. This subset in the momentum space
b (A™) =S A, (AM) (.Y _ pmy, o5 is deno_tedKl. The e_nsemblezx(Al) can be used
") Z i () / J ) (25) as the input for the inverse Monte Carlo procedure

! described in the previous section to compute new

bi (") = (51- (), — (Si (n, 1))

» (26) coupling constants; (A1).
Ay (A™) =(5S; - 5:55) | (27) Repeating this procedure for successively smaller
1 9] LOJ [y la=r(m)> .
. scalesAg1 < Ax we can obtain the sequence of
wherekgo) = A andkf’” — A; asn — o0. the coupling constants (Ax), k=0,1,2,..., where

The convergence depends on the choice of the trial k = 0 corresponds to the coupling constants computed
constantsi;. If iterations take many cycles, statisti- with the original spin field ensembles. By truncating
cal errors are likely to introduce instabilities in the the sum over momenta in (28) we generate a spin field
solution. A similar problem was encountered in [19]. ensemble in the infrared region (large wave lengths).
The solution there was to find the iteration limit Hence the sequenck (A;) describes the behavior
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of the coupling constants as functions of the scale
A that restricts allowed momenta from above in the
effective theory, i.e., ad decreases, the infrared limit
is approached.

The explicit removal of Fourier modes can be
strongly affected by the breaking of rotational sym-
metry on coarse lattices or for larget’s. So, the
block spin decomposition [16,21] might be a more at-
tractive procedure to study the renormalization group

207

It should also be noted that the lattice size becomes
important in studies of; (A). It is clear thatAmax =
Ag ~ 1/a and Amin ~ 1/L wherea is a lattice mesh
andL = Na with N being the number of lattice sites
in one direction. Values ofl cannot be taken too close
to Amin because the characteristic scaling behavior of
the dimensional,; in the continuum limit [22] must
still be observable.

Let us summarize the essential steps of the algo-

flow. The idea is to average spins over elementary cells rithm. First, a Wilson ensemble of the link variables is

(blocks) of the original lattice. For instance, the an-
gular variable®, and¢, are specified at elementary

cubic cell vertices. Consider a new lattice with mesh
2a which is constructed as follows. Let the poinbe

generated. Then the spin field ensemble is computed.
For every element of the ensemble the functi§inare
computed for some trial coupling constants. The inte-
gral over a spin field at a fixed siteinvolved in the

the center of the elementary cell. The neighboring sites definition of S; has to be done numerically. Then the

are theny +2u. So, each site of the new lattice is in-
side an elementary culgg, of the original lattice, and
the cube<y, andC,  do not have common vertices if
y # ', while C, andC,' coincide ify = y’. Define

0y =27"""1% "0,

xeCy

(29)

and similarly for¢,, where D is the lattice dimen-
sion. That isp, is an average value @f over all ver-
tices of one elementary cube. The spin fieldis de-
fined by (10) whera — y. The averaging (29) is also

equivalent to removing short wave length components

of the spin field. Doing this procedure for a succes-
sively larger lattice spacing &2 4a, etc.) and com-

iterating algorithm is applied to compute the coupling
constants. Finally, the procedure is repeated for several
ensembles of the spin field which are obtained from
the original ensemble by truncating (integrating out)
short wave length components. This gives the renor-
malization group flow of the coupling constants which
can tell us about the stability of the effective action in
the infrared limit. Using an appropriate scaling\afin
the continuum limit, one can compute the mass scale
of knot solitons supported by the effective action (1),
while the coefficients at the additional terms would de-
termine their stability.

As a final remark, it should be noted that the choice
of the spin field ensemble suggested above is associ-
ated with the maximal Abelian gauge. It might be in-

puting the coupling constants on each step, we can teresting to investigate the effective action if different

again generate the renormalization group flgwAy)
(whereA; ~ 275 /q).

The behavior oh; (A) allows one to verify whether
the effective action (1) (possibly with extra terms) is
stable in the infrared region as was observed in [14] in
the one-loop approximation. For instance, it is critical
to observe the right signs a@f 3 (cf. (1)) becausé.q
sets the mass scale for knot solitons, whiteshould
reproduce the running gauge coupling constarin
the continuum limit. Relatively large (and growing)
values ofi, 4 would mean instability of knot solitons.
It would also indicate that the approximation (1) is

Abelian gauges are used to obtain the spin field ensem-
ble. The purpose of such a study is to seek a numeri-
cal evidence that the effective dynamics of Yang—Mills
fields in the infrared region is indeed governed by con-
figurations that exhibit topological defects when taken
in any Abelian gauge [23]. A generalization of (8)
for the spin field ensemble can be defined as follows.
Let £2,(u) be a gauge transformation such th@?
satisfies some Abelian gauge. The latter implies in
particular that there exists a field defined at each
@, = @, (u*?) which is diagonalrs, ] = 0 and also

@, (u?) = 210, (n, u)$2,. Therefore, a general equa-

not justified and the higher order spin interactions are tion for the spin field reads

relevant for the spin field dynamics. In this case more
higher order terms have to be included into (15) and
the renormalization group flow of the corresponding
coupling constants is to be computed.

[@x(n,u),nc]=0, (30)

where @, is any function ofn, andu; which trans-
forms according to the adjoint representation of the
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gauge group. An example of the field. (n, u) is given simulations on a 1% lattice [27]. The mass gap in
by the first two terms in Eq. (8), and Eq. (8) itself is the spin field spectrum and possible glotsD(3)
clearly equivalent to (30). Link variables in two dif- symmetry breaking (a preferable direction of the spin
ferent Abelian gauges are related to each other by afield) have been reported so far. The existence of
singular gauge transformation. Eq. (30) is covariant the mass gap around the lowest glueball mass should
under such transformations and, hence, represent thecertainly be expected because of the Abelian (and

most general equation for the spin field components.

monopole) dominance. The interesting question of the

The simplest class of Abelian gauges is obtained renormalization group flow of the coupling constants

by taking @, to be independent of the spin field.
In this case, the spin field is identified as a solu-
tion of (30): ny = &, (u)/|Px(u)| where the verti-

is still to be studied.

cal bars mean the norm with respect the trace scalar Acknowledgements

product in the Lie algebra. This is the case of the

Polyakov Abelian gauge [24] and the so-called Lapla-

cian Abelian gauge [25]. The spin field ensemble in

| am grateful to A. Wipf and his colleagues for
warm hospitality extended to me during my stay at

the case of the Polyakov Abelian gauge is probably the Institute for Theoretical Physics of the University
the S|mplest one to generate. In fact it is pOSSIb'e to of Jena (Germany) and organizing a set of lectures

average over all such choices&fin the Yang—Mills
path integral (dynamical Abelian gauge [26]) by using
a supersymmetric extension of the theory.

The SU(N) generalization of (30) is also straight-
forward. TakeN — 1 orthonormal and commutative
spin fields, (nA, nb) = 8% and [n%, n%] = 0 where
a,b=1,2,..., N — 1. They should satisfy the equa-
tion [qﬁx(n,u),nﬁ] = 0 where @, is some opera-

tor that transforms under the adjoint representation.

In the simplest case whe@, depends only on the
link variables, the solution for the spin fields is
obtained by orthogonalizing the commutative fields

QU ~ dl(l“l)2 o e1PpZ ... @ wheree! is an orthog-

onal basis in the Lie algebmu(N), &, = ¢ ®. and

d,(fl)z iay, are then — 1 symmetric irreducible invari-
ant tensors ofu(N). Since for any Lie algebra ele-
ment®, it always possible to construst — 1 linearly
independent elements? (using the tensord@) that
commute with®, and amongst each other, the spin
field can also be specified Hy?(n, u),n%] = 0 for
some choice ofb?(n, u). A generalization of Eq. (8)
to the SU(N) case is simple. One has to replace
by n¢ in the first two terms (this define®? (n, u))
andé&,n, by 3", £€9°n? in the third one wherg?” =
(@4, n}).

Note added

After submission of the paper for publication, | have
learned that the group of A. Wipf have done numerical

where some of the above ideas were first discussed. It
is my pleasure to thank the Alexander von Humboldt
foundation for financial support. I would like to thank
the referee for many suggestions to improve the paper
and useful references.
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