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Existing forest biomass stockmaps showdiscrepancieswith in-situ observations inMexico. Grounddata from the
National Forest and Soil Inventory of Mexico (INFyS) were used to calibrate a maximum entropy (MaxEnt) algo-
rithm to generate forest biomass (AGB), its associated uncertainty, and forest probabilitymaps. The input predic-
tor layers for theMaxEnt algorithmwere extracted from themoderate resolution imaging spectrometer (MODIS)
vegetation index (VI) products, ALOS PALSAR L-band dual-polarization backscatter coefficient images, and the
Shuttle Radar TopographyMission (SRTM) digital elevationmodel. A Jackknife analysis of themodel accuracy in-
dicated that the ALOS PALSAR layers have the highest relative contribution (50.9%) to the estimation of AGB,
followed by MODIS-VI (32.9%) and SRTM (16.2%). The forest cover mask derived from the forest probability
map showed higher accuracy (κ = 0.83) than alternative masks derived from ALOS PALSAR (κ = 0.72–0.78)
orMODIS vegetation continuous fields (VCF) with a 10% tree cover threshold (κ=0.66). The use of different for-
est cover masks yielded differences of about 30 million ha in forest cover extent and 0.45 Gt C in total carbon
stocks. The AGB map showed a root mean square error (RMSE) of 17.3 t C ha−1 and R2 = 0.31 when validated
at the 250 m pixel scale with inventory plots. The error and accuracy at municipality and state levels were
RMSE=±4.4 t C ha−1, R2= 0.75 and RMSE=±2.1 t C ha−1, R2= 0.94 respectively. We estimate the total car-
bon stored in the aboveground live biomass of forests of Mexico to be 1.69 Gt C ± 1% (mean carbon density of
21.8 t C ha−1), which agrees with the total carbon estimated by FAO for the FRA 2010 (1.68 Gt C). The new
map, derived directly from the biomass estimates of the national inventory, proved to have similar accuracy as
existing forest biomass maps of Mexico, but is more representative of the shape of the probability distribution
function of AGB in the national forest inventory data. Our results suggest that the use of a non-parametric max-
imum entropy model trained with forest inventory plots, even at the sub-pixel size, can provide accurate spatial
maps for national or regional REDD+ applications and MRV systems.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Forests sequester carbon through photosynthesis and store it pri-
marily as living aboveground biomass of trees (AGB). AGB is defined as
the mass of living organic material for a given area, and approximately
50% of AGB is carbon (IPCC, 2003). Because of the slow turnover time
of AGB, it is a key quantity when estimating terrestrial carbon stocks.
In recognition of its importance, biomass has been identified as an es-
sential climate variable (ECV) by the Global Climate Observing System
(GCOS) to support the work of the United Nations Framework Conven-
tion on Climate Change (UNFCCC) and the Intergovernmental Panel on
Climate Change (IPCC) in monitoring climate change.
ez-Veiga), saatchi@jpl.nasa.gov
alzter).

. This is an open access article under
Deforestation and forest degradation are considered to be the largest
source of greenhouse gas emissions in many tropical countries (Gibbs,
Brown, Niles, & Foley, 2007). Accurately monitoring and reporting the
AGB of forests is a requirement of international policies to mitigate cli-
mate change through the reduction of greenhouse gas emissions from
deforestation and forest degradation, as well as the enhancement of
existing forest carbon stocks (REDD+, Reduction of Emissions formDe-
forestation and Forest Degradation). The implementation of REDD+ in-
cludes an element of measurement, reporting and verification (MRV)
forwhich appropriate systemshave to be developed at national, sub-na-
tional or project levels.

Mexico is actively participating in the United Nations (UN) climate
mitigation programmes and is developing a national REDD+ strategy
to include actions at project level and jurisdictional level accompanied
by an MRV system at national level. Mexico has already developed a
dense network of national forest inventory plots to support national
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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forest policies through geographic and statistical information in which
the first cycle started in 1961. These plots are also used in the Mexican
national greenhouse gas inventory. However, the inventory plots are
designed for large-scale statistics on forest carbon stocks and changes.

A transparent and efficient methodology with frequent updates is
required for a national MRV system. It is recognised that a combination
of remote sensing data and forest inventory data is required for this pur-
pose, since neither data source is able to satisfy the full data require-
ments for MRV. Remote sensing data allows the production of spatial
maps that can improve GHG monitoring at local and national scales,
and provide information that can be used for land use planning and
management (Gibbs et al., 2007). For example, by mapping forest bio-
mass, deforestation and forest degradation, it is possible to provide esti-
mates of GHG emissions and removals at local and national scales
(Houghton, 2005).

In the past decade, several maps of forest structure and AGB have
been produced at continental and national levels with resolutions
from 250 m to 1 km to represent landscape-scale variations in carbon
stocks (e.g. Hansen et al., 2003; Blackard et al., 2008; Lefsky, 2010;
Baccini et al., 2012; Baccini, Laporte, Goetz, Sun, & Dong, 2008;
Saatchi, Harris, et al., 2011b, Simard, Pinto, Fisher, & Baccini, 2011,
Santoro et al., 2011; Thurner et al., 2014). In addition, regional maps
at finer spatial resolutions (around 30 m) are available for specific
areas (e.g. Hansen et al., 2013; Cartus et al., 2014; Avitabile, Baccini,
Friedl, & Schmullius, 2012, Asner et al., 2012; Hame, Rauste, et al.,
2013; Hame, Kilpi, et al., 2013). Some of these approaches are limited
by the absence of well-distributed in-situ sample sites at the scale of
the used remote sensing data (Houghton, Hall, & Goetz, 2009), and to
some extent by the limited sensitivity of the selected satellite sensors
to AGB (Patenaude, Milne, & Dawson, 2005).

Passive optical sensors can differentiate vegetation from other sur-
faces based on the selective absorption of electromagnetic radiation by
the chlorophyll-a and b systems in plants. For the AVHRR and Landsat
satellite series, several decades of data are now available from archives.
The main shortcoming of these sensors is that visible light cannot pen-
etrate clouds, and passive sensors can only operate during day-time,
leading to reduced availability of cloud-free images. Due to their orbital
characteristics, there is a trade-off between pixel resolution and higher
revisit frequency. Medium resolution (30 m) optical sensors such as
those on the Landsat satellites have a 16-day revisit time, which
makes it challenging to obtain cloud-free observations over large
areas. New products such as the Landsat WELD (Roy et al., 2010) are
able to generate monthly, seasonal and annual top-of-atmosphere
(TOA) radiance composites at 30 m resolution globally. However, even
the annual composites still have gaps in very cloudy areas of the
world. The few cloud-free observations acquired over those areas are
subject to the timeof acquisition in relation to the seasonal phenological
cycle. Coarser resolution (250 m) optical sensors such as MODIS have a
24 h revisit time and therefore more opportunities to image under
cloud-free conditions than Landsat. In addition, the estimation of AGB
from optical imagery is limited by the saturation of the signal at low
AGB (Gibbs et al., 2007).

As active sensors, synthetic aperture radar (SAR) sensors are inde-
pendent of solar illumination, and can collect imagery during day and
night. Microwave radiation also penetrates through haze, clouds and
smoke. The radar backscatter (the amount of scatteredmicrowave radi-
ation received by the sensor) is related to AGB as the electromagnetic
waves interact with scattering elements like leaves, branches and
stems. The sensitivity of the SAR backscatter to AGB depends on the
radar wavelength (Le Toan et al., 2004), with shorter wavelengths
being sensitive to smaller canopy elements (X- and C-band), and longer
wavelengths (L- and P-band) being sensitive to branches and stems.
Longer wavelengths are theoretically more suitable for estimation of
AGB as tree branches and stems comprise the highest fraction of AGB
in forests. The sensitivity of L-band SAR backscatter (the longest wave-
length available from spaceborne SAR at present) usually saturates
between 100 t ha−1 and 150 t ha−1 (Wagner et al., 2003; Mitchard et
al., 2009). Approaches that combine different types of imagery can cir-
cumvent the saturation problem and exploit the specific strengths of
each sensor over large areas (e.g. Saatchi, Harris, et al., 2011b, Thurner
et al., 2014).

Forest map products should not only include forest parameters such
as AGB but also provide information about their uncertainties. Estima-
tion of the uncertainty at the pixel scale requires a method of error
propagation and needs to consider measurement error, allometric
error, sampling error, and prediction error. Forest is not a well-defined
semantic concept (Wadsworth et al., 2008), hence a certain degree of
vagueness in the definition of forest as a land cover type is intrinsic to
any forestmap,whether it is explicitly described or not. Fuzzy set theory
is most commonly used to tackle these issues in spatial data by provid-
ing pixel-scale information on the degree of class memberships. Given a
specific definition of forest, the degree of forest class membership of
each pixel provides a measure of the uncertainty whether the pixel is
a forest.

It is important to differentiate between forest area and forest cover.
Forest area is purely based on land use and includes temporally unstocked
areas that are intended for use as forest,while forest coveronly includes ac-
tual forest vegetation, independently of the land use. Forest cover can be
estimated from remote sensing data, while forest area needs additional
land use information. The forest definition also plays a key role. Sexton
et al. (2015) demonstrated the effect of using different forest definitions
to generate forestmasks fromremote sensingdata, estimating thediscrep-
ancies in global forest extent among eight commonly used satellite prod-
ucts to be up to 13% of the global forest cover. Just within the tropics, the
discrepancies between the satellite products lead to a variation in themag-
nitude of estimated carbon stocks of 45.2 Gt C with a value of approxi-
mately US$1 trillion (Sexton et al., 2015).

The Mexican Land Use and Vegetation map (LUV) developed by the
Mexican National Institute for Statistics and Geography (INEGI) uses a
combination of visual interpretation of optical imagery and field verifi-
cation to create a land use and vegetation class vector layer at a scale of
1:250,000 (125 m spatial resolution) over the whole Mexican territory
(INEGI, 2009). The dataset describes types of forest in Mexico based
on several characteristics such as species composition, soils, elevation
and climate (INEGI, 2014a) instead of standard biophysical parameters
such as minimum canopy cover or canopy height which can be ob-
served in remote sensing imagery. The FAO defines forest as “Land span-
ning more than 0.5 hectares with trees higher than 5 meters and a canopy
cover of more than 10 percent, or trees able to reach these thresholds in
situ” (FAO, 2012). However, FAO's forest definition also includes tempo-
rally unstocked areas. Forest cover maps using the FAO definition while
ignoring temporally unstocked areas can be produced from optical and
SAR sensors, and are often used in vegetation studies.

MODIS vegetation continuous fields (VCF) and the ALOS PALSAR
Kyoto andCarbon Initiative forest/non-forest (K&C-FNF)map are exam-
ples of widely used forest cover products based on a similar FAO forest
definition but generated from only optical or SAR imagery, respectively
(Saatchi, Harris, et al., 2011b, Thiel, Thiel, & Schmullius, 2009, Shimada
et al., 2011; Shimada et al., 2014; Hame et al., 2013). MODIS VCF pro-
vides annual, global, sub-pixel-scale data of percent tree cover
(Hansen et al., 2003) at 250 m spatial resolution. This percent tree
cover product is defined as the amount of skylight obstructed by tree
canopies equal to or greater than 5 m in height (Hansen et al., 2003).
Percent tree cover thresholds above 10%, in accordance with the FAO
forest definition, are commonly used to create binary forest/non-forest
maps (Saatchi, Harris, et al., 2011b). The VCF percent tree cover defini-
tion is slightly different from FAO's canopy cover definition as VCF is
based on light penetration through the canopy, while FAO's canopy
cover definition is based on crown vertical projection over the ground
regardless of light penetration.

TheALOS PALSARKyoto & Carbon (K&C) Initiative is an international
programme led by the Japan Aerospace Exploration Agency (JAXA)
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whose main products are annual forest/non-forest cover maps for the
years 2007 to 2010 and 2015 with resolutions from 25 m to 100 m.
These products estimate the forest cover using a simple decision tree
that is based on a threshold of the horizontal-transmit vertical receive
(HV) polarized L-band radar backscatter coefficient (Shimada et al.,
2011; Shimada et al., 2014). This threshold is optimized for large regions
(e.g. North America, Africa, the Amazon). Forests are defined in this
product as areas where the cover of woody vegetation exceeded 10%
(Shimada et al., 2014).

The forest maps fromMODIS and ALOS PALSAR have different char-
acteristics due to the specific properties of each sensor. For example,
using VCF as a forest mask could lead to an erroneous forest extent be-
cause the percent tree cover in sparsely vegetated areas tends to be
overestimated by VCF (Sexton et al., 2013; Montesano et al., 2009).
The PALSAR L-band radar backscatter for crops or settlements can be
similar to backscatter from forests and lead to a systematic misclassifi-
cation of non-forest pixels as forest. Also, forests and woodlands with
low biomass, some plantations and high biomass mangroves are often
classified as non-forest by the K&C-FNF, as the signal from these cover
types is lower than the backscatter threshold for the ‘forest’ class
(Shimada et al., 2014). Estimates of forest cover at continental level by
the K&C-FNF differ by −15% to 42% from the Landsat percent tree
cover (PTC) product for different continents (Shimada et al., 2014;
Hansen et al., 2013). The forest cover estimation from the K&C-FNF is
10.4% lower than the Landsat PTC in North America (Shimada et al.,
2014). As a result, a forest AGBmap using these forestmaskswould con-
tain an unaccounted element of uncertainty and lead to potentially bi-
ased estimations of carbon stocks. How the differences in forest cover
estimation affect the estimation of carbon stocks at national and region-
al levels has not been studied yet.

A studyofAGB stocks in theUSAused classification and regression tree
modelling of 250m spatial resolutionMODIS imagery and forest invento-
ry data to estimate AGB, its uncertainty, and forest probability maps
(Blackard et al., 2008). The study also used the National Elevation Dataset
(NED, Gesch et al., 2002) and land cover map layers from the National
Land Cover Dataset (NLCD92, Vogelmann et al., 2001). However, the un-
certainty in AGBwas only based on the relative error of themodelled pre-
diction, lacking an error propagation approachwhichwouldhave allowed
the incorporation of other sources of uncertainty at pixel scale.

Forest aboveground biomass carbon (AGBC) stocks inMexico for the
FAO Forest Resource Assessments were estimated by the Comision
Nacional Forestal (CONAFOR). Saatchi, Harris, et al. (2011b) mapped
AGBC over the whole tropical region for the first time (including Mexi-
co) using satellite datasets at 1 km spatial resolution, and estimated
the uncertainty of AGBC on a pixel scale by combining the probabilistic
outputs generated from the MaxEnt algorithm with data from ICESat
GLAS LiDAR footprints and MODIS, quick scatterometer (QSCAT) and
SRTM. Later work by Baccini et al. (2012) mapped AGBC in the tropics
(partially covering Mexico) at 500 m resolution using ICESAT-GLAS
LiDAR, MODIS and SRTM, but without spatial uncertainty estimation.
These tropical carbon maps for the year 2000 by Saatchi, Harris, et al.
(2011b) (hereafter TCM-1) and for the year 2005 by Baccini et al.
(2012) (hereafter TCM-2) are consistent in their methods but show
large discrepancies in AGB (Mitchard et al., 2013). They also disagree
with the official carbon estimations for Mexico from in-situ data (FAO,
2010a) andwith grounddata and locally calibrated products in other re-
gions (Hill, Williams, Bloom, Mitchard, & Ryan, 2013, Mitchard et al.,
2014; Carreiras, Melo, & Vasconcelos, 2013). These maps have been
globally calibrated (continentally in the case of TCM-1) using AGB refer-
ence data estimated fromGLAS heightmetrics and global or continental
allometric models solely based on canopy height, which might explain
why they do not fully capture the spatial variation of AGB. The most re-
cent assessment covering the whole of Mexico is the map of forest
aboveground carbon stocks for the year 2005 by Cartus et al. (2014)
(hereafter MRF) at 30 m resolution from a Random Forest (Breiman,
2001) algorithm. The studies described above follow different
approaches, which have resulted in substantial differences in the total
amount of carbon stocks in Mexico (Table 1). TCM-1 estimates a carbon
stock in Mexico 0.71 Gt C higher than MRF. This difference can be con-
verted to 2.6 Gt CO2−e (carbon dioxide equivalent) and translated to
an economic value of $23.9 billion using the average price of $9.2/
t CO2−e (Peters-Stanley, Hamilton, & Yin, 2012).

In this study, a MaxEnt approach is used to estimate AGB at country-
level with locally calibrated field inventory data and compared to
existing AGB products. The contribution of different input datasets
(ALOS PALSAR, MODIS, and SRTM) is analysed. The resulting AGB map
is used to estimate forest carbon stocks inMexico and their uncertainty.
The probability of a pixel belonging to the forest class is estimated, and a
systematic error propagation approach to assess the uncertainty of AGB
estimates at pixel scale is described. The forest probability layer ranges
from 0% (uncertain) to 100% (certain). The forest probability layer al-
lows the assessment of the uncertainty associated with the metric esti-
mates of AGB, and the uncertainty in the binary forest/non-forest mask.
The results from using different forest masks based on a similar forest
definition (i.e. FAO) but originating from different sensors are also pre-
sented. Sources of uncertainty in the approach are discussed and com-
pared to previous studies.

2. Study area and data

2.1. Study area and AGB reference data

Mexico's topography, climate, and history of human land use are ex-
tremely diverse, leading to a wide variety of different forest habitats
(Fig. 1). The north of the country is covered by amosaic of dry evergreen
forest, deciduous forest and shrub vegetation, while the central region
and the south are covered by a diverse mix of evergreen and deciduous
forest, cloud forest at high elevations, shrub vegetation, savannahs,
mangroves, and evergreen, deciduous and semi-deciduous tropical for-
ests. The Yucatan peninsula is dominated in the north-west by sub-
humid or dry deciduous tropical forest, while the south-east is dominat-
ed by humid evergreen tropical forest, with mangroves and areas of
other hygrophilous vegetation. An increasing gradient of AGB is expect-
ed to be observed from NW (dry) to SE (humid) of the Yucatan penin-
sula. Mexico is also one of the countries with the highest biodiversity
in the world (Mittermeier, 1997). This biodiversity is mostly concen-
trated in the tropical forest areas of the country.

Mexico is covered by approximately 65million ha of forest and 20mil-
lion ha of other wooded land (43% of the national territory) (FAO, 2005).
The Mexican National Forest and Soil Inventory (INFyS) of CONAFOR is a
national inventory database that provides information on the size, spatial
distribution and condition of forest resources (SEMARNAT, 2004). This in-
formation is used to support the development of national policies for
sustainable development and to promote forestry activities. The field
plot data from this inventory can be integrated with Earth observation
data to map AGB over the whole country. Each field plot from INFyS
(CONAFOR, 2012b) has a data record spanning 8 years from 2004 to
2012. We use 17,171 plots comprising four 400 m2 (0.04 ha) sub-plots
representing an area of about 1 ha, which are systematically distributed
across all forested areas of Mexico. All live trees above 7.5 cm of diameter
at breast height weremeasured within these sub-plots. The sampling dis-
tance between centres of the plots is 5 × 5 km in forest and mangroves,
and 10 × 10 km in dry tropical forest and semi-arid vegetation. Therefore,
a total area of 0.16 ha is sampled at each location and assigned to the over-
lapping remote sensing pixels of 6.25 ha (250× 250m) used in this study.
The difference betweenplot size andpixel size is one source of uncertainty
in mapping the forest biomass.

A total of 339 allometric equations and 214 species-specific wood
densities were used by CONAFOR (CONAFOR, 2012b; CONAFOR, 2012a)
to estimate tree-levelAGB following aprotocol for allometricmodel selec-
tionwhich prioritises the use of species-specific models andwood densi-
tieswithin their diameter range. Ifmore than one equation is available for



Table 1
Comparison of different carbon stock assessments for Mexico.

Study Period Method Datasets Total carbon
(Gt C)

Mean carbon
(t C ha−1)

RMSE pixel level
(t C ha−1)

FAOa 2000 Forest inventory INFyS, LUV 1.75 26.24 N/A
2005 1.72 26.22
2010 1.68 25.93

TCM-1b 2000 MaxEnt GLAS. MODIS, QSCAT, SRTM 2.24 32.94 ±27.3%⁎

MRFc 2005 Random Forest INFyS, LUV, Landsat PTC, ALOS PALSAR, SRTM 1.53 23.61 ±14.4
TCM-2d 2005 Random Forest GLAS, MODIS, SRTM 1.95⁎⁎ 46.35 ±25.0

a FAO (2010a)
b Saatchi, Harris, et al. (2011b) (TCM-1). 1 km (100 ha) pixel size. VCF 10% cover as forest mask.
c Cartus et al. (2014) (MRF). 30 m (0.09 ha) pixel size. LUV as forest mask
d Baccini et al. (2012) (TCM-2). 500 m (25 ha) pixel size.
⁎ Relative error.
⁎⁎ Country half covered.
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each tree the equation with highest R2 or with the closest regional rele-
vance is selected. If no species-specificmodel is available, the sameproce-
dure is followed at higher levels (genus and forest type). Due to the lackof
species- or genus-specific allometries for all tree species, generalized
models are used (Chave et al., 2005; Brown, 1997) for approximately
half of the plots in the INFyS database (Cartus et al., 2014).

Most plots have been measured twice during this 8 year period. In
these cases the average of both measurements was used if the second
measurement was higher or relatively similar to the first measurement.
This was done to better represent the AGB in the reference year of 2008
of the INFyS measurements (2004–2012). If the second measurement
was significantly lower, it was assumed that the forest was cleared dur-
ing the period, and therefore the plot was removed from the analysis.
Several primary unitswere also excluded due to the lack of geographical
coordinates. A total of 16,613 plots from the INFyS datasetwere retained
for thefinal analysis. The primary sampling sites from INFySwere divid-
ed into a training dataset (15,348 plots) and a validation dataset (1265
plots), comprising 90% and 10% of the data respectively (Fig. 1).
Fig. 1. Land use and vegetation map of Mexico (INEGI, 2009). Training dataset (black dots) a
2.2. Remote sensing data

Remote sensing imagery (Table 2) was collected, mosaicked, co-
registered and aggregated to 250 m spatial resolution. Scatterplots
and spatial trend plots were used to assess the correlation of AGB to
the remote sensing data layers. MODIS vegetation index (VI) 16-day
products (MOD13Q1) (NASA, 2008) over Mexico (9 mosaic tiles)
were acquired from the USGS (USGS, 2012). MODIS VI layers
were used to generate NDVI, EVI, Blue, Red, MIR, and NIR layers
for the greenest vegetation period. The highest NDVI (greenest)
values in Mexico occur between July and August; here the period from
June to September is used. Maximum values of NDVI and EVI products
as well as averages of the reflectance bands were then generated
for this period using the reliability layers to discard pixels covered
by snow, ice or clouds. MODIS vegetation continuous fields—VCF
(MOD44B) collection 5 data (DiMiceli et al., 2011) were acquired
from the Global Land Cover Facility (GLCF) to generate a mosaic over
Mexico.
nd validation dataset (red dots) comprising 90% and 10% of the INFyS data respectively.
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Slope-corrected, orthorectified, and radiometrically calibrated ALOS
PALSAR backscatter intensity mosaics at 50 m resolution for both
polarisations (HH and HV) were obtained from JAXA (JAXA, 2014) for
the years 2007, 2008, and 2009. A destriping process (Shimada &
Isoguchi, 2002) is applied by JAXA to equalize the intensity differences
between neighbouring strips due to seasonal and daily differences in
surface moisture conditions. Strips with remaining significant striping
were excluded. Multi-temporal averaged mosaics were aggregated to
250m resolution to reduce speckle. The K&C-FNF product at 100m res-
olution was also obtained from the same repository and aggregated at
250 m resolution based on a majority rule. The Mexican Land Use and
Vegetation map (LUV) vector file developed by INEGI (INEGI, 2014b)
was also acquired. A gap-filled version of the Shuttle Radar Topography
Mission—SRTM (USGS, 2006) at 250 m resolution was obtained from
the International Centre for Tropical Agriculture (CIAT) (Jarvis, Reuter,
Nelson, & Guevara, 2008). The SRTM elevation was used to estimate
slope and aspect of the terrain which were included as predictors.

2.3. Validation data

The INFyS dataset was stratified in a random sampling framework in
seven forest types (evergreen, deciduous, mix evergreen–deciduous,
cloud forest, mangrove, evergreen tropical forest and deciduous tropical
forest) and further within three AGB ranges (quantiles for low, medium
and high AGB). 10% of the plots from each stratum were set aside. This
dataset (1265 plots)was excluded from the training of theMaxEnt algo-
rithmandwas used instead to validate theAGBmap. Additionally, an in-
dependent forest/non-forest binary validation dataset distributed
systematically in a triangular mesh pattern over Mexico was generated.
These 198 validation pointswere 100 kmapart. Each pointwas assigned
to the class “forest” or “non-forest” based on a visual classification of a
square area with 300 m of side around the point using Google Earth
high resolution multi-temporal imagery from 2008 and the closest
available years. In this task the LUV dataset was also used as a reference
of the potential vegetation for each site. Tree canopy cover (using FAO's
canopy cover definition) of more than 10% of the area was defined as
“forest”. The different forest masks were validated against this dataset.

3. Methods

3.1. Modelling approach

There are different parametric and non-parametric approaches to
extrapolate field plot-derived estimates of AGB to global and regional
scales using remote sensing imagery. TheMaxEnt algorithmused here al-
lows the combination of different sensor types to scale up the field plot
measurements (Phillips, Anderson, & Schapire, 2006, Phillips, Dud, &
SCHAPIRE, 2004). MaxEnt is a non-parametric algorithm that generates
spatial predictions of probability distributions based on an incomplete
set of information (Phillips et al., 2006; Phillips et al., 2004; Li & Guo,
2010). Itwas originally developed for statisticalmodelling of species pres-
ence datawithout full knowledge of species absences, and identifies rela-
tionships between explanatory environmental variables (here the remote
sensing data layers) and the response variable (here AGB).
Table 2
List of remote sensing products and layers used in this study.

Remote sensing product Resolution

16-Day MODIS VI (2008) 250 m
ALOS PALSAR mosaic (2007–2009) 50 m
Digital elevation (2000) 90 m
Vegetation continuous fields (2008) 250 m
K&C-FNF (2008) 100 m

VI, vegetation indices; NDVI, normalized difference vegetation index; EVI, enhanced vegetation
FNF, forest/non-forest.
Several studies (Elith et al., 2011; Hastie, Tibshirani, Friedman, &
Franklin, 2005, Wollan, Bakkestuen, Kauserud, Gulden, & Halvorsen,
2008) have found that MaxEnt is reliable and performs well in compar-
ison to other machine learning algorithms and is more stable using cor-
related variables than for example stepwise regression. Removing
correlated variables or pre-processing of covariates is therefore less im-
portant for MaxEnt. Saatchi, Harris, et al. (2011b) presented a multi-
sensor approach that uses MaxEnt to map the spatial distribution of
AGB at 1 km spatial resolution for the entire tropical biome. An advan-
tage of this approach is the explicit treatment of the uncertainty of the
AGB estimation on a pixel scale, allowing the incorporation of different
sources of error and the analysis of the contributions of each remote
sensing data layer across the AGB estimation range.

MaxEnt estimates the probability distribution of discrete classes
with maximum entropy (closest to a uniform distribution) subject to
the constraints established by the input information (remote sensing
data layers) (Phillips et al., 2006). In 1000 iterations for each AGB class
the weights for combining the remote sensing data layers are adjusted
to maximise the average sample likelihood (training gain), and to esti-
mate the distribution over the whole region. This approach is an adap-
tation of the method by Saatchi, Harris, et al. (2011b), which uses the
probabilities calculated by the MaxEnt algorithm to estimate AGB and
its uncertainty (Fig. 2). Here, we use AGB field plots and allometric
models to calibrate the algorithm regionally instead of Saatchi's ap-
proach to estimate AGB from GLAS LiDAR footprints (using a 2-step
modelling from LiDAR metrics to canopy height, and then to AGB) for
a large continental calibration. In addition, a forest probability layer
was generated from this method, instead of using MODIS VCF for
masking forest cover.

The implementation of this probabilistic method required the set of
AGB training plots to be classified into discrete AGB classes. The mini-
mum number of plots per class was 100. Thus, the training dataset
was divided into eleven classes in 20 t ha−1 intervals (1–20 t ha−1,
21–40 t ha−1,…, N200 t ha−1). These AGB classes were used in combi-
nation with the remote sensing data layers in MaxEnt to create eleven
AGB class probability layers. AGB of each pixel was calculated as the
weighted average AGB per pixel with the probabilities as weights
(Eq. 1). The uncertainty of the AGB prediction (εprediction) was calculated
from the root mean square error (σcAGB) per pixel (Eqs. 2 & 3). The fol-

lowing equations were used (Saatchi, Harris, et al., 2011b):

dAGB ¼ ∑N
i¼1P
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where dAGB is the AGB prediction per pixel, and Pi is the probability esti-
mated byMaxEnt for eachAGB rangeAGBi (average valuewithin class i).
The power n of the probability is used to weight the predicted value
Sensor Layers

MODIS NDVI, EVI, blue, red, MIR, NIR
ALOS PALSAR HV, HH
SRTM Elevation, slope, aspect
MODIS Percent tree cover
ALOS PALSAR Forest / non-forest

index; SRTM, Shuttle Radar Topography Mission; MIR, mid-infrared; NIR, near-infrared;



Fig. 3. Forest extent defined by the LUVmap, by the FP25%, byMODIS VCFwith 10% tree cover threshold (hereafter VCF10%), and byK&C-FNF. Dark grey represents forest and light grey non-
forest. The location of validation points (n = 198) is displayed in the LUV map.

Fig. 2. Schematic of the MaxEnt AGB distribution model approach used in this study. Remote sensing predictors include optical, SAR and DEM datasets.
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Table 3
Summary statistics of final maps using different forest masks.

Forest mask (threshold) Forest probability (%) Forest area κ Forest cover (M ha) Average AGBC (t C ha−1) Average uncertainty (±%) Total AGBC (Gt C)

FP25% 0.47 0.83 77.25 21.8 49.3 1.69
FNF-14.5 dB 0.45 0.78 80.21 20.6 49.9 1.65
K&C-FNF 0.44 0.72 73.80 21.2 51.1 1.56
VCF10% 0.36 0.66 97.80 19.6 57.7 1.92
LUV 0.43 0.56 67.27 21.8 50.2 1.47
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towards the maximum probability closest to the true value when other
probabilities are small. This study used n = 3. As explained in Saatchi,
Harris, et al. (2011), n = 3 preserves the skewness in the distributions
for each pixel, and produce the best results based on cross-validation
tests.

The total uncertainty at pixel level is composed of four sources of
error which are assumed to be random and independent. These are
propagated using the following equation:

εAGB ¼ ε2measurement þ ε2allometry þ ε2sampling þ ε2prediction
� �1=2

; ð4Þ

Themeasurement error of tree level parameters such as diameter and
tree height (εmeasurement) averaged at plot scale (Chave et al., 2004) was
assumed to be 10% (Mitchard et al., 2011). The error in estimating AGB
using allometric equations (εallometry) with species-specific wood densi-
ties and diameter ranges is on average 11% based on Chave et al.
(2004). The error originating from the variability of AGB within the
6.25 ha pixel area (εsampling) depends on the size of the plots used to up-
scale theAGBmeasurements to the pixel scale. This error is approximated
using data from Chave et al. (2003) on the AGB variability of a 50 ha plot.
Chave et al. (2003) use a sample size equation for the 95% confidence in-
terval and found that at least 160 plots of 0.04 ha area are needed to
Fig. 4. Scatterplots of INFyS in-situmeasured AGB versus remote sensing variables used in this s
each 10 t ha−1 interval AGB range). Warmer colours indicate higher point density. Frequency s
estimate AGB of a 50 ha plot with a ±10% uncertainty. This means that
a sampling intensity of 12.8% (0.04 × 160/50) is needed. By assuming
the same variations in the 6.25 ha pixel, the number of 0.04 ha plots
needed to reach the same sampling intensity will be 20. Each pixel
uses one INFyS primary unit containing four 0.04 ha sub-plots
(0.16 ha). Thus, the uncertainty of the AGB estimation will increase to
22.4% (10� ffiffiffiffiffiffiffiffiffiffiffi

20=4
p

). This value is also similar to the error estimated
for 0.2 ha plots in old-growth forest in La Selva Biological Station in
Costa Rica (Saatchi, Marlier, Chazdon, Clark, & Russell, 2011a). The error
calculated for each pixel from the prediction probabilities of MaxEnt
(εprediction) also accounts for the representativeness of the sampling sites
of the true distribution ofAGB in the region (Saatchi, Harris, et al., 2011b).

In order to avoid non-zero biomass estimates in non-forest pixels,
the forest area has to be masked out. The FAO forest definition of forest,
ignoring temporally unstocked areas, is used here. As the probability
calculated by the MaxEnt algorithm is equal to the Gibbs probability
and is proportional to the conditional probability of the class (i.e. forest
class) (Li & Guo, 2010), the locations of forest inventory plots can be
used as training data to generate a forest probability map (FP). These
plots were located in forest areas according to the CONAFOR forest def-
inition. However, only plots with canopy cover above 10% and canopy
height above 5 m were used as training data, in accordance with the
FAO forest definition (FAO, 2010b) and other forest cover products
tudy. Trend lines are generated from the square points (average value of the variables per
pider-diagram per AGB class is used for elevation aspect.



Fig. 5.Average AUC ofAGBmap for single variablemodels and all variables together (left). AverageAUC of AGBmap formodels excluding a single variable (right) (note: y-axis has different
scaling).
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(MODISVCF andK&C-FNF). This newplot datasetwas then used to train
theMaxEnt algorithm. The same remote sensing data layers used to de-
velop the AGB and uncertainty maps were also used for this forest class
probabilitymap. The resultingmap provides a conditional probability of
each pixel being forest.

A binary forest/non-forest layer is defined by setting a probability
threshold for the pixel belonging to the forest class. Four threshold op-
timization criteria have been recommended in previous studies: one
threshold whichmaximises the κ coefficient of agreement with the val-
idation dataset (Pearson, Dawson, Berry, & Harrison, 2002); a second
where sensitivity (proportion of positives correctly identified) equals
specificity (proportion of negatives correctly identified) of the binary
classification (Hattab et al., 2013; Freeman & Moisen, 2008); a third
that maximises the sum of sensitivity and specificity (Hattab et al.,
2013; Freeman & Moisen, 2008); a fourth threshold corresponding to
a 5% error of omission (Li & Guo, 2010, Pearson, Dawson, & Liu, 2004).
The probability threshold corresponding to the 5% of the error of omis-
sion in the training data obtained from the MaxEnt algorithm was 27%,
for the equal sensitivity and specificity 46%, and for the maximum sen-
sitivity plus specificity 35%. The highest κ obtained from the validation
for the forest masks generated from the FP map occurred for the proba-
bility threshold of 25% (i.e. the first threshold optimization criterion
listed above). Therefore, a forest/non-forest layer was generated using
the lowest threshold (hereafter FP25%).

Other forest masks are also compared to the FP25% mask (LUV,
MODIS VCF, and K&C-FNF). A visual comparison between the forest
cover defined by these products shows differences (Fig. 3). The K&C-
FNF product is based on a HV backscatter threshold optimized for
large areas. A second forest maskwas generated from the ALOS PALSAR
backscatter layers by optimizing a threshold for Mexico using the
Fig. 6. Average AUC (left) and average model gain
validation dataset. The best results were obtainedwith a HV backscatter
threshold of−14.5 dB (hereafter FNF-14.5dB). The accuracy of these for-
est masks was assessed against the forest/non-forest validation dataset.
As the accuracy of the FP25% is highest (Table 3), this mask was used for
the final AGB map.

3.2. Analysis of remote sensing variables and algorithm performance

The performance of MaxEnt was assessed by bootstrapping 25% of the
trainingdata. Jackknife analyseswereperformed to select themost suitable
input data layers for predicting AGB and forest cover. The analyses were
performed based on the area under the receiver operator curve (AUC)
and model gain following Phillips et al. (2006), for both the training and
validation data. The same remote sensing variables were used to predict
the FP map and the AGB class probability layers. Remote sensing layers
from three sensors (MODIS, SRTM, and ALOS PALSAR) were also used.
The variable importance was analysed with the relative contribution of
each variable (data layer) to theMaxEntmodel gain. The analysis was per-
formed for each remote sensing data layer and AGB class. Models were
evaluated using all variables, excluding one variable each time, and using
one variable in isolation each time. A permutation analysis was carried
out for each remote sensingdata layer by randompermutationof the train-
ing data and re-evaluating the model. A large drop in AUCmeans that the
MaxEnt model depends strongly on that variable. The drop in AUC was
then normalized to relative values.

3.3. Uncertainty analysis and comparisons at municipality and state level

The independent validation dataset (10% INFyS plots) was used. The
uncertainty map generated by the MaxEnt error propagation approach
(right) of AGB map for training and test data..



Fig. 7. Percent contributions to the AGB map per biomass range (lines) and frequency
INFyS plots (columns).
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was used to analyse the uncertainty in AGB levels and forest types. A
multi-scale analysis of total carbon stocks derived by the INFyS dataset
and by the AGB map derived using the MaxEnt approach was carried
out following Cartus et al. (2014) at municipality and state levels. The
average AGB per ha for each municipality/state was calculated as the
mean of the values from the INFyS plots, weighted by the forest type
area (coniferous forest,mixed coniferous-broadleaved forest, broadleaved,
Fig. 8. A) Aboveground biomass, B) biomass uncertainty, and C) forest probability
humid tropical forest, dry tropical forest, andmangrove forest). The INEGI
land use and vegetation map was used for this purpose.
3.4. Comparison with previous studies

The present study (hereafter AGB-MEX) was compared to previous
studies of AGBC stocks in Mexico (Saatchi, Harris, et al., 2011b, Baccini
et al., 2012; Cartus et al., 2014; FAO, 2010a). AGBC is calculated in this
study by applying the Mexican average AGB-to-carbon ratio of 0.48.
AGB-MEX used a forest inventory plot dataset (INFyS) based on a sys-
tematic stratified sampling design with a sampled area of 0.16 ha per
plot to train 250 m (6.25 ha) pixels (2.5% sampled area within the
pixel). TCM-1 used a random sampling design (ICESat footprints) and
at least five 0.4 ha GLAS LiDAR footprints (2 ha) to train the 1 km
(100 ha) pixels (N2% sampled area). AGB-MEX uses L-band SAR with
a wavelength that physically interacts more with forest AGB compo-
nents (replacing the Ku-band used in TCM-1). The AGB-MEX approach
also incorporated a FP map to produce a more accurate forest mask
than in TCM-1 (which used MODIS VCF10%), and provided spatial infor-
mation on the accuracy of themask. The TCM-2 also used AGBC estimat-
ed from GLAS LiDAR footprints to train a Random Forest algorithmwith
500m resolution MODIS imagery. The AGBC estimates from these stud-
ies were compared by assessing total AGBC stock, mean AGBC per ha,
histograms and spatial distribution across the entire Mexican territory.
Moran's I was also used to assess the spatial pattern (spatial clustering)
of the AGB predictions of each map over forest areas (delineated by the
LUV mask) within each state.
maps for Mexico ca. 2008. Maps are masked by a 25% probability threshold.



Fig. 9. Validation of the AGB map using an independent plot dataset. Warmer colours
indicate higher point density. Solid line: y = x.
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4. Results and discussion

4.1. Variable importance and model performance

Scatterplots of the INFyS dataset were used to assess the correlation
between AGB and the remote sensing data layers (Fig. 4). The analysis of
AGB by elevation band shows two point-cloud clusters.When excluding
plots from the Yucatan peninsula only one of the clusters remains,
showing a possible altitudinal gradient. The Yucatan peninsula in the
south-west of the country contains a wide range of AGB, including
Fig. 10. A) Uncertainty, B) RMSE, C) total Area, and D
some of the highest AGBmeasured inMexico. This area is predominant-
ly covered by humid tropical forest and the terrain is mostly flat and
near sea level in altitude. A positive trend is observed in the rest of the
country with increasing elevation for the INFyS data. The most strongly
correlated remote sensing data layer to biomass is theALOS PALSARHV-
polarized backscatter followed by the MODIS MIR reflectance (Fig. 4).

Jackknife analyses based on AUC changes were used to assess the re-
mote sensing data layers. MaxEnt models were run with each single
variable in isolation. Then, models using all variables together were
run excluding one single variable each time. The former shows the im-
portance of each variable on its own to predict AGB, while the latter
shows which variables contain more unique information that was not
included in the other variables. The results show that ALOS PALSAR
HV and MODIS MIR were the most important data layers used on their
own, while SRTM ASPECT and MODIS NIR were the least important.
The ALOS PALSARHV and SRTMELEVATION layers containmore unique
information, because the AUC drops the most when these variables are
excluded. In contrast, excluding SRTM ASPECT or MODIS NIR results in
the smallest decreases in AUC (Fig. 5).

To assess the relative importance of each remote sensor, AUC and
model gain analyses were performed, grouping input layers by remote
sensing instrument: ALOS PALSAR, MODIS, and SRTM (Fig. 6). Each col-
umn represents the average AUC and model gain obtained from the
probability class layers by running theMaxEnt algorithmwith different
sets of input layers. The combination of the three sensors showed supe-
rior prediction power over the use of single sensor or two sensors (Fig.
4), so this combination was used to develop the AGB and FP maps for
Mexico. The algorithm performance of the final AGB class probability
layers using the combination of ALOS PALSAR, MODIS, and SRTM prod-
ucts showed an average AUC = 0.93 (training data) and AUC = 0.90
(validation data), and for all cases P b 0.001. The AUC for the FP map
was 0.82 (training data) and 0.81 (validation data), with P b 0.001.

The variable importance analysis of the remote sensing data layers
shows that themain input layers contributing to theMaxEnt prediction
of AGB, when combined together, were ALOS PALSAR HV, MODIS MIR
and SRTM ELEVATION. This is expected, as those were the data layers
with a high information content that was not provided by any other
layer. MODIS MIR has a higher explanatory power for AGB than
) total AGB by AGB class for the AGB-MEX map.



Fig. 11. Average AGB and its associated uncertainty per pixel by forest type in Mexico.
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vegetation indices such as NDVI. This agrees with recent studies that
suggested a correlation of optical image bands (Landsat, MODIS) with
AGB beyond the theoretical saturation level due to canopy closure, espe-
cially in the infrared bands (Baccini et al., 2012, Avitabile et al., 2012),
which are sensitive to shadow andmoisture. Due to the high correlation
between data layers from the same sensor, the remaining layers have
lower importance. To address this problem, the analysis is also per-
formed with grouping the variables by sensor.

Overall percent contributions per sensor and permutation impor-
tance values showed very similar results. The overall percent contribu-
tions of ALOS PALSAR,MODIS VI and SRTMwere 50.9%, 32.9%, and 16.2%
respectively, while permutation importance values were 49.9%, 37.7%,
and 12.4%. In the case of the FP map, the percent contribution of ALOS
PALSAR is 77.5%, while MODIS VI and SRTM contributions are 16.8%
and 5.6%. Permutation importance values for the FP map were 56.7%,
32.3% and 11.0%. These results contrast with a previous study inMexico
that used optical Landsat percent tree cover, SAR ALOS PALSAR, and
SRTM to map carbon stocks, and found that the optical layer was the
most important predictor (Cartus et al., 2014).

When exploring the contribution of each remote sensing instrument
to the AGB class probability layers, it becomes clear that ALOS PALSAR
was the most important data layer for AGB classes up to 100–
120 t ha−1 and was still very relevant up to 180 t ha−1 (Fig. 7). Above
120 t ha−1 MODIS becomes more important and is eventually replaced
by SRTM above 180 t ha−1.

The decline in the contribution of ALOS PALSAR to the estimation of
AGB above 100–120 t ha−1 can be explained by the saturation of L-band
backscatter at high biomass (Wagner et al., 2003;Mitchard et al., 2009).
Fig. 12.Comparison of the average carbon estimated from theAGB-MEXmap and the INFyS data
(2014). Warmer colours indicate higher point density. Red line: y = x.
After the saturation threshold the weight of the estimation fluctuates
between data layers. None of the data layers on its own can predict
the amount of AGB after this point. MODIS optical imagery, as previously
mentioned, might contain information in theMIR bandwhich allows an
estimation of higher AGB. The large contribution of SRTM to the highest
AGB ranges (above 160 t ha−1) is notable, which is due to the specific
distribution of forest AGB in Mexico across the topographic gradient,
and which has also been observed in a previous study (Cartus et al.,
2014). Some of the highest values of AGB per ha in Mexico occur at
the highest altitudes and slopes (and precipitation), where Ayarín and
Oyamel forests are located (from 1500m to 2000maltitude). These for-
ests are characterised by tree species such as Pseudotsuga, Picea and
Abies and canopy heights above 30–40m. The lowestAGB usually occurs
in the lower-lying areas with relatively flat terrain. The only exception
to this gradient is the Yucatan peninsula, where high AGB values can
be found at low elevation with flat terrain.
4.2. Final AGB & uncertainty maps

Different forest masks were used to create AGBmaps of Mexico. The
total AGBC estimated for Mexico using the LUVwas 1.47 Gt C, which in-
creases by 30% to 1.92 Gt Cwhen using the VCF10% forestmask (Table 3).
It is apparent that VCF10% tends to overestimate forest cover in compar-
isonwith the other products due to themisclassification of areas such as
croplands, grassland and other sparse vegetated areas such as forest,
generating artificially inflated values of forest carbon stocks. This result
shows that the use of different forest masks can have a significant effect
on the total forest carbon stock estimated for a country. The carbon
stock estimated using the LUV mask is lower than the official 1.68 Gt C
reported to FAO (FAO, 2010a), but close to Cartus et al. (2014) estima-
tions of 1.53 Gt C. The difference between forest masks is up to about
30 million ha in forest extent and 0.45 Gt C in total carbon stocks,
which can be converted to 1.65 Gt CO2−e and an economic value of
$15.2 billion.

The AGB map (Fig. 8) using the FP25% forest mask presents the
highest κ and forest probability, and the lowest average uncertainty at
pixel scale (Table 3). The AGB-MEX map estimates the total forest
cover as 77.25 M ha, from which a total AGBC stock for Mexico of
1.69 Gt C can be inferred, by summingup the totalAGB of all forest pixels
and using the AGB-to-carbon ratio (0.48). The uncertainty at national
level can be calculated by increasing the sample area and propagating
the pixel errors from pixel to national scale. The relative uncertainty is
constrained below ±1% for the entire AGB-MEX map for Mexico.

The AGB-MEX map was validated against the independent plot
dataset (10% INFyS dataset) resulting in a R2 of 0.31 for the whole
atmunicipality (left) and state level (right) following the same approach as in Cartus et al.
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country. The RMSE and bias at pixel scale were 36.1 t ha−1

(17.3 t C ha−1) and −3.6 t ha−1 (−1.7 t C ha−1) (Fig. 9).
The highest uncertainty values primarily occur in the lowest AGB

ranges (Fig. 10) where the sub-pixel variability (i.e. vegetation gaps or
other non-forest cover within the pixel) plays an important role. This
error originates from the difference of size between the plots used as
AGB reference data and the pixel size of the remote sensing imagery
(εsampling in this study). The area covered by AGB below 20 t ha−1 across
Mexico has a considerable extent, but the total amount of AGB present
in those areas is relatively small in comparison (Fig. 10). Nevertheless,
these areas contribute to most of the uncertainty showed by the AGB-
MEX map. Some of these pixels are areas with small amounts of sparse
woody vegetation encroachments which may have a 10% canopy cover,
but in many cases cannot be considered a forest in the sense of FAO as
those have to be of at least 0.5 ha or 20 m in width which is below the
Fig. 13. AGBC maps and longitude–latitude AGBC trend analysis showing different amounts
resolution for comparison. The location of the INFyS in-situ plots were used as sample datase
(AGB-MEX, MRF, TCM-1, and TCM-2) and plotted as the height (z dimension). These value
together with their trend lines (polynomials), allowing to assess the longitudinal and latitudin
pixel size used in this study. However, there is no clear definition of forest
cover basedon a threshold of forest biomass estimated by remote sensing.
A biophysical definition of forestwould be useful to REDD+. The high un-
certainty in those areas gives an insight into the challenges of assessing
AGB changes between different periods for areaswith low biomass densi-
ty. This error is mostly originating from the plots used to train MaxEnt. A
6.25 ha pixel size is much larger than the INFyS plot area (0.16 ha per
1 ha) used to upscale the AGB measurements. The error associated with
the AGB variability at sub-pixel scale (εsampling) leads to a very high uncer-
tainty through error propagation (Eq. 4). This uncertainty could be re-
duced using larger sample plots (e.g. 1 ha sampled area plots) to reduce
the error originated from the sub-plot variability as suggested byprevious
studies (Saatchi, Marlier, et al., 2011a, Montesano et al., 2014).

Average AGB and its uncertainties also vary within forest types
(Fig. 11). These differences arise from the MaxEnt algorithm error
and spatial distributions of forest AGBC. All maps have been aggregated to 1 km spatial
t and represented in the x,y plane, while the AGBC values were extracted from each map
s are also projected in the x,z (east–west) and y,z (north–south) planes as scatterplots
al trends.



Fig. 15. Plot level AGB-H allometry for three different forest biomes in Mexico. AGB as a
function of mean canopy height of 15 m is marked with horizontal lines. Allometric
models were developed using INFyS plot inventory data.

Fig. 14. (A, B, C &D)Histograms of carbonmap predictions. Dash line: INFyS in-situplot data histogram. (E) Lower limit of histogramquantiles (samenumber of occurrences per bin). INFyS
location points were used to extract values from the carbon maps and produce their respective histograms.
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term (εprediction) due to weak correlations between remote sensing data
layers and AGB for certain forest types and AGB levels (e.g. caused by sig-
nal saturation at high biomass). Evergreen forests have the highest AGB
per hectare in Mexico. The map shows higher relative errors for decidu-
ous forest than evergreen forest, perhaps due to the seasonality of the
broadleaved phenology. Even though the optical data used in this
study were acquired within the vegetation growing season, the SAR im-
agery was acquired in different seasons. The forest structure and hence
the backscatter signal from deciduous trees under leaf-on or leaf-off
conditions will be different. Evidence for this effect is shown by the
correlation between L-band SAR backscatter and leaf area index
(Dabrowska-Zielinska et al., 2014; Canisius & Fernandes, 2012, Kovacs
et al., 2013). Wetlands also increase the uncertainty, because of the soil
moisture effect on radar backscatter. The use of additional SAR wave-
lengths or texture information generated from the SAR datamight better
characterise forest structure and can contribute to better estimations in
those forest types. The new BIOMASS satellite mission (Le Toan et al.,
2011; ESA, 2012) to be launched in 2020 will be less affected by small
scattering elements due to the large wavelength of the P-band sensor.

The agreement between the AGB-MEX map and the Mexican forest
inventory data was assessed with a multi-scale analysis. The AGB-MEX
map was converted to AGBC values using a carbon conversion factor of
0.48. The average carbon stock from the AGB-MEX map showed good
agreement with the INFyS field plot dataset at municipality scale (aver-
agemunicipalityarea=1.1·103km2;R2=0.76;RMSE=±4.4tCha−1),
1), and at state scale (average state area = 61.7 103 km2; R2 = 0.94;
RMSE = ±2.1 t C ha−1) (Fig. 12). AGB state level estimations can be
found in Table A1 of the Appendix.

These results confirm that a locally trainedMaxEnt approach can pro-
vide accurate estimates at spatially coarse scale. However, this is not the
case at the scale of the field plot data (1 ha inventory plots), where rela-
tive accuracies such as the ones expected from the BIOMASS mission (Le
Toan et al., 2011) are not achieved. The AGB-MEX map presented here
has quantified different sources of uncertainty (measurements, allome-
try, sampling, and remote sensing prediction) at pixel scale using an
error propagation model. The remote sensing prediction error presents
the largest error term. This error term increaseswith biomass level,most-
ly due to saturation of the signal at high biomass. Futureworkwill exam-
ine the better characterisation of the other sources of error, and how the
spatially distributed per-pixel error propagates to aggregated scales.
4.3. Comparison with previous studies

The amount and spatial distribution of AGBC in Mexico differs be-
tween published studies (Figs. 13 & 14). Trend analysis of the three-di-
mensional distribution of AGBC was performed over the latitudinal
(north–south) and longitudinal (east–west) gradients. There are con-
siderably different spatial trends in the southern-central part of the
country, where the TCM-1 and TCM-2maps display significantly higher
amounts of AGBC in comparison to the in-situ data, MRF, and the AGB-
MEX map. The MRF map and AGB-MEX map show similar spatial pat-
terns in the distribution of AGBC as well as the overall amount of AGBC
stocks (Fig. 13). However, the AGB-MEXmap characterises the increas-
ing trend in AGBC from the dry tropical forests in the northwest of the
Yucatan peninsula towards the humid tropical forests of the southeast
much more realistically.
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Moran's I tests at state scale were performed (see Table A2 in
Appendix A) using the locations of the inventory field plots to assess
the different degree of spatial clustering in each map per state. Small
states in the centre of the country such as Morelos and Aguascalientes
have larger differences between map products. The analysis also
shows that the state of Yucatan has much lower spatial clustering in
TCM-1 than in any other AGB map, which is also seen in Fig. 14. The
states of the Yucatan peninsula (Yucatan, Quintana Roo and Campeche)
present similar indices for the AGB-MEX and MRF maps.

The total AGBC estimated by the AGB-MEX map for 2008 was
1.69 Gt C (21.8 t C ha−1), which is close to the national estimate of
1.68 Gt C reported to FAO (FAO, 2010b), but very different from the
TCM-1 and TCM-2 maps (2.24 and 1.95 Gt C respectively). If the LUV
mask is used then the estimate was 1.47 Gt C, which is very close to
the MRF map estimate (1.53 Gt C). Differences between TCM-1 and
TCM-2 have previously been reported (Mitchard et al., 2013). When
comparing the pan-tropical maps, the MRF map, the AGB-MEX map
and the in-situ data, the different temporal coverage might not be suffi-
cient to explain these differences. Even though the spatialmodelling ap-
proach from TCM-1 is similar to theMaxEnt approach used for the AGB-
MEX map, the input data layers differ greatly. All the approaches also
face problems relating to the variability of AGBC per pixel, due to the dif-
ference between the size of the training plots and the pixel area
(εsampling). Using larger sampling plots for training can reduce this un-
certainty term in very heterogeneous forest types.

The AGBC in-situ data come froma large systematic stratified sampling
inventory of the forests in Mexico. It is assumed to be the most represen-
tative dataset of the real AGBC distribution. In order to compare the AGBC
estimates from the different maps with the in-situ data, the locations of
the in-situ plots are used to extract the predictions from each map and
generate AGBC histograms (Fig. 14). The AGB-MEXmap shows similar re-
sults to theMRFmap in termsof spatial distribution andAGBC stocks. Both
used the INFyS dataset as AGBC training data, but herewe usedMaxEnt to
spatially extrapolate the datawhileMRF used a RandomForest.MRF has a
smaller RMSE than AGB-MEX, but the MRF map tends to overestimate
small AGBC values while high values are underestimated. This is apparent
when comparing the histograms ofAGBC, asMRFhas a very narrowdistri-
bution in comparison to the INFyS in-situ dataset and the AGB-MEX map
(Fig. 14). The AGB-MEX histogram represents the variation in the INFyS
in-situ data much more realistically than any other map examined here.

The two tropical carbon maps (TCM-1 and TCM-2) have similarly
high AGBC per ha, which exceeds the AGBC expected in Mexico accord-
ing to the INFyS field plots. Dividing the histogram into quantiles shows
that 50% of the occurrences for TCM-1 and TCM-2 are above 50 t C ha−1,
although the INFyS in-situ data suggest no more than 13% (Fig. 14).
These differences could be related to the AGBC reference data used in
those studies. While AGB-MEX and MRF are locally trained using field
inventory data, the TCM-1 and TCM-2 are globally trained using AGBC
estimated from GLAS LiDAR footprints. The Mexican field inventory
data are assumed to be themost accurate dataset but they also have lim-
itations. The INFyS database might underestimate AGBC for certain for-
est types as trees with less than 7.5 cm in diameter are not measured.
The number of trees not being measured in humid tropical forest
might be insignificant in terms of AGBC, but this might not be the case
for tropical dry forest where trees with diameters below 7.5 cm can ac-
count for 26–40% of the total AGBC in the plot (Jaramillo, Kauffman,
Rentería-Rodríguez, Cummings, & Ellingson, 2003).

Themaps using GLAS LiDAR footprints as reference data (TCM-1 and
TCM-2) show comparable results to Mitchard et al. (2013), but a differ-
ent histogram distribution than the INFyS in-situ data for the same sam-
pling points (Fig. 14). This is explained by the continental and global
approaches used to extrapolate the AGBC reference data. The dataset
used for extrapolation in TCM-1 covered the whole of Latin America,
and therefore the algorithm training was very strongly influenced by
the GLAS footprints of the Amazon basin due to their sheer number.
Due to the random sampling scheme the footprints can under- or
over-represent specific regions and forest types (representativeness
of the true distribution of AGB accounted for by εprediction in this
study). The same effect occurs in TCM-2 but at the scale of the
entire tropical biome. A single algorithm was used to train the estima-
tion algorithm of AGBC which for such a huge area neglects important
regional variations in structure and species composition of forest
ecosystems.

TCM-1 estimated canopy height using Lefsky's (2010) models and
then used three continental-scale allometric models to relate canopy
height toAGB. The use of a single allometricmodel for awhole continent
might also be the source of discrepancies, as different biomes such as
tropical moist forest and temperate coniferous forest have different
tree allometries. These allometric differences can also occur at regional
scale within the same biome depending on climatic conditions, vegeta-
tion structure, species, wood density, soil types and other characteristics
(Keith, Barrett, & Keenan, 2000, Chave et al., 2005; Feldpausch et al.,
2011), which ultimately affect the relationship between AGB and cano-
py height at plot scale. The slopes of plot-scale allometric relationships
between AGB and canopy height normally used to calibrate EO data
can differ greatly between forest biomes (Fig. 15).

Thefield inventory plots used in the TCM-1 todevelop the continental-
scale allometric model for Latin America from the GLAS footprints were
mostly located in the Amazon forest region. The use of that model to esti-
mateAGB from theGLAS footprints coveringMexico introduces a high un-
certainty to the AGB estimation (εallometry), and contributes to the
differences shown in Figs. 13 & 14. TCM-2 has the same issue, as AGB
was estimated from GLAS footprints by a single multiple-regression
model for the whole tropical region. The development of regional and
biome-specific AGB-Hmodels for GLAS footprints and the regionalisation
of the algorithm training appears to be the most logical way forward to
improve such maps.

5. Conclusions

The current study presents a feasible approach to estimate forest
probability, AGB and its associated uncertainty using in-situ data and
a combination of freely available Earth observation datasets. Satellite
remote sensing data at 250 m spatial resolution were used to map all
forest lands of Mexico. The combination of SAR, optical and elevation
datasets (ALOS PALSAR, MODIS, and SRTM) showed better model per-
formance than using a single sensor or combining two sensors. The con-
tribution of each sensor to the AGB estimation per biomass range is
reported. The carbon stocks of Mexico and its uncertainty are analysed
in terms of spatial distribution, forest types, forest masks and biomass
ranges. The use of different forest masks can have a large impact on
the estimation of national carbon stocks. Even forest masks generated
from different sensors using a similar forest definition (i.e. from the
FAO) present large discrepancies in forest extent and total carbon
stocks.

The MaxEnt approach used here is applicable to imagery from sen-
sors that are currently in orbit (MODIS and ALOS-2 PALSAR L-Band
SAR) and could also be used with other sensors such as Sentinel-1 C-
band, Sentinel-2 and Landsat. The uncertainties found for this approach
do not fullymeet the requirements articulated for the planned BIOMASS
mission (Le Toan et al., 2011; ESA, 2012), but the results suggest that the
MaxEnt approach can provide more accurate maps of AGB at regional
and national scale if larger forest plots at the resolution of the remote
sensing imagery were used.

This study also addresses the differences between published forest
carbon stock assessments in Mexico. Estimations from tropical carbon
maps (TCM-1 and TCM-2) using GLAS LiDAR footprints as training
data differ from the in-situ forest inventory data (INFyS), and from the
maps using this INFyS data as training (AGB-MEX andMRF). Some pos-
sible causes are identified and discussed with the error propagation
model used here. These differences have implications for national carbon
accounting and REDD+. AGB reference data are a key component in



Table A2
Moran's I Indexwithin state byAGBmap. The locations of the inventory plots were used to
extract theAGB data fromeach of the carbonmaps. The table shows the different degree of
spatial clustering of eachmap per state. All p values b0.001. Note: different size windows
were used per state to compute the index (due to the difference in size among states).
Therefore, index values are comparable among map products, but not among states.

State AGB-MEX MRF TCM-1 TCM-2

Aguascalientes 0.74 0.52 0.30 0.58
Campeche 0.60 0.59 0.43 0.70
Chiapas 0.40 0.28 0.51 0.45
Colima 0.41 0.37 0.47 0.43
Distrito Federal 0.12 0.10 0.11 0.10
Guanajuato 0.55 0.41 0.18 0.47
Guerrero 0.68 0.52 0.48 0.61
Hidalgo 0.38 0.27 0.42 0.31
Jalisco 0.48 0.35 0.51 0.45
Michoacán 0.40 0.33 0.31 0.36
Morelos 0.82 0.51 0.24 0.50
México 0.51 0.41 0.16 0.32
Nayarit 0.38 0.27 0.44 0.31
Oaxaca 0.57 0.49 0.72 0.69
Puebla 0.43 0.27 0.35 0.43
Querétaro 0.34 0.33 0.32 0.47
Quintana Roo 0.43 0.42 0.26 0.52
Tabasco 0.42 0.30 0.35 0.43
Tlaxcala 0.49 0.41 0.43 0.43
Veracruz 0.54 0.43 0.65 0.52
Yucatán 0.54 0.57 0.28 0.54
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explaining the differences, asmethods to estimate the spatial distribution
of AGB are robust and comparable when using the same reference data.
Further work has to be done to understand the discrepancies found
between in-situ data and GLAS LiDAR footprint data.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

The authors would like to thank the following people and organiza-
tions for providing the data: JAXA (ALOS PALSAR), NASA, GLCF, USGS,
and CIAT (MODIS and SRTM), Alessandro Baccini (TCM-2), Oliver Cartus
(MRF), INEGI (LUV dataset), and Carlos Edgar Zermeño Benitez and
CONAFOR (INFyS dataset). Wewould also like to thank Andrea Hurtado
de Mendoza Rosales (University of Leicester) for providing contacts in
Mexico and assistance with the INFyS dataset. The authors would like
to also thank the anonymous reviewers for their valuable comments
and suggestions to improve the quality of the paper. This work was sup-
ported by Copernicus Initial Operations—Network for Earth Observation
Research Training (GIONET). GIONET was funded by the European
Commission, Marie Curie Programme, Initial Training Networks, Grant
Agreement number PITN-GA-2010-264509. P. Rodriguez-Veiga and H.
Balzter were supported by the NERC National Centre for Earth Observa-
tion (NCEO). H. Balzter was also supported by the Royal Society Wolfson
Research Merit Award, 2011/R3.
Table A1
Carbon stocks and forest cover at state level.

State Total AGBC (million
t)

Average AGBC (t C
ha−1)

Forest cover (M
ha)

Aguascalientes 1.2 10.1 0.12
Baja California 0.5 15.2 0.03
Baja California
Sur

2.9 13.7 0.21

Campeche 175.9 38.9 4.52
Chiapas 146.1 25.6 5.71
Chihuahua 103.5 18.3 5.67
Coahuila 21.8 17.8 1.22
Colima 6.5 17.1 0.38
Distrito Federal 3.0 35.7 0.08
Durango 123.8 21.6 5.73
Guanajuato 12.2 12.8 0.95
Guerrero 93.9 16.9 5.55
Hidalgo 24.4 21.1 1.16
Jalisco 75.9 16.6 4.57
México 40.7 25.9 1.57
Michoacán 83.7 18.9 4.42
Morelos 3.7 11.8 0.31
Nayarit 32.9 16.7 1.97
Nuevo León 22.7 22.4 1.01
Oaxaca 176.9 24.4 7.26
Puebla 30.2 14.7 2.05
Querétaro 11.2 19.3 0.58
Quintana Roo 153.8 39.0 3.95
San Luis Potosí 30.4 19.8 1.54
Sinaloa 41.9 15.3 2.74
Sonora 42.2 11.7 3.60
Tabasco 14.7 17.8 0.83
Tamaulipas 46.1 22.0 2.09
Tlaxcala 4.5 18.5 0.24
Veracruz 49.6 18.6 2.66
Yucatán 90.7 29.8 3.04
Zacatecas 20.4 14.1 1.45
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