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ORIGINAL ARTICLE

Porins and lipopolysaccharide from Salmonella typhimurium regulate the
expression of CD80 and CD86 molecules on B cells and macrophages but
not CD28 and CD152 on T cells
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Objective The aim of this study was to evaluate the effect of porins from Salmonella
typhimurium on costimulatory molecules such as CD80/CD86 and CD28/CD152. The
interactions between these molecules are able to influence the immune response through
the regulation of cytokines release which, on their own, are able to regulate the
immunological response by a feedback mechanism.

Methods S. typhimurium strain SH5014 (a rough lipopolysaccharide (LPS) producing
strain) was used as the source of porins and LPS. Peripheral blood mononuclear cells
were obtained from healthy adult donors. THP1 cells were obtained from ATCC
(Rockville, MD, USA). Immunofluorescence and flow cytometry were performed using
a FACS IV (Becton-Dickinson, Mountain View, CA, USA).

Results Our results show that porins of S. typhimurium increase the expression of CD86
and the expression of CD80 both on B lymphocytes and macrophages, while the
expression of CD28 and CD152 on T lymphocytes was unaltered. The expression of
CD80 and CD86 is dose-dependent and starts after 24 h post treatment, peaks at 48 h and
goes back to the basal value after 72 h.

Conclusions S. typhimurium porins are able to induce a high expression of costimulatory
molecules (CD80 and CD86) on lymphocytes and macrophages.
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INTRODUCTION

CD80 and CD86 are expressed by antigen-present-
ing cells (APC) and have been shown to be capable
of delivering a costimolatory signal [1-4]. CD28
and CD152 are molecules expressed on T cells that
may be involved in APC-dependent T-cell activa-
tion [2,5]. Activation of T cells to cytokine produc-
tion and proliferation requires at least two distinct
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signals [6,7]: the first signal is provided by TCR
antigen in the context of the major histocompat-
ibility complex (MHC), and the second signal is
provided by a set of receptor-ligand interactions in
which CD28 and CD152, CD80 and CD86 play a
predominant role.

Some outer membrane proteins of Gram-nega-
tive bacteria act as porins and have an important
role both in bacterial cell physiology and inter-
action with the host [8-11]. Porins are present in
the outer membrane of Gram-negative bacteria as
integral membrane proteins and are released
together with the lipopolysaccharide (LPS) during
cell growth by a mechanism known as blebbing
[12] or by bacterial lysis [13].

Porins perfom several biological functions on
inflammatory and immunological cell response
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[10,11,14-16]. The protective role of the outer
membrane protein antibodies, among which are
porins from Salmonella [17], Neisseria [18,19],
Haemophilus [20] and Vibrio [21], has been pre-
viously demonstrated. Furthermore, antiporin
antibodies have been demonstrated to be bacter-
icidal and opsonic [18,22] and porin serovar-
specific protection has been demonstrated to exist
in prostitutes with a history of multiple gonococcal
infections [23], and in patients with pelvic inflam-
matory disease who recover spontaneously and
who have high levels of antiporin antibodies [10].
Moreover, the amount of porins and the type of
LPS present on the surface of bacteria are corre-
lated with virulence [24,25]. During a protective
immune response several mechanisms are acti-
vated. When purified porins are experimentally
inoculated, for example, during experimental
oral infection with S. typhimurium, in survivor
mice T-lymphocyte differentiation occurs, leading
to a prevalence of the Th-1 response, while treat-
ment with purified porins does not induce in vivo
a similar pattern of differentiation [26,27].

It has been shown that LPS upregulates the
CD80 expression in human monocytes. Among
the different accessory molecules expressed on
APC, CD80, CD86 and CD54 molecules were
found to play major roles in T-cell activation by
interacting with their counter receptors CD28,
CD152 and CD18, respectively [5,28,29]. It is
known that Brucella abortus [30] may augment
the interaction of APC with T cells via a direct
induction of CD54 and CD80, CD86 on the APC
and indirectly through interleukin(IL)-12 induced
CD18 on T cells. Porins from S. typhimurium are
able to activate CD54 [31] and other cytokines that
are involved in the regulation of the immune
response [8,14].

Considering the activity of the porins in regu-
lating the immune response and their ability to
behave like antigens, we tested in vitro the effect
of S. typhimurium porins in regulation of the
costimulatory molecules CD80, CD86, CD28 and
CD152.

MATERIALS AND METHODS

Porins preparation

S. typhimurium strain SH5014 (a rough LPS-produ-
cing strain), served as the source of porins. The
porins were isolated as described by Nurminen
[32]. Briefly, 1 g of envelopes was suspended in 2%

Triton X-100 in 0.01 Tris-HCI (pH 7.5, containing
10 mm EDTA); after the addition of trypsin
(10 mg/g of envelopes), the pellet was dissolved
in sodium dodecyl sulfate buffer (SDS buffer, 4%
w/v in 0.1 M sodium phosphate, pH 7.2), and
applied to an Ultragel ACA 34 column equili-
brated with 0.25% SDS buffer. The fraction con-
taining proteins, identified by its absorbance at
280 nm (A,gp), was extensively dialyzed and
checked by SDS-polycrylamide gel electrophoresis
in slabs (SDS-PAGE) according to Laemmli [33].
The protein content of the porin preparation was
determined by the method of Lowry et al. [34]. All
possible traces of LPS were revealed on SDS-PAGE
stained with silver nitrate as described by Tsai and
Frasch [35] and by Lymulus amoebocyte lysate
assay [36]. The LPS concentration in the porin
preparation was estimated to be < 0.005% w/w.
In addition, in some experiments polymyxin-B
(Sigma-Aldrich Co, Napoli, Italy) was mixed with
porins in order to neutralize the biological activity
of traces of LPS that could be present in the pre-
paration. The porins were incubated with poly-
mixin-B at room temperature for 1 h in a ratio of
1:10(w : w). LPS was incubated with polymyxin-
B in a ratio of 1 : 100 (w : w) [37]. LPS, porins and
the mixture containing polymyxin-B were used in
pyrogen-free phosphate-buffered saline (PBS).

Preparation of LPS

LPS was isolated from S. typhimurium SH5014 by
the phenol-chloroform-ether method described
by Galanos et al. [38]. Briefly, bacteria were
washed sequentially with water, 95% ethanol,
acetone, and diethyl ether at 4 °C. The dry bac-
terial powder was treated with a mixture of
liquid phenol-chloroform-petroleum ether in a
volume ratio of 2:5:8. After centrifugation,
the acqueous layer was collected and dialyzed
to remove phenol. Subsequently, the dialyzed
material was concentrated in a rotary evaporator
at 35-40 °C and centrifuged to remove any inso-
luble material. The supernatant was treated with
RNase for 2 h at 55 °C. After centrifugation, the
pellet was collected, resuspended in water, and
lyophilized.

Preparation of cell suspensions

Peripheral blood mononuclear cells (PBMC) were
obtained from a buffy coat of a blood sample from
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healthy adult donors (courtesy of the Blood Bank,
Second University of Naples, Italy). The buffy coat
was diluted six-fold with RPMI-1640 (Labtek
Laboratories, Eurobio, Paris, France) and washed
twice. The pellet was resuspended in RPMI-1640,
applied on Ficoll-Hypaque gradients (Pharmacia,
Uppsala, Sweden) and centrifuged for 30 min at
900 g.

The cells were suspended in RPMI 1640 with
10% fetal calf serum (FCS) (Labtek Laboratories,
Eurobio, Paris, France) and antibiotics and incu-
bated for 1 h in 5% CO, at 37 °C. The adherent
cells were cultured overnight in RPMI 1640
with 10% FCS. Cell viability was evaluated by
the trypan blue exclusion test. At least 96%
of the cells thus obtained were monocytes as
determined with a FACS analyzer (Becton-Dick-
inson) with monoclonal antibody CD14 (Becton-
Dickinson).

Nonadherent cells (lymphocytes) were har-
vested, washed, and resuspended at 3 X 10°
cells/mL. Flow cytometry analysis of stained cells
with monoclonal antibody CD3 (Boerhringer-
Roche Diagnostic S.p.A., Milano, Italy) demon-
strated that more than 94% of the isolated cells
were T lymphocytes.

Cells

A clone of the human monocytic cell line, THP-1
cells (ATCC TIB-202; ATCC) was grown at 37 °C
in an atmosphere of 5% CO, in complete medi-
um consisting of RPMI 1640 supplemented with
10% heat-inactivated FCS, 2 mm L-glutamine,
100 U/mL of penicillin, 100 pg/mL of streptomy-
cin (Labtek Laboratories).

The human T lymphoma cell line Jurkat (ATCC
TIB-152) was cultured at 37 °C in an atmosphere of
5% CO; in a complete medium consisting of RPMI
1640 supplemented with 10% heat-inactivated
FCS, 2 mM L-glutamine, 100 U/mL of penicillin,
100 pg/mL streptomycin, and 0.05 mm of 2-mer-
captoethanol.

PBMC were activated by Phorbol 12-Myristate
13-Acetate (PMA) (Sigma-Aldrich Co) at a concen-
tration of 250 ng/mL for 48 h at 37 °C.

Some experiments were performed on cells in-
cubated with cycloheximide (10 pg/mL) (Sigma-
Aldrich Co) for 15 min and then treated with
porins for 48 h, to determine whether de novo
protein synthesis was required for increase in
CD80 and CD86 molecule expression.

Flow cytometry

Immunofluorescence and flow cytometry were
performed using a FACS IV (Becton-Dickinson).
Cells were stained at 4 °C and washed in Hank's
balanced salt solution containing 1% bovine serum
albumin (BSA) and 0.1% sodium azide. Macro-
phages (10°/mL) were stained with Peridinin
Chlorophyll protein (PrCP)-conjugated anti
CD14 MAD (clone M®P9) plus Phycoerythrin
(PE)-conjugated anti CD86 MADb (clone IT2.2)
and Fluorescein Isothiocyanate (FITC)-conjugated
anti CD80 MAD (clone BB1), to determine the
CD80" and CD86" cells; lymphocytic cells (10°/
mL) were stained with: (i) cy-chrome™- conju-
gated anti CD19 MAb (clone CD28.2) plus FITC-
conjugated anti CD80 MADb (BB1) and PE-conju-
gated anti CD86 MAD (IT2.2) to examined CD80*
and CD86™ B cells; (ii) FITC-conjugated anti CD3
MAD (clone HIT3a) plus PE-conjugated anti CD28
MAD (CD28.2) and cy-chrome™-conjugated anti
CD152 MAD (clone BNI 3.1) to determine CD28"
and CD152" T cells.

All antibodies were used at saturating amounts
for flow cytometric studies and were purchased
from Pharmigen (San Diego, CA, USA).

Statistics

All experiments were carried out in triplicate;
results were expressed as the mean + standard
deviation.

RESULTS

Porins and LPS preparations

The purification and contamination of porins by
LPS have been addressed in previous studies
[9,39]. The purity of the porin preparation, checked
by SDS-PAGE, is shown in Figure 1, lane B. SDS-
PAGE revealed two bands with molecular weights
of 34 000 and 36 000.

The Limulus test showed the presence of LPS
at a concentration < 0.005% w/w; these traces
of LPS did not show any biological activity
under our experimental conditions (data not
shown). The patterns of the LPS preparations
as revealed on SDS-PAGE by silver nitrate
staining method showed that LPS from S. typhi-
murium SH5014 migrates as a rough LPS in
comparison to the commercial preparation
(Sigma-Aldrich Co).
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Figure 1 SDS-PAGE analysis of the outer membrane
protein preparation, porin and lipopolysaccharide (LPS)
extract from S. typhimurium SH5014. The gel was stained
with Coomassie blue. (a) Lane 1, molecular mass standards
(phosphorylase b, 94 kDa; albumin, 67 kDa; ovalbumin,
43 kDa; carbonic anydrase, 30 kDa; trypsin inhibitor,
20 kDa; a-lactoalbumin, 14 kDa); lane 2, S. typhimurium
porin (10 ug); lane 3, S. typhimurium total OMP (10 pg).
(b) Lane 1: S. typhimurium smoth LPS (Sigma-Aldrich S,
Italy) (20 pg); lane 2: SH5014 LPS (10 pg).

Expression of CD80 and CD86 by B cells

The expression of these molecules was examined
on unstimulated B cells and on B cells stimulated
with 0.04 pm, 0.2 v and 0.4 pm of S. typhimurium
porins. These concentrations have been chosen
because of their biological activity shown in pre-
vious studies [9,27]. Figure 2(a) shows that when B
lymphocytes are incubated with porins (0.2 pum)
for 48 h there is a marked increase in the expres-
sion of CD86 (50% =+ 7) and a lower increase in the
expression of CD80 (37% =+ 6). The control cells
expressed low levels of CD86 and undetectable
levels of CD80. The results show that incubating B
lymphocythes with LPS (2.5 pum) for 48 h induced a
light increase in the expression as well of CD86

(35% £ 7) as CD80 (25% =+ 5) (Figure 2(b)). The
dose-response plot showed the same profile
whether LPS (0.5 pvm, 2.5 um and 5 pm) or porins
(0.04 um, 0.2 um and 0.4 um) were used as the
stimulus. Porin concentrations of 0.02 um did not
induce any stimulation while concentrations of
0.8 nm were toxic for B lymphocythes in cultures
(data not shown). After stimulation with porins for
24 h the expression of CD86 and CD80 increased,
peaked at 48 h and started to decrease at 72 h
(Figure 3). A transient increase in CD86 expression
also occurred early on B cells that were cultured in
vitro in the absence of porins. After 15 h culture the
CD86 expression returned nearly to the level ori-
ginally detected on freshly explanted B cells. The
CD86 increase induced by porin stimulation was
completely inhibited by cycloheximide (data not
shown), pointing out that novel protein synthesis
is required for an increased CD86 expression.

The cells stimulated with porins mixed with
polymixin B (porin: polymyxin B, 1:10, w : w)
to neutralize the effect of small amounts of LPS in
the porin preparation, showed the same results as
the porins on their own (data not shown). The cells
stimulated with LPS mixed with polymixin B (LPS:
polymixin B, 1:100 w : w) did not modify the
expression levels of CD80 and CD86 (data not
shown).

Expression of CD80 and CD86 by macrophages

The monocytes isolated from pheripheral blood
were cultured for 5 days. Then they were stimu-
lated with porins at concentrations of 0.04 um,
0.2 uM, 0.4 uM or LPS at concentrations of 0.5 M,
2.5 pm and 5 pm. Macrophages stimulated with
porins 0.2 um or LPS at concentration of 2.5 um
showed a higher expression of CD86" (48% =+ 7
and 33% =+ 6, respectively) and CD80" (32% =+ 6
and 22% =+ 5, respectively) compared to untreated
controls (data not shown). Macrophages activated
by PMA expressed higher amounts of both mole-
cules; further stimulation of activated macro-
phages with porins or LPS did not increase
CD80 and CD86 expression (data not shown).

We also examined THP1 (a monocyte immorta-
lized line) for expression of CD80 and CD86.
This cell line mainly expresses CD86. The porin
stimulation did not cause any change in the fluor-
escence intensity after staining cells with antibo-
dies CD80 FITC and anti CD86 PE (data not
shown).
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Expression of CD28 and CD152 on T cells

CD3™" T cells stimulated with S. typhimurium por-
ins at a concentration of 0.2 pMm and 0.4 pMm for 24 h
did not show any modification in the expression of
CD28 and CD152. The percentages of CD28" T
cells were not modified significantly by stimula-
tion with porins, while the percentages of CD152"
cells were considerably low, both in treated and
untreated cells. Jurkat cells treated with porins
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Figure 3 Expression of CD80 and CD86 molecules on B
lymphocytes stimulated with porins of S. typhimurium. B
lymphocytes were incubated with medium (control) and
0.2 M of porins. The percent change in fluorescence was

calculated as in Figure 2. The results are the means of three
experiments £ SD.

were tested in order to gain deeper information
on the expression of CD28 and CD152". This cell
line showed higher percentages of CD28 and
CD152" cells compared to freshly cultivated T
lymphocytes (Figure 4). Longer incubation times
did not modify the amount of CD28 and CD152
expression (data not shown). Porins did not mod-
ify the mean fluorescence of the treated cells com-
pared to the untreated cells.

DISCUSSION

It is of considerable interest to identify the bio-
logically relevant signals, mediated either by

O CD3+T cells CD28
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Figure 4 Expression at 24 h of CD28 and CD152 molecules
on CD3* T and Jurkat cells stimulated with porins of S.
typhimurium at concentrations of 0.2 uym and 0.4 pm. The
results are the means of three experiments + SD.
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bacterial cells or by their components, that regulate
costimulatory molecules.

The potential for signaling through the CD80/
CD86, CD28, CD152 costimulatory pathway is
very complex. T cells can express at least two
receptors for costimulation, CD28 and CD152
[3,5,7,40] and APC can express two or more mole-
cules capable of interacting with one or both of
these receptors on T cells [41-43]. Bacterial cells
and their components modify the cytokine release,
and these molecules in turn are able to regulate the
expression of costimulatory molecules. IL-5, inter-
feron (INF)-y and GM-CSF [44] differentially reg-
ulate the CD80 and CD86 expression. Therefore,
cytokine release owing to bacterial components or
whole bacterial cells can indirectly activate APC
with a different expression of CD80 and CD86.

Our results showed that among the Gram-nega-
tive bacterial components, S. typhimurium porins
were able to activate B-lymphocytes and macro-
phages inducing a higher expression of CD86
(50% =+ 7 and 48% =+ 7, respectively). The kinetics
of the highest expression of these costimulatory
molecules (CD80 and CD86) on lymphocytes and
macrophages owing to porins is similar to the
kinetics already demonstrated as a result of LPS
[44]. Therefore, it seems that different stimuli
induce the same kinetics of expression.

Using PBMC instead of purified monocytes [45]
we demonstrated that LPS has a negative effect on
T-cell activation by decreasing already induced
CD80" macrophages; the induction of the CD80
expression by LPS was not significant, no changes
in the CD86 expression were detected.

From our results we were unable to observe an
increase in the expression of CD28 and CD152.
CD28 is a membrane glycoprotein expressed on
most thymocytes and peripheral T lymphocytes
[46,47], CD152 is expressed by activation but not
by resting T lymphocytes [5]. The CD152/CD80
interaction is not clearly defined but may serve to
amplify a T-cell-immune response initiated by
CD28. Binding of CD80/CD86 with both CD28/
CD152 which are present on T cells seems to be
critical in the induction and maintenance of an
efficient cell-mediated response which strongly
contributes to the control of bacterial infections.
The interactions between APC and T-lymphocytes
represent the mechanism that stimulates the
induction of these responses. In our results there
is a modulation of CD80/CD86 expression on APC
owing to porins, while on T lymphocytes a mod-

ulation of the expression of CD28 and CD152 is
absent. Therefore it is probable that during the in
vivo response a wider expression of CD80 mole-
cules on APC may represent one of the initial
stimuli to activate the cell proliferation, cytokine
production and cytotoxicity. It was reported that
CD80 and CD86 can equally costimulate IL-2 and
IFN-vy production, but that CD86 induces signifi-
cantly more IL-4 than CD80 [48]. These data pro-
vided evidence that CD80 and CD86 may not
deliver an identical costimulatory signal to Th-1
or Th-2 cells and may have selective effects on the
differentiation of ThO cells into Th-1 or Th-2 phe-
notypes. It has previously been demonstrated [27]
that isolated porins induce a Th-2 response, while
whole Salmonella cells mainly induce a Th-1
response. From our results CD86 is more stimu-
lated than CD80 by porins, therefore contributing
to a Th-2 response. The involvement of Th-1-Th-2
cell subsets is also probably modulated in vivo by
effects of the cytokine network; Gupta et al. [49-51]
detected a Th-2 response in the spleen of mice
after infection with S. typhimurium, whereas this
response became Th-1 if the mice were pre-immu-
nized with Salmonella porins. Therefore it is likely
that porins and LPS provide a microenviroment in
which a well-balanced accessory molecule cyto-
kine network is established.

In conclusion, during in vivo infection, the route
of the immunological response may depend con-
siderably on the interaction of the Salmonella with
the host, for example by invasion of target cells or
the extracellular release of its components by bleb-
bing or bacterial lysis.
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