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The paper deals with the blow-up rate of positive solutions to the system
l11 l12 l21 l22 Ž .u � u � u � , � � � � u � with boundary conditions u 1, t �t x x t x x x

Ž p11 p12.Ž . Ž . Ž p21 p22.Ž .u � 1, t and � 1, t � u � 1, t . Under some assumptions on thex
Ž . Ž . Ž .matrices L � l and P � p and on the initial data u , � , the solution u, �i j i j 0 0

Ž . Žblows up at finite time T , and we prove that max u x, t resp.x � �0, 1�
Ž .. Ž .�1 �2 Ž Ž .�2 �2 .max � x, t goes to infinity as T � t resp. T � t , where � � 0x � �0, 1� i

Ž .Ž . t Ž . tare the solutions of P � Id � , � � �1, �1 . � 2001 Academic Press1 2

1. INTRODUCTION

In this paper we consider the blow-up rate for the following system of
semilinear heat equations with nonlinear boundary conditions

u � u � ul11� l12 , � � � � ul21� l22 ,t x x t x x

x , t � 0, 1 � 0, T ,Ž . Ž . Ž .
u 0, t � 0, � 0, t � 0, t � 0, T ,Ž . Ž . Ž .x x 1.1Ž .

p p p p11 12 21 22u 1, t � u � 1, t , � 1, t � u � 1, t ,Ž . Ž . Ž . Ž . Ž . Ž .x x

t � 0, T ,Ž .
u x , 0 � u x , � x , 0 � � x , x � 0, 1 .Ž . Ž . Ž . Ž . Ž .0 0
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Ž . Ž .Here the matrices L � l and P � p satisfy the following assumptioni j i j

Ž .A P and L are two matrices with non-negative entries such that
� 4 � 4 Ž . Ž .max l , l � 1, max p , p � 1, det L � Id � 0, and det P � Id � 0.11 22 11 22

Ž .Under these hypotheses, there exist two unique vectors � , � and1 2
Ž . Ž .� , � with � � 0 and � � 0 or � � 0 such that1 2 i i i

�� 1�1 �11P � Id � , L � id � . 1.2Ž . Ž . Ž .ž / ž /�ž / ž /�1 � �12 2

Here, without loss of generality, we assume that � 	 � � 0 and1 2
Ž .� 
 � � 0 or � 	 � � 0 . Further, we suppose that l , � , and �1 2 1 2 i j i i

satisfy the following hypotheses:

Ž .B

� �21l 
 l , � �� 
 � �� � 1, and L � Id � .Ž .11 21 1 2 1 2 ž /�ž / �22

EXAMPLE. Let l � 1�2, l � 1�3, l � 6�7, l � 1�7, p � 1�2,11 21 12 22 11
p � 2, p � 3�4, and p � 1�2. Then we get � � �2, � � �1,12 21 22 1 2

Ž . Ž . Ž . Ž .� � 12, � � 35�6, and � , � , � , � satisfy conditions A and B .1 2 1 2 1 2

We also suppose that the initial data satisfy the following conditions

Ž . Ž . Ž . 3Ž� �. � � � � �C u x , � x � C 0, 1 , u 
 0, u 
 0, u 
 0, � 
 0, � 
 0,0 0 0 0 0 0 0
� Ž . Ž . Ž .� 
 0, u x 
 1, and � x 
 1 for any x � 0, 1 .0 0 0

Ž . Ž .Under condition C , by the minimum principle we have u x, t 
 1 and
Ž . Ž . � � � .� x, t 
 1 for any x, t � 0, 1 � 0, T .

Ž . � � Ž Ž . Ž ..Under hypothesis A , it is proved in 15 that the solution u x, t , � x, t
Ž .of 1.1 blows up in finite time T. As t � T we have

� �lim sup u . , t � � . , t � ��.� 4Ž . Ž .Ž� �. Ž� �.L 0, 1 L 0, 1
t�T

Ž . Ž .We can also prove that both functions u x, t and � x, t go to infinity as
Ž . � � � .t � T. In fact, assume that u x, t remains bounded in 0, 1 � 0, T . Then

Ž .� x, t satisfies the relations

� � � � K� l22 in 0, 1 � 0, T ,Ž . Ž .t x x
p22� 0, t � 0, � 1, t 	 K� 1, t , 1.3Ž . Ž . Ž . Ž .x x

� x , 0 � � x , in 0, 1 ,Ž . Ž . Ž .0

� l21 p21 . � 4where K is a bound for max u , u . Since max l , p 	 1, it is well22 22
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Ž . Ž � �.known that � x, t remains bounded up to time T see 13 . Hence, T is
not the blow-up time; this is a contradiction to our assumption.

Over the past two decades the blow-up problem for the solutions of
nonlinear parabolic equations with nonlinear boundary conditions has

Ž � �.deserved a great deal of interest see 2, 3, 5, 7, 8, 11�14 . For these kinds
of problems, in particular, the blow-up rate and the localization of blow-up
points are not well known even in the case of a single parabolic equation
with a nonlinear boundary condition. Some of those results closely related
to ours are as follows.

� �In 1, 10 the authors studied the problem

u � �u , � � �� , x , t � B 0 � 0, T ,Ž . Ž . Ž .t t R

� u � �
p q 1.4Ž .� � , � u , x , t � � B 0 � 0, T ,Ž . Ž . Ž .R� n � n

u x , 0 � u x , � x , 0 � � x , x � B 0 ,Ž . Ž . Ž . Ž . Ž .0 0 0 R

Ž . Ž . 2where pq � 1, u x , � x � C are radially symmetric and satisfy the0 0
boundary conditions, and �u 
 � � 0, �� 
 � � 0. They proved that0 0
there exist two positive constants c and C such that

��2c 	 max u x , t T � t 	 C for 0 � t � T ,Ž . Ž .
Ž .x�B 0R

1.5Ž .
��2c 	 max � x , t T � t 	 C for 0 � t � T ,Ž . Ž .

Ž .x�B 0R

Ž . Ž . Ž .where T is the blow-up time, � � p � 1 � pq � 1 , and � � q � 1 �
Ž .pq � 1 .

� �In 12 Rossi considered the problem

u � �u , � � �� , x , t � B 0 � 0, T ,Ž . Ž . Ž .t t 1

� u � �
p p p p11 12 21 22 1.6Ž .� u � , � u � , x , t � � B 0 � 0, T ,Ž . Ž . Ž .1� n � n

u x , 0 � u x � 0, � x , 0 � � x � 0, x � B 0 ,Ž . Ž . Ž . Ž . Ž .0 0 1

Ž . Ž .where the matrix P � p satisfies hypothesis A , the initial functionsi j
3Ž Ž ..u , � � C B 0 are radially symmetric and satisfy the boundary condi-0 0 1

Ž . Ž . Ž � �.tions, and the first three derivatives of u r , � r r � x are non-nega-0
� �tive. In 12 the author proved that there exist positive constants c and C

such that

�� �21c 	 max u x , t T � t 	 C for 0 � t � T ,Ž . Ž .
Ž .x�B 0R
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1.7Ž .
�� �22c 	 max � x , t T � t 	 C for 0 � t � T ,Ž . Ž .

Ž .x�B 0R

Ž .where � and � are given by 1.2 .1 2
� � Ž .In 11 the author considered the problem 1.1 for the case l � l � 0.12 21

Ž .The same estimates as 1.7 were obtained.
� �Similar results on blow-up rate were obtained in 2�4, 6, 9 for some

single equations.
� �In this paper, by a modification of the method given in 11, 12 , we

establish the following results.

Ž . Ž . Ž .THEOREM 1.1. If assumptions A , B , and C hold, then the solution
Ž Ž . Ž .. Ž .u x, t , � x, t of 1.1 blows up at finite time T and there exist positi�e
constants c and C such that

�� �21c 	 max u x , t T � t 	 C for 0 � t � T ,Ž . Ž .
� �x� 0, 1

1.8Ž .
�� �22c 	 max � x , t T � t 	 C for 0 � t � T ,Ž . Ž .

� �x� 0, 1

Ž . Ž .where � i � 1, 2 are gi�en by 1.2 .i

Ž . Ž . Ž .THEOREM 1.2. If assumptions A , B , and C hold, then for any
� . Ž .r � 0, 1 there exists a constant C � C r such that

�max u x , t � C , t � 0, T ,Ž . .
� �x� 0, r

�max � x , t � C , t � 0, TŽ . .
� �x� 0, r

Ž .i.e., the blow-up set is localized in the boundary x � 1 .

To prove Theorem 1.1 we need a result for a single equation that has
independent interest.

Ž .THEOREM 1.3. Let u x, t be a positi�e solution of the problem
l̃u x , tŽ .˜u � u � C , in 0, 1 � 0, T ,Ž . Ž .t x x 0 s̃T � tŽ .

r 1.9Ž .u 1, tŽ .
u 0, t � 0, u 1, t � C , t � 0, T ,Ž . Ž . Ž .sx x 0 T � tŽ .

u x , 0 � u x , in 0, 1 ,Ž . Ž . Ž .0

˜ ˜Ž .Ž . Ž Žwhere 0 � l � 1, s � 1�2, 0 � r � 1, 0 � s � 1 � 1 � l 2 s � 1 � 2 1 �˜
.. Ž . 3 Ž .r , and the initial function u x � C . Then u x, t blows up as t � T and0

� ˜c 	 max u x , t T � t 	 C , t � 0, T ,Ž . Ž . Ž .˜
� �x� 0, 1

Ž . Ž .where � � s � 1�2 � 1 � r .
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The paper is organized as follows. In Section 2, we give some auxiliary
propositions and prove Theorem 1.1. In Section 3, which deals with the
blow-up rates, we prove our main results.

2. AUXILIARY PROPOSITIONS

In this section, we state some propositions that play an important role in
� � Ž � �.Section 3. We begin with a result of 12 see also 4, 6 .

PROPOSITION 2.1. Let z be the positi�e solution of the problem

z � z , x , t � 0, 1 � 0, T ,Ž . Ž . Ž .t x x

kz 0, t � 0, z 1, t � z 1, t , t � 0, T , 2.1Ž . Ž . Ž . Ž . Ž .x x

z x , 0 � z x � 0, x � � ,Ž . Ž .0

where k � 1, z � C 3 satisfies the inequalities z� 
 0, z� 
 0, z� 
 0 and0 0 0 0
boundary conditions. Then there exist positi�e constants c and C such that

� �
c 	 max u x , t T � t � u 1, t T � t 	 C , for 0 � t � T ,Ž . Ž . Ž . Ž .

� �x� 0, 1

2.2Ž .

Ž Ž ..where � � 1� 2 k � 1 .

� �Next we state two results due to 9, 12 .

Ž � �. Ž .PROPOSITION 2.2 see 9 . Let w x, t be the positi�e solution of the
problem

w � w � w l , in 0, 1 � 0, T ,Ž . Ž .t x x
qw 0, t � 0, w 1, t � w 1, t , t � 0, T , 2.3Ž . Ž . Ž . Ž . Ž .x x

� �w x , 0 � w x � 0, in 0, 1 ,Ž . Ž .0

� 4 Ž .where l � 0, q � 0, max l, q � 1, the initial function w x satisfies the0
inequalities w� � w l 
 0 and w� 
 0, and T is the blow-up time. Then0 0 0
blow-up occurs only at x � 1 and there exist positi�e constants c and C such
that

� �
c 	 max w x , t T � t � w 1, t T � t 	 C for 0 � t � T ,Ž . Ž . Ž . Ž .

� �x� 0, 1

2.4Ž .

Ž . Ž Ž ..where � � 1� l � 1 if l 
 2 q � 1, � � 1� 2 q � 1 if l � 2 q � 1, and T
is blow-up time.
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Ž � �. Ž .PROPOSITION 2.3 see 12 . Let u x, t be the positi�e solution of the
problem

u � u , in 0, 1 � 0, T ,Ž . Ž .t x x
rCu 1, tŽ .

u 0, t � 0, u 1, t � , t � 0, T ,Ž . Ž . Ž . 2.5Ž .sx x T � tŽ .
u x , 0 � u x � 0, in 0, 1 ,Ž . Ž . Ž .0

Ž .where s � 1�2, 0 � r � 1, and C is an arbitrary constant. Then u x, t blows
up at time T and

Ž . Ž .s�1�2 � 1�rc 	 max u x , t T � t 	 C , t � 0, T .Ž . Ž . Ž .
� �x� 0, 1

Proof of Theorem 1.1.

˜Ž . Ž . Ž .Ž . Ž ŽStep 1. Let k � 2 s � r � 2 s � 1 . Since s � 1 � 1 � l 2 s � 1 � 2 1˜
˜ ˜.. Ž . Ž Ž� r , we can take a constant l such that l � l � 2k � 1 and l � l � 2 k

.. Ž .� 1 � s. Denote by w x, t the solution of the problem˜

lw � w � w , in 0, 1 � 0, T ,Ž . Ž .t x x

k 2.6Ž .w 0, t � 0, w 1, t � w 1, t , t � 0, T ,Ž . Ž . Ž . Ž .x x

w x , 0 � w x � u x , in 0, 1 ,Ž . Ž . Ž . Ž .0 0

˜� lŽ .where the initial function w x satisfies the conditions w � w � 0 and0 0 0
�w 
 0. Since s � 1�2 and r � 1, we have k � 1. By l � 2k � 1 and0

Ž . Ž .Proposition 2.2 we know that the solution w x, t of 2.6 blows up in finite
time T and

Ž Ž ..1� 2 k�1 ˆc 	 max w x , t T � t 	 C for 0 � t � T . 2.7Ž . Ž . Ž .0 0
� �x� 0, 1

Ž . Ž .We are going to prove that u x, t � w x, t . To this end, we consider two
cases.

˜Ž . Ž .I Assume that u x , C , and C are large enough. Suppose that0 0 0
Ž . Ž .Ž .there exist a first time t � 0, T and a point x such that w � U x , t0 0 0 0

Ž .Ž . Ž . � � � .� 0 and u � w x, t � 0 for all x, t � 0, 1 � 0, t . Then we easily0
Ž � Ž .deduce that x must belong to the half-interval 0, 1 . If x � 0, 1 , then0 0
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˜Ž . Ž . Ž . Ž . Ž Ž ..taking into account 2.5 , 2.6 , by 2.7 , l � l � 2 k � 1 � s, and the˜
˜Ž .fact that u x , C , and C are large enough we get0 0 0

l̃u
l̃ ˜w � u � w � u � w � C 	 w � u ,Ž . Ž . Ž .t x x x x0 s̃T � tŽ .

in 0, 1 � 0, t ,Ž . Ž .0

w � u 0, t � 0,Ž . Ž .x 2.8Ž .
ru 1, tŽ .

kw � u 1, t � w 1, t � C � 0,Ž . Ž . Ž . sx 0 T � tŽ .
t � 0, t ,Ž .0

w � u x , 0 � 0, in 0, 1 .Ž . Ž . Ž .

Ž .Ž .By the minimum principle we have w � u x , t � 0. This is a contradic-0 0
tion with our assumption.

If x � 1, then we have0

C0r k�rw � u 1, t � w 1, t w 1, t � . 2.9Ž . Ž . Ž . Ž . Ž .sx ž /T � tŽ .

Ž .By 2.7 and the fact that C is large enough, we know that0

C C0 0k�rw 1, t 	 � . 2.10Ž . Ž .sŽ . Ž Ž ..k�r � 2 k�1 T � tŽ .T � tŽ .

Ž . Ž . Ž . Ž . � .On the other hand, we have w x, t � u x, t for any x, t � 0, 1 � 0, t .0
Ž . Ž . Ž . Ž .Thus we also get w � u 	 w � u in 0, 1 � 0, t . By the minimumt x x 0

Ž . Ž . Ž .Ž .principle and 2.8 � 2.10 we have w � u x , t � 0. This is a contradic-0 0
Ž .tion with our assumption. Therefore, from 2.7 we obtain

�max u x , t T � t 
 c for 0 � t � T . 2.11Ž . Ž . Ž .
� �x� 0, 1

˜Ž . Ž . Ž . Ž .II Let u x, t be the solution of 1.9 with arbitrary u x , C , and0 0
˜1� l ˜Ž . Ž .C . We take a constant M such that Mu x � w x , M C and0 0 0 0
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1� rM C are large enough, and U � Mu satisfies the following relations:0

l̃U˜1� l ˜U � U � M C , in 0, 1 � 0, T ,Ž . Ž .t x x 0 s̃T � tŽ .
r 2.12Ž .U 1, tŽ .

1� rU 0, t � 0, U 1, t � M C , t � 0, T ,Ž . Ž . Ž .sx x 0 T � tŽ .
U x , 0 � Mu x � w x , in 0, 1 ,Ž . Ž . Ž . Ž .0 0

Ž .By the previous result 2.11 we have

�max U x , t T � t 
 c for 0 � t � T . 2.13Ž . Ž . Ž .
� �x� 0, 1

This completes the first step of the proof.

˜Ž . Ž . Ž .Ž . Ž ŽStep 2. Let q � 2 s � r � 2 s � 1 . By s � 1 � 1 � l 2 s � 1 � 2 1˜
˜.. Ž . Ž Ž� r , we can also take a constant l such that l � 2 q � 1 and l � l � 2 q

.. Ž .� 1 � s. Let w x, t be the solution of the problem˜ ˜

w � w � w l , in 0, 1 � 0, T ,Ž . Ž .˜ ˜ ˜t x x
qw 0, t � 0, w 1, t � w 1, t , t � 0, T , 2.14Ž . Ž . Ž . Ž . Ž .˜ ˜ ˜x x

w x , 0 � w x � u x , in 0, 1 ,Ž . Ž . Ž . Ž .˜ ˜0 0

2 � l � Ž .where w � C , w � w � 0, and w 
 0. By Proposition 2.2, w x, t˜ ˜ ˜ ˜ ˜0 0 0 0
blows up in finite time T and there exist positive constants c and C such
that

�c 	 max w x , t T � t 	 C for 0 � t � T . 2.15Ž . Ž . Ž .˜
� �x� 0, 1

Ž . Ž .We shall prove that w x, t � u x, t . Consider two cases.˜
˜Ž . Ž .III Assume that u x , C , and C are small enough. Arguing as in0 0 0

Ž . Ž . Ž .I , we obtain w x, t � u x, t and˜

�max u x , t T � t 	 C for 0 � t � T . 2.16Ž . Ž . Ž .
� �x� 0, 1

˜Ž .IV Let the constants C , C and the initial data be arbitrary. We0 0 ˜1� l 1�r˜take a constant m such that mu � w , m C and m C are small˜0 0 0 0
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˜enough, and U � mu satisfies the following relations:

l̃Ũ˜1� l˜ ˜ ˜U � U � m C , in 0, 1 � 0, T ,Ž . Ž .t x x 0 s̃T � tŽ .
r˜ 2.17Ž .U 1, tŽ .

1� r˜ ˜U 0, t � 0, U 1, t � m C , t � 0, T ,Ž . Ž . Ž .sx x 0 T � tŽ .
Ũ x , 0 � mu x � w x , in 0, 1 .Ž . Ž . Ž . Ž .˜0 0

Ž .By III we have

�˜max U x , t T � t 	 C for 0 � t � T . 2.18Ž . Ž . Ž .
� �x� 0, 1

Ž . Ž .From 2.13 and 2.18 it follows that the proof of Theorem 1.3 is com-
pleted.

3. BLOW-UP RATE FOR THE SYSTEM

In this section, we prove Theorems 1.1 and 1.2. To this end, we start
Ž . rŽ . Žwith a result of a comparison of the functions u x, t and � x, t where

Ž . Ž ..u, � is the solution of 1.1 . This result allows us to reduce in a sense the
case of a system to the case of a single equation.

Ž . Ž . Ž .LEMMA 3.1. Under assumptions A , B , and C , there exists a constant
r Ž .C � 0 such that Cu 
 � , where r � � �� � 1 and u, � is the solution1 2

Ž .of 1.1 .

Proof.

Step 1. We choose a constant C 
 1 large enough such that1

�1 �� 2 � �� x , 0 	 C u x , 0 for x � 0, 1 . 3.1Ž . Ž . Ž .1

Ž . Ž . Ž .Step 2. By condition C , we have u x, t 
 1, � x, t 
 1 for any
Ž . � � � . 1�Ž1�l11�l 21 .x, t � 0, 1 � 0, T . Moreover, C � r 
 1. Therefore, taking2

Ž .into account 1.1 , for any constant C 
 C we get2

l l1�l r11 12� r11Cu � Cu � C Cu � , in 0, 1 � 0, T ,Ž . Ž . Ž . Ž . Ž . Ž .t x x

Ž .l r�1�l �rr r 1�l r21 2211� 	 � � C Cu � ,Ž . Ž . Ž . Ž .t x x
3.2Ž .

in 0, 1 � 0, T .Ž . Ž .
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� 1�Ž1�p21�p 11 .4Step 3. Fix a constant C � max C , C , r . We prove that1 2
r Ž . � � � . � Ž .Cu � � for any x, t � 0, 1 � 0, T . Set t � sup t 	 Cu x, 	 �0

�1 �� 2Ž . Ž . Ž .4� x, 	 in 0, 1 � 0 	 	 � t . Then we have t � 0. Suppose that0
� � Ž .t � T and there exists a point x � 0, 1 such that Cu x , t �0 0 0 0

�1 �� 2Ž . Ž .� x , t . Likewise, in Step 1 of the proof of Theorem 1.3, by 1.1 ,0 0

Ž . Ž . Ž .3.1 , 3.2 , the assumption B , and the definition of t , we deduce easily0
� .that x cannot belong to the half-interval 0, 1 . Thus, we have x � 1, and0 0

Ž .at the point 1, t we get0

Cu � � �1 �� 2 1, tŽ . Ž .x 0

�1 Ž .p � �� �p p �1 � �� �p �11�p 12 2 1 11 22 1 2 2111� C Cu � Cu . 3.3Ž . Ž . Ž .p21� C2

Ž .By assumption A and the choice of the constant C, we have

p � p � �� � p � 1 � p � 1 � �� ,Ž .11 12 2 1 21 22 2 1
�1 3.4Ž .1�p11C � � 0.p21C �2

Ž . Ž . Ž .From 3.3 , 3.4 , and 1.1 we obtain

Cu � � �1 �� 2 1, t � 0, 3.5Ž . Ž . Ž .x 0

Ž . Ž . Ž r .Ž . Ž . Ž .On the other hand, by 3.2 , B , and Cu � � x, t � 0 in 0, 1 � 0, t ,0
we have

Cu � � �1 �� 2 
 Cu � � �1 �� 2 in 0, 1 � 0, t . 3.6Ž . Ž . Ž . Ž . Ž .t x x 0

Ž .From 1.1 it follows that

Cu � � �1 �� 2 0, t � 0 for 0 � t � t . 3.7Ž . Ž . Ž .x 0

Ž . Ž . Ž . Ž �1 �� 2 .Ž .Therefore, from 3.1 , 3.5 � 3.7 we obtain Cu � � x , t � 0. This0 0
is a contradiction with our assumption. The proof of Lemma 3.1 is
completed.

Now, let us prove Theorem 1.1.

Ž .Proof of Theorem 1.1. We begin with estimating � x, t from below. By
Lemma 3.1, we obtain

� � � � ul21� l22 
 � in 0, 1 � 0, T ,Ž . Ž .t x x x x
p p p21 22 1� 0, t � 0, � 1, t � u 1, t � 1, t 
 c� 1, t , 3.8Ž . Ž . Ž . Ž . Ž . Ž .x x

� x , 0 � � x , in 0, 1 ,Ž . Ž . Ž .0
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Ž .where p � � �� p � p � 1 � 1�� � 1. By Proposition 2.1, we1 1 2 21 22 2
can conclude that there exists a constant c such that1

c1
max � x , t 
 0 � t � T .Ž . Ž .Ž Ž ..1� 2 p �11� �x� 0, 1 T � tŽ .

Ž Ž ..But 1� 2 p � 1 � �� �2, and therefore, we have1 2

� �22max � x , t 
 c T � t 0 � t � T . 3.9Ž . Ž . Ž . Ž .1
� �x� 0, 1

Ž . Ž .Now we pass to u x, t . From 3.9 we get

u 
 u , in 0, 1 � 0, T ,Ž . Ž .t x x
p11u 1, tŽ .

p p11 12u 0, t � 0, u 1, t � u 1, t � 1, t 
 c ,Ž . Ž . Ž . Ž . 3.10Ž .sx x 2 1T � tŽ .
u x , 0 � u x , in 0, 1 ,Ž . Ž . Ž .0

Ž . Ž .where 0 � p � 1 and s � � � p �2. By hypothesis A , we have11 1 2 12
s � 1�2. Therefore, by Proposition 2.3, we obtain1

Ž . Ž .� s �1�2 � 1�p1 11max u x , t 
 c T � t .Ž . Ž .3
� �x� 0, 1

We remark that

s � 1�21 � �� �2.11 � p11

Ž .Thus we have obtained the lower bound for u x, t :

� �21max u x , t 
 c T � t 0 � t � T . 3.11Ž . Ž . Ž . Ž .3
� �x� 0, 1

Next, we pass to the reverse inequalities in Theorem 1.1. Now, we start
Ž .with u x, t . By Lemma 3.1, we have

˜ l11�l 12 � ru 	 u � C u , in 0, 1 � 0, T ,Ž . Ž .t x x 1

u 0, t � 0, u 1, t � u p11 1, t � p12 1, t 	 C u p2 1, t ,Ž . Ž . Ž . Ž . Ž .x x 1

u x , 0 � u x , in 0, 1 ,Ž . Ž . Ž .0

˜� 4 � 4where min C , C � 1, r � � �� , and p � � p � � p �� �1 1 1 2 2 1 11 2 12 1
Ž .�1�� � 1 � 1. By assumption A , we have l � l �r � 2 p � 1. Thus,1 11 12 2

we can take a constant l such that l � l �r � l � 2 p � 1 and l � 1.2 11 12 2 2 2
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Ž . Ž .By assumption C , we have u x, t 
 1. On the other hand, we can take a
˜ 1� l2 1�p2� 4constant M large enough such that max C M , C M 	 1. Set1 1

u � Mu; then we get˜

˜ l11�l 12 � r l2u � u � C u 	 u � u , in 0, 1 � 0, T ,Ž . Ž .˜ ˜ ˜ ˜ ˜t x x 1 x x

u 0, t � 0, u 1, t 	 C u p2 1, t 	 u p2 1, t ,Ž . Ž . Ž . Ž .˜ ˜ ˜ ˜x x 1

u x , 0 � Mu x , in 0, 1 .Ž . Ž . Ž .˜ 0

Thus, by Proposition 2.2, we obtain

C2
max Mu x , t 	 0 � t � T .Ž . Ž .Ž Ž ..1� 2 p �12� �x� 0, 1 T � tŽ .

Ž Ž ..But 1� 2 p � 1 � �� �2, whence2 1

C2
max u x , t 	 0 � t � T . 3.12Ž . Ž . Ž .�� �21� �x� 0, 1 T � tŽ .

Ž .By the above estimate for u x, t , we have

� l22

˜� 	 � � C in 0, 1 � 0, T ,Ž . Ž .t x x 3 s̃2T � tŽ .
p22 3.13� 1, t Ž .Ž .

p p21 22� 0, t � 0, � 1, t � u 1, t � 1, t 	 C ,Ž . Ž . Ž . Ž . sx x 3 2T � tŽ .
� x , 0 � � x , in 0, 1 ,Ž . Ž . Ž .0

Ž .where 0 � l � 1, 0 � p � 1, s � �� l �2, and s � �� p �2.˜22 22 2 1 21 2 1 21
Ž . Ž .ŽUsing again assumption A , we get s � 1�2 and s � 1 � 1 � l 2 s˜2 2 22 2

. Ž Ž ..� 1 � 2 1 � p . Thus, by Theorem 1.3 we obtain22

C4
max � x , t 	 .Ž . Ž . Ž .s �1�2 � 1�p2 22� �x� 0, 1 T � tŽ .

Ž . Ž . Ž .We observe that s � 1�2 � 1 � p � �� �2. Therefore, we have2 22 2

C5
max � x , t 	 0 � t � T . 3.14Ž . Ž . Ž .�� �22� �x� 0, 1 T � tŽ .

Ž . Ž . Ž . Ž .Combining 3.9 , 3.11 , 3.12 , with 3.14 , we complete the proof of Theo-
rem 1.1.
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Ž .Proof of Theorem 1.2. We begin with u x, t . By Lemma 3.1, we have

˜ l11�l 12 � ru 	 u � C u in 0, 1 � 0, T ,Ž . Ž .t x x 1
p p p11 12 2 3.15u 0, t � 0, u 1, t � u 1, t � 1, t 	 C u 1, t , Ž .Ž . Ž . Ž . Ž . Ž .x x 1

u x , 0 � u x , in 0, 1 ,Ž . Ž . Ž .0

˜� 4 � 4where r � � �� , max C , C � 1, and p � � p � � p �� � 1.1 2 1 1 2 1 11 2 12 1
Ž .By A , we can take a constant l such that l � l �r � l � 2 p � 1 and3 11 12 3 2

l � 1. We can also take another constant K large enough such that3
1� l 1�p3 2˜� 4 Ž . Ž .max C K C K 	 1. Let u � Ku. Taking into account 3.15 , by C1 1

we get
l3u 	 u � u in 0, 1 � 0, T ,Ž . Ž .t x x

p2u 0, t � 0, u 1, t 	 u 1, t , 3.16Ž . Ž . Ž . Ž .x x

u x , 0 � Ku x , in 0, 1 ,Ž . Ž . Ž .0

Ž .By Proposition 2.2 and condition C , for any 0 	 r � 1 there exists a
Ž .constant C � C r such that7 7

�max u x , t 	 C r , t � 0, T . 3.17Ž . Ž . Ž ..7
� �x� 0, r

Ž .By Lemma 3.1 and 3.17 , we obtain

�max � x , t 	 C r , t � 0, T . 3.18Ž . Ž . Ž ..8
� �x� 0, r

This completes the proof of Theorem 1.2.
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