The Blow-Up Rate for a Strongly Coupled System of Semilinear Heat Equations with Nonlinear Boundary Conditions

and

Shaoyong Lai

Department of Mathematics, Sichuan Normal University, Chengdu 610066, People's Republic of China

Submitted by Konstantin A. Lurie

Received December 7, 1998
The paper deals with the blow-up rate of positive solutions to the system $u_{t}=u_{x x}+u^{l_{11}} v^{l_{12}}, \quad v_{t}=v_{x x}+u^{l_{21}} v^{l_{22}}$ with boundary conditions $u_{x}(1, t)=$ $\left(u^{p_{11}} v^{p_{12}}\right)(1, t)$ and $v_{x}(1, t)=\left(u^{p_{21}} v^{p_{22}}\right)(1, t)$. Under some assumptions on the matrices $L=\left(l_{i j}\right)$ and $P=\left(p_{i j}\right)$ and on the initial data u_{0}, v_{0}, the solution (u, v) blows up at finite time T, and we prove that $\max _{x \in[0,1]} u(x, t)$ (resp. $\left.\max _{x \in[0,1]} v(x, t)\right)$ goes to infinity as $(T-t)^{\alpha_{1} / 2}$ (resp. $(T-t)^{\alpha_{2} / 2}$), where $\alpha_{i}<0$ are the solutions of $(P-\operatorname{Id})\left(\alpha_{1}, \alpha_{2}\right)^{t}=(-1,-1)^{t}$. © 2001 Academic Press

1. INTRODUCTION

In this paper we consider the blow-up rate for the following system of semilinear heat equations with nonlinear boundary conditions

$$
\begin{gather*}
u_{t}=u_{x x}+u^{l_{11}} v^{l_{12}}, \quad v_{t}=v_{x x}+u^{l_{21}} v^{l_{22}}, \\
(x, t) \in(0,1) \times(0, T), \\
u_{x}(0, t)=0, \quad v_{x}(0, t)=0, \quad t \in(0, T), \\
u_{x}(1, t)=\left(u^{p_{11}} v^{p_{12}}\right)(1, t), \quad v_{x}(1, t)=\left(u^{p_{21}} v^{p_{22}}\right)(1, t), \tag{1.1}\\
t \in(0, T), \\
u(x, 0)=u_{0}(x), \quad v(x, 0)=v_{0}(x), \quad x \in(0,1) .
\end{gather*}
$$

Here the matrices $L=\left(l_{i j}\right)$ and $P=\left(p_{i j}\right)$ satisfy the following assumption
(A) $\quad P$ and L are two matrices with non-negative entries such that $\max \left\{l_{11}, l_{22}\right\}<1, \max \left\{p_{11}, p_{22}\right\}<1, \operatorname{det}(L-\mathrm{Id}) \neq 0$, and $\operatorname{det}(P-\mathrm{Id})<0$.

Under these hypotheses, there exist two unique vectors (α_{1}, α_{2}) and (β_{1}, β_{2}) with $\alpha_{i}<0$ and $\beta_{i}<0$ (or $\beta_{i}>0$) such that

$$
\begin{equation*}
(P-\text { Id })\binom{\alpha_{1}}{\alpha_{2}}=\binom{-1}{-1}, \quad(L-\mathrm{id})\binom{\beta_{1}}{\beta_{2}}=\binom{-1}{-1} . \tag{1.2}
\end{equation*}
$$

Here, without loss of generality, we assume that $\alpha_{1} \leq \alpha_{2}<0$ and $\beta_{1} \geq \beta_{2}>0$ (or $\beta_{1} \leq \beta_{2}<0$). Further, we suppose that $l_{i j}, \alpha_{i}$, and β_{i} satisfy the following hypotheses:
(B)

$$
l_{11} \geq l_{21}, \quad \beta_{1} / \beta_{2} \geq \alpha_{1} / \alpha_{2}>1, \quad \text { and } \quad(L-\mathrm{Id})\binom{\alpha_{1}}{\alpha_{2}}>\binom{-2}{-2} .
$$

Example. Let $l_{11}=1 / 2, l_{21}=1 / 3, l_{12}=6 / 7, l_{22}=1 / 7, p_{11}=1 / 2$, $p_{12}=2, p_{21}=3 / 4$, and $p_{22}=1 / 2$. Then we get $\alpha_{1}=-2, \alpha_{2}=-1$, $\beta_{1}=12, \beta_{2}=35 / 6$, and $\left(\alpha_{1}, \alpha_{2}\right),\left(\beta_{1}, \beta_{2}\right)$ satisfy conditions (A) and (B).

We also suppose that the initial data satisfy the following conditions
(C) $u_{0}(x), v_{0}(x) \in C^{3}([0,1]), u_{0}^{\prime \prime \prime} \geq 0, u_{0}^{\prime \prime} \geq 0, u_{0}^{\prime} \geq 0, v_{0}^{\prime \prime \prime} \geq 0, v_{0}^{\prime \prime} \geq 0$, $v_{0}^{\prime} \geq 0, u_{0}(x) \geq 1$, and $v_{0}(x) \geq 1$ for any $x \in(0,1)$.

Under condition (C), by the minimum principle we have $u(x, t) \geq 1$ and $v(x, t) \geq 1$ for any $(x, t) \in[0,1] \times[0, T)$.

Under hypothesis (A), it is proved in [15] that the solution $(u(x, t), v(x, t))$ of (1.1) blows up in finite time T. As $t \rightarrow T$ we have

$$
\limsup _{t \rightarrow T}\left\{\|u(., t)\|_{L^{\infty}([0,1])}+\|v(., t)\|_{L^{\infty}([0,1)]}\right\}=+\infty .
$$

We can also prove that both functions $u(x, t)$ and $v(x, t)$ go to infinity as $t \rightarrow T$. In fact, assume that $u(x, t)$ remains bounded in $[0,1] \times[0, T)$. Then $v(x, t)$ satisfies the relations

$$
\begin{gather*}
v_{t}=v_{x x}+K v^{l_{22}} \quad \text { in }(0,1) \times(0, T), \\
v_{x}(0, t)=0, \quad v_{x}(1, t) \leq K v^{p_{22}}(1, t), \tag{1.3}\\
v(x, 0)=v_{0}(x), \quad \text { in }(0,1),
\end{gather*}
$$

where K is a bound for $\max \left\{u^{l_{21}}, u^{p_{21}}\right)$. Since $\max \left\{l_{22}, p_{22}\right\} \leq 1$, it is well
known that $v(x, t)$ remains bounded up to time T (see [13]). Hence, T is not the blow-up time; this is a contradiction to our assumption.

Over the past two decades the blow-up problem for the solutions of nonlinear parabolic equations with nonlinear boundary conditions has deserved a great deal of interest (see [2, 3, 5, 7, 8, 11-14]). For these kinds of problems, in particular, the blow-up rate and the localization of blow-up points are not well known even in the case of a single parabolic equation with a nonlinear boundary condition. Some of those results closely related to ours are as follows.
In $[1,10]$ the authors studied the problem

$$
\begin{gather*}
u_{t}=\Delta u, \quad v_{t}=\Delta v, \quad(x, t) \in B_{R}(0) \times(0, T), \\
\frac{\partial u}{\partial n}=v^{p}, \quad \frac{\partial v}{\partial n}=u^{q}, \quad(x, t) \in \partial B_{R}(0) \times(0, T), \tag{1.4}\\
u_{0}(x, 0)=u_{0}(x), \quad v(x, 0)=v_{0}(x), \quad x \in B_{R}(0),
\end{gather*}
$$

where $p q>1, u_{0}(x), v_{0}(x) \in C^{2}$ are radially symmetric and satisfy the boundary conditions, and $\Delta u_{0} \geq \epsilon>0, \Delta v_{0} \geq \epsilon>0$. They proved that there exist two positive constants c and C such that

$$
\begin{array}{ll}
c \leq \max _{x \in B_{R}(0)} u(x, t)(T-t)^{\alpha / 2} \leq C & \text { for } 0<t<T, \\
c \leq \max _{x \in B_{R}(0)} v(x, t)(T-t)^{\beta / 2} \leq C & \text { for } 0<t<T, \tag{1.5}
\end{array}
$$

where T is the blow-up time, $\alpha=(p+1) /(p q-1)$, and $\beta=(q+1) /$ ($p q-1$).

In [12] Rossi considered the problem

$$
\begin{gather*}
u_{t}=\Delta u, \quad v_{t}=\Delta v, \quad(x, t) \in B_{1}(0) \times(0, T), \\
\frac{\partial u}{\partial n}=u^{p_{11}} v^{p_{12}}, \quad \frac{\partial v}{\partial n}=u^{p_{21}} v^{p_{22}}, \quad(x, t) \in \partial B_{1}(0) \times(0, T), \tag{1.6}\\
u(x, 0)=u_{0}(x)>0, \quad v(x, 0)=v_{0}(x)>0, \quad x \in B_{1}(0),
\end{gather*}
$$

where the matrix $P=\left(p_{i j}\right)$ satisfies hypothesis (A), the initial functions $u_{0}, v_{0} \in C^{3}\left(\bar{B}_{1}(0)\right)$ are radially symmetric and satisfy the boundary conditions, and the first three derivatives of $u_{0}(r), v(r)(r=\|x\|)$ are non-negative. In [12] the author proved that there exist positive constants c and C such that

$$
c \leq \max _{x \in B_{R}(0)} u(x, t)(T-t)^{-\alpha_{1} / 2} \leq C \quad \text { for } 0<t<T
$$

$$
\begin{equation*}
c \leq \max _{x \in B_{R}(0)} v(x, t)(T-t)^{-\alpha_{2} / 2} \leq C \quad \text { for } 0<t<T \tag{1.7}
\end{equation*}
$$

where α_{1} and α_{2} are given by (1.2).
In [11] the author considered the problem (1.1) for the case $l_{12}=l_{21}=0$. The same estimates as (1.7) were obtained.

Similar results on blow-up rate were obtained in [2-4, 6, 9] for some single equations.
In this paper, by a modification of the method given in [11, 12], we establish the following results.

Theorem 1.1. If assumptions (A), (B), and (C) hold, then the solution ($u(x, t), v(x, t))$ of (1.1) blows up at finite time T and there exist positive constants c and C such that

$$
\begin{array}{ll}
c \leq \max _{x \in[0,1]} u(x, t)(T-t)^{-\alpha_{1} / 2} \leq C & \text { for } 0<t<T, \\
c \leq \max _{x \in[0,1]} v(x, t)(T-t)^{-\alpha_{2} / 2} \leq C & \text { for } 0<t<T, \tag{1.8}
\end{array}
$$

where $\alpha_{i}(i=1,2)$ are given by (1.2).
Theorem 1.2. If assumptions (A), (B), and (C) hold, then for any $r \in[0,1)$ there exists a constant $C=C(r)$ such that

$$
\begin{array}{ll}
\max _{x \in[0, r]} u(x, t)<C, & t \in[0, T), \\
\max _{x \in[0, r]} v(x, t)<C, & t \in[0, T)
\end{array}
$$

(i.e., the blow-up set is localized in the boundary $x=1$).

To prove Theorem 1.1 we need a result for a single equation that has independent interest.

Theorem 1.3. Let $u(x, t)$ be a positive solution of the problem

$$
\begin{gather*}
u_{t}=u_{x x}+\tilde{C}_{0} \frac{u^{\tilde{I}}(x, t)}{(T-t)^{\tilde{s}}}, \quad \text { in }(0,1) \times(0, T), \\
u_{x}(0, t)=0, \quad u_{x}(1, t)=C_{0} \frac{u^{r}(1, t)}{(T-t)^{s}}, \quad t \in(0, T), \tag{1.9}\\
u(x, 0)=u_{0}(x), \quad \operatorname{in}(0,1),
\end{gather*}
$$

where $0<\tilde{l}<1, s>1 / 2,0<r<1,0<\tilde{s}<1+(1-\tilde{l})(2 s-1) /(2(1-$ $r)$), and the initial function $u_{0}(x) \in C^{3}$. Then $u(x, t)$ blows up as $t \rightarrow T$ and

$$
\tilde{c} \leq \max _{x \in[0,1]} u(x, t)(T-t)^{\beta} \leq \tilde{C}, \quad t \in(0, T),
$$

where $\beta=(s-1 / 2) /(1-r)$.

The paper is organized as follows. In Section 2, we give some auxiliary propositions and prove Theorem 1.1. In Section 3, which deals with the blow-up rates, we prove our main results.

2. AUXILIARY PROPOSITIONS

In this section, we state some propositions that play an important role in Section 3. We begin with a result of [12] (see also [4, 6]).

Proposition 2.1. Let z be the positive solution of the problem

$$
\begin{gather*}
z_{t}=z_{x x}, \quad(x, t) \in(0,1) \times(0, T), \\
z_{x}(0, t)=0, \quad z_{x}(1, t)=z^{k}(1, t), \quad t \in(0, T), \tag{2.1}\\
z(x, 0)=z_{0}(x)>0, \quad x \in \Omega
\end{gather*}
$$

where $k>1, z_{0} \in C^{3}$ satisfies the inequalities $z_{0}^{\prime} \geq 0, z_{0}^{\prime \prime} \geq 0, z_{0}^{\prime \prime \prime} \geq 0$ and boundary conditions. Then there exist positive constants c and C such that

$$
\begin{equation*}
c \leq \max _{x \in[0,1]} u(x, t)(T-t)^{\alpha}=u(1, t)(T-t)^{\alpha} \leq C, \quad \text { for } 0<t<T \tag{2.2}
\end{equation*}
$$

where $\alpha=1 /(2(k-1))$.
Next we state two results due to $[9,12]$.
Proposition 2.2 (see [9]). Let $w(x, t)$ be the positive solution of the problem

$$
\begin{gather*}
w_{t}=w_{x x}+w^{l}, \quad \text { in }(0,1) \times(0, T), \\
w_{x}(0, t)=0, \quad w_{x}(1, t)=w^{q}(1, t), \quad t \in(0, T), \tag{2.3}\\
w(x, 0)=w_{0}(x)>0, \quad \text { in }[0,1]
\end{gather*}
$$

where $l>0, q>0, \max \{l, q\}>1$, the initial function $w_{0}(x)$ satisfies the inequalities $w_{0}^{\prime \prime}+w_{0}^{l} \geq 0$ and $w_{0}^{\prime} \geq 0$, and T is the blow-up time. Then blow-up occurs only at $x=1$ and there exist positive constants c and C such that

$$
\begin{equation*}
c \leq \max _{x \in[0,1]} w(x, t)(T-t)^{\alpha}=w(1, t)(T-t)^{\alpha} \leq C \quad \text { for } 0<t<T \tag{2.4}
\end{equation*}
$$

where $\alpha=1 /(l-1)$ if $l \geq 2 q-1, \alpha=1 /(2(q-1))$ if $l<2 q-1$, and T is blow-up time.

Proposition 2.3 (see [12]). Let $u(x, t)$ be the positive solution of the problem

$$
\begin{gather*}
u_{t}=u_{x x}, \quad \text { in }(0,1) \times(0, T), \\
u_{x}(0, t)=0, \quad u_{x}(1, t)=\frac{C u^{r}(1, t)}{(T-t)^{s}}, \quad t \in(0, T), \tag{2.5}\\
u(x, 0)=u_{0}(x)>0, \quad \text { in }(0,1),
\end{gather*}
$$

where $s>1 / 2,0<r<1$, and C is an arbitrary constant. Then $u(x, t)$ blows up at time T and

$$
c \leq \max _{x \in[0,1]} u(x, t)(T-t)^{(s-1 / 2) /(1-r)} \leq \bar{C}, \quad t \in(0, T) .
$$

Proof of Theorem 1.1.

Step 1. Let $k=(2 s-r) /(2 s-1)$. Since $\tilde{s}<1+(1-\tilde{l})(2 s-1) /(2(1$ $-r)$), we can take a constant \tilde{l} such that $\tilde{l}<\bar{l}<2 k-1$ and $(\tilde{l}-\tilde{l}) /(2(k$ $-1))=\tilde{s}$. Denote by $\bar{w}(x, t)$ the solution of the problem

$$
\begin{gather*}
\bar{w}_{t}=\bar{w}_{x x}+\bar{w}^{i}, \quad \text { in }(0,1) \times(0, T), \\
\bar{w}_{x}(0, t)=0, \quad \bar{w}_{x}(1, t)=\bar{w}^{k}(1, t), \quad t \in(0, T), \tag{2.6}\\
\bar{w}(x, 0)=\bar{w}_{0}(x)<u_{0}(x), \quad \text { in }(0,1),
\end{gather*}
$$

where the initial function $\bar{w}_{0}(x)$ satisfies the conditions $\bar{w}_{0}^{\prime \prime}+\bar{w}_{0}^{\tilde{l}}>0$ and $\bar{w}_{0}^{\prime} \geq 0$. Since $s>1 / 2$ and $r<1$, we have $k>1$. By $\bar{l}<2 k-1$ and Proposition 2.2 we know that the solution $\bar{w}(x, t)$ of (2.6) blows up in finite time T and

$$
\begin{equation*}
c_{0} \leq \max _{x \in[0,1]} \bar{w}(x, t)(T-t)^{1 /(2(k-1))} \leq \hat{C}_{0} \quad \text { for } 0<t<T \tag{2.7}
\end{equation*}
$$

We are going to prove that $u(x, t)>\bar{w}(x, t)$. To this end, we consider two cases.
(I) Assume that $u_{0}(x), \tilde{C}_{0}$, and C_{0} are large enough. Suppose that there exist a first time $t_{0} \in(0, T)$ and a point x_{0} such that $(\bar{w}-U)\left(x_{0}, t_{0}\right)$ $=0$ and $(u-\bar{w})(x, t)>0$ for all $(x, t) \in[0,1] \times\left[0, t_{0}\right)$. Then we easily deduce that x_{0} must belong to the half-interval (0,1$]$. If $x_{0} \in(0,1)$, then
taking into account (2.5), (2.6), by (2.7), $(\bar{l}-\tilde{l}) /(2(k-1))=\tilde{s}$, and the fact that $u_{0}(x), \tilde{C}_{0}$, and C_{0} are large enough we get

$$
\begin{gather*}
(\bar{w}-u)_{t}=(\bar{w}-u)_{x x}+\bar{w}^{\tilde{l}}-\tilde{C}_{0} \frac{u^{\tilde{\tau}}}{(T-t)^{s}} \leq(\bar{w}-u)_{x x}, \\
\quad \operatorname{in~}(0,1) \times\left(0, t_{0}\right), \\
(\bar{w}-u)_{x}(0, t)=0, \tag{2.8}\\
(\bar{w}-u)_{x}(1, t)=\bar{w}^{k}(1, t)-C_{0} \frac{u^{r}(1, t)}{(T-t)^{s}}<0, \\
t \in\left(0, t_{0}\right), \\
(\bar{w}-u)(x, 0)<0, \quad \text { in }(0,1) .
\end{gather*}
$$

By the minimum principle we have $(\bar{w}-u)\left(x_{0}, t_{0}\right)<0$. This is a contradiction with our assumption.

If $x_{0}=1$, then we have

$$
\begin{equation*}
(\bar{w}-u)_{x}(1, t)=\bar{w}^{r}(1, t)\left(\bar{w}^{k-r}(1, t)-\frac{C_{0}}{(T-t)^{s}}\right) . \tag{2.9}
\end{equation*}
$$

By (2.7) and the fact that C_{0} is large enough, we know that

$$
\begin{equation*}
\bar{w}^{k-r}(1, t) \leq \frac{\bar{C}_{0}}{(T-t)^{(k-r) /(2(k-1))}}<\frac{C_{0}}{(T-t)^{s}} . \tag{2.10}
\end{equation*}
$$

On the other hand, we have $\bar{w}(x, t)<u(x, t)$ for any $(x, t) \in(0,1) \times\left[0, t_{0}\right)$. Thus we also get $(\bar{w}-u)_{t} \leq(\bar{w}-u)_{x x}$ in $(0,1) \times\left(0, t_{0}\right)$. By the minimum principle and (2.8)-(2.10) we have $(\bar{w}-u)\left(x_{0}, t_{0}\right)<0$. This is a contradiction with our assumption. Therefore, from (2.7) we obtain

$$
\begin{equation*}
\max _{x \in[0,1]} u(x, t)(T-t)^{\beta} \geq c \quad \text { for } 0<t<T . \tag{2.11}
\end{equation*}
$$

(II) Let $u(x, t)$ be the solution of (1.9) with arbitrary $u_{0}(x), \tilde{C}_{0}$, and C_{0}. We take a constant M such that $M u_{0}(x)>\bar{w}_{0}(x), M^{1-\tilde{I}} \tilde{C}_{0}$ and
$M^{1-r} C_{0}$ are large enough, and $\bar{U}=M u$ satisfies the following relations:

$$
\begin{gather*}
\bar{U}_{t}=\bar{U}_{x x}+M^{1-\tilde{l}} \tilde{C}_{0} \frac{\bar{U}^{\tilde{\tau}}}{(T-t)^{\tilde{s}}}, \quad \text { in }(0,1) \times(0, T), \\
\bar{U}_{x}(0, t)=0, \quad \bar{U}_{x}(1, t)=M^{1-r} C_{0} \frac{\bar{U}^{r}(1, t)}{(T-t)^{s}}, \quad t \in(0, T), \tag{2.12}\\
\bar{U}(x, 0)=M u_{0}(x)>\bar{w}_{0}(x), \quad \text { in }(0,1),
\end{gather*}
$$

By the previous result (2.11) we have

$$
\begin{equation*}
\max _{x \in[0,1]} \bar{U}(x, t)(T-t)^{\beta} \geq c \quad \text { for } 0<t<T . \tag{2.13}
\end{equation*}
$$

This completes the first step of the proof.
Step 2. Let $q=(2 s-r) /(2 s-1)$. By $\tilde{s}<1+(1-\tilde{l})(2 s-1) /(2(1$ $-r)$), we can also take a constant l such that $l<2 q-1$ and $(l-\tilde{l}) /(2(q$ $-1))=\tilde{s}$. Let $\tilde{w}(x, t)$ be the solution of the problem

$$
\begin{gather*}
\tilde{w}_{t}=\tilde{w}_{x x}+\tilde{w}^{l}, \quad \operatorname{in}(0,1) \times(0, T), \\
\tilde{w}_{x}(0, t)=0, \quad \tilde{w}_{x}(1, t)=\tilde{w}^{q}(1, t), \quad t \in(0, T), \tag{2.14}\\
\tilde{w}(x, 0)=\tilde{w}_{0}(x)>u_{0}(x), \quad \text { in }(0,1),
\end{gather*}
$$

where $\tilde{w}_{0} \in C^{2}, \tilde{w}_{0}^{\prime \prime}+\tilde{w}_{0}^{l}>0$, and $\tilde{w}_{0}^{\prime} \geq 0$. By Proposition 2.2, $\tilde{w}(x, t)$ blows up in finite time T and there exist positive constants c and C such that

$$
\begin{equation*}
c \leq \max _{x \in[0,1]} \tilde{w}(x, t)(T-t)^{\beta} \leq C \quad \text { for } 0<t<T . \tag{2.15}
\end{equation*}
$$

We shall prove that $\tilde{w}(x, t)>u(x, t)$. Consider two cases.
(III) Assume that $u_{0}(x), \tilde{C}_{0}$, and C_{0} are small enough. Arguing as in (I), we obtain $\tilde{w}(x, t)>u(x, t)$ and

$$
\begin{equation*}
\max _{x \in[0,1]} u(x, t)(T-t)^{\beta} \leq C \quad \text { for } 0<t<T . \tag{2.16}
\end{equation*}
$$

(IV) Let the constants \tilde{C}_{0}, C_{0} and the initial data be arbitrary. We take a constant m such that $m u_{0}<\tilde{w}_{0}, m^{1-\tilde{I}} \tilde{C}_{0}$ and $m^{1-r} C_{0}$ are small
enough, and $\tilde{U}=m u$ satisfies the following relations:

$$
\begin{gather*}
\tilde{U}_{t}=\tilde{U}_{x x}+m^{1-\tilde{l}} \tilde{C}_{0} \frac{\tilde{U}^{\tilde{l}}}{(T-t)^{\tilde{s}}}, \quad \text { in }(0,1) \times(0, T), \\
\tilde{U}_{x}(0, t)=0, \quad \tilde{U}_{x}(1, t)=m^{1-r} C_{0} \frac{\tilde{U}^{r}(1, t)}{(T-t)^{s}}, \quad t \in(0, T), \tag{2.17}\\
\tilde{U}(x, 0)=m u_{0}(x)<\tilde{w}_{0}(x), \quad \text { in }(0,1)
\end{gather*}
$$

By (III) we have

$$
\begin{equation*}
\max _{x \in[0,1]} \tilde{U}(x, t)(T-t)^{\beta} \leq C \quad \text { for } 0<t<T \tag{2.18}
\end{equation*}
$$

From (2.13) and (2.18) it follows that the proof of Theorem 1.3 is completed.

3. BLOW-UP RATE FOR THE SYSTEM

In this section, we prove Theorems 1.1 and 1.2. To this end, we start with a result of a comparison of the functions $u(x, t)$ and $v^{r}(x, t)$ (where (u, v) is the solution of (1.1)). This result allows us to reduce in a sense the case of a system to the case of a single equation.

LEMMA 3.1. Under assumptions (A), (B), and (C), there exists a constant $C>0$ such that $C u \geq v^{r}$, where $r=\alpha_{1} / \alpha_{2}>1$ and (u, v) is the solution of (1.1).

Proof.

Step 1. We choose a constant $C_{1} \geq 1$ large enough such that

$$
\begin{equation*}
v^{\alpha_{1} / \alpha_{2}}(x, 0) \leq C_{1} u(x, 0) \quad \text { for } x \in[0,1] \tag{3.1}
\end{equation*}
$$

Step 2. By condition (C), we have $u(x, t) \geq 1, v(x, t) \geq 1$ for any $(x, t) \in[0,1] \times[0, T)$. Moreover, $C_{2}=r^{1 /\left(1-l_{11}+l_{21}\right)} \geq 1$. Therefore, taking into account (1.1), for any constant $C \geq C_{2}$ we get

$$
\begin{align*}
&(C u)_{t}=(C u)_{x x}+C^{1-l_{11}}(C u)^{l_{11}}\left(v^{r}\right)^{l_{12 / r}}, \text { in }(0,1) \times(0, T) \\
&\left(v^{r}\right)_{t} \leq\left(v^{r}\right)_{x x}+C^{1-l_{11}}(C u)^{l_{21}}\left(v^{r}\right)^{\left(r-1+l_{22}\right) / r} \tag{3.2}\\
& \text { in }(0,1) \times(0, T)
\end{align*}
$$

Step 3. Fix a constant $C>\max \left\{C_{1}, C_{2}, r^{1 /\left(1+p_{21}-p_{11}\right)}\right\}$. We prove that $C u>v^{r}$ for any $(x, t) \in[0,1] \times[0, T)$. Set $t_{0}=\sup \{t \mid C u(x, \tau)>$ $v^{\alpha_{1} / \alpha_{2}}(x, \tau)$ in $\left.(0,1) \times(0 \leq \tau<t)\right\}$. Then we have $t_{0}>0$. Suppose that $t_{0}<T$ and there exists a point $x_{0} \in[0,1]$ such that $\mathrm{Cu}\left(x_{0}, t_{0}\right)=$ $v^{\alpha_{1} / \alpha_{2}}\left(x_{0}, t_{0}\right)$. Likewise, in Step 1 of the proof of Theorem 1.3, by (1.1), (3.1), (3.2), the assumption (B), and the definition of t_{0}, we deduce easily that x_{0} cannot belong to the half-interval $[0,1)$. Thus, we have $x_{0}=1$, and at the point $\left(1, t_{0}\right)$ we get

$$
\begin{align*}
(C u & \left.-v^{\alpha_{1} / \alpha_{2}}\right)_{x}\left(1, t_{0}\right) \\
& =C^{1-p_{11}}(C u)^{p_{12} \alpha_{2} / \alpha_{1}+p_{11}}-\frac{\alpha_{1}}{\alpha_{2} C^{p_{21}}}(C u)^{\left(p_{22}-1\right) \alpha_{1} / \alpha_{2}+p_{21}+1} . \tag{3.3}
\end{align*}
$$

By assumption (A) and the choice of the constant C, we have

$$
\begin{gather*}
p_{11}+p_{12} \alpha_{2} / \alpha_{1}=p_{21}+1+\left(p_{22}-1\right) \alpha_{2} / \alpha_{1}, \\
C^{1-p_{11}}-\frac{\alpha_{1}}{C^{p_{21}} \alpha_{2}}>0 . \tag{3.4}
\end{gather*}
$$

From (3.3), (3.4), and (1.1) we obtain

$$
\begin{equation*}
\left(C u-v^{\alpha_{1} / \alpha_{2}}\right)_{x}\left(1, t_{0}\right)>0, \tag{3.5}
\end{equation*}
$$

On the other hand, by (3.2), (B), and $\left(C u-v^{r}\right)(x, t)>0$ in $(0,1) \times\left(0, t_{0}\right)$, we have

$$
\begin{equation*}
\left(C u-v^{\alpha_{1} / \alpha_{2}}\right)_{t} \geq\left(C u-v^{\alpha_{1} / \alpha_{2}}\right)_{x x} \quad \text { in }(0,1) \times\left(0, t_{0}\right) . \tag{3.6}
\end{equation*}
$$

From (1.1) it follows that

$$
\begin{equation*}
\left(C u-v^{\alpha_{1} / \alpha_{2}}\right)_{x}(0, t)=0 \quad \text { for } 0<t<t_{0} . \tag{3.7}
\end{equation*}
$$

Therefore, from (3.1), (3.5)-(3.7) we obtain $\left(C u-v^{\alpha_{1} / \alpha_{2}}\right)\left(x_{0}, t_{0}\right)>0$. This is a contradiction with our assumption. The proof of Lemma 3.1 is completed.

Now, let us prove Theorem 1.1.
Proof of Theorem 1.1. We begin with estimating $v(x, t)$ from below. By Lemma 3.1, we obtain

$$
\begin{gather*}
v_{t}=v_{x x}+u^{l_{21}} v^{l_{22}} \geq v_{x x} \quad \text { in }(0,1) \times(0, T), \\
v_{x}(0, t)=0, \quad v_{x}(1, t)=u^{p_{21}}(1, t) v^{p_{22}}(1, t) \geq c v^{p_{1}}(1, t), \tag{3.8}\\
v(x, 0)=v_{0}(x), \quad \text { in }(0,1),
\end{gather*}
$$

where $p_{1}=\left(\alpha_{1} / \alpha_{2}\right) p_{21}+p_{22}=1-1 / \alpha_{2}>1$. By Proposition 2.1, we can conclude that there exists a constant c_{1} such that

$$
\max _{x \in[0,1]} v(x, t) \geq \frac{c_{1}}{(T-t)^{1 /\left(2\left(p_{1}-1\right)\right)}} \quad(0<t<T)
$$

But $1 /\left(2\left(p_{1}-1\right)\right)=-\alpha_{2} / 2$, and therefore, we have

$$
\begin{equation*}
\max _{x \in[0,1]} v(x, t) \geq c_{1}(T-t)^{\alpha_{2} / 2} \quad(0<t<T) \tag{3.9}
\end{equation*}
$$

Now we pass to $u(x, t)$. From (3.9) we get

$$
\begin{gather*}
u_{t} \geq u_{x x}, \quad \text { in }(0,1) \times(0, T), \\
u_{x}(0, t)=0, \quad u_{x}(1, t)=u^{p_{11}}(1, t) v^{p_{12}}(1, t) \geq c_{2} \frac{u^{p_{11}}(1, t)}{(T-t)^{s_{1}}} \tag{3.10}\\
u(x, 0)=u_{0}(x), \quad \text { in }(0,1),
\end{gather*}
$$

where $0<p_{11}<1$ and $s_{1}=-\left(\alpha_{2} p_{12}\right) / 2$. By hypothesis (A), we have $s_{1}>1 / 2$. Therefore, by Proposition 2.3, we obtain

$$
\max _{x \in[0,1]} u(x, t) \geq c_{3}(T-t)^{-\left(s_{1}-1 / 2\right) /\left(1-p_{11}\right)}
$$

We remark that

$$
\frac{s_{1}-1 / 2}{1-p_{11}}=-\alpha_{1} / 2
$$

Thus we have obtained the lower bound for $u(x, t)$:

$$
\begin{equation*}
\max _{x \in[0,1]} u(x, t) \geq c_{3}(T-t)^{\alpha_{1} / 2} \quad(0<t<T) \tag{3.11}
\end{equation*}
$$

Next, we pass to the reverse inequalities in Theorem 1.1. Now, we start with $u(x, t)$. By Lemma 3.1, we have

$$
\begin{gathered}
u_{t} \leq u_{x x}+\tilde{C}_{1} u^{l_{11}+l_{12} / r}, \quad \text { in }(0,1) \times(0, T), \\
u_{x}(0, t)=0, \quad u_{x}(1, t)=u^{p_{11}}(1, t) v^{p_{12}}(1, t) \leq C_{1} u^{p_{2}}(1, t), \\
u(x, 0)=u_{0}(x), \quad \text { in }(0,1),
\end{gathered}
$$

where $\min \left\{\tilde{C}_{1}, C_{1}\right\}>1, \quad r=\alpha_{1} / \alpha_{2}, \quad$ and $\quad p_{2}=\left\{\alpha_{1} p_{11}+\alpha_{2} p_{12}\right\} / \alpha_{1}=$ $-1 / \alpha_{1}+1>1$. By assumption (A), we have $l_{11}+l_{12} / r<2 p_{2}-1$. Thus, we can take a constant l_{2} such that $l_{11}+l_{12} / r<l_{2}<2 p_{2}-1$ and $l_{2}>1$.

By assumption (C), we have $u(x, t) \geq 1$. On the other hand, we can take a constant M large enough such that $\max \left\{\tilde{C}_{1} M^{1-l_{2}}, C_{1} M^{1-p_{2}}\right\} \leq 1$. Set $\tilde{u}=M u$; then we get

$$
\begin{gathered}
\tilde{u}_{t}=\tilde{u}_{x x}+\tilde{C}_{1} \tilde{u}^{l_{11}+l_{12} / r} \leq \tilde{u}_{x x}+\tilde{u}^{l_{2}}, \quad \text { in }(0,1) \times(0, T), \\
\tilde{u}_{x}(0, t)=0, \quad \tilde{u}_{x}(1, t) \leq C_{1} \tilde{u}^{p_{2}}(1, t) \leq \tilde{u}^{p_{2}}(1, t), \\
\tilde{u}(x, 0)=M u_{0}(x), \quad \text { in }(0,1) .
\end{gathered}
$$

Thus, by Proposition 2.2, we obtain

$$
\max _{x \in[0,1]} M u(x, t) \leq \frac{C_{2}}{(T-t)^{1 /\left(2\left(p_{2}-1\right)\right)}} \quad(0<t<T) .
$$

But $1 /\left(2\left(p_{2}-1\right)\right)=-\alpha_{1} / 2$, whence

$$
\begin{equation*}
\max _{x \in[0,1]} u(x, t) \leq \frac{\bar{C}_{2}}{(T-t)^{-\alpha_{1} / 2}} \quad(0<t<T) \tag{3.12}
\end{equation*}
$$

By the above estimate for $u(x, t)$, we have

$$
\begin{gather*}
v_{t} \leq v_{x x}+\tilde{C}_{3} \frac{v^{l_{22}}}{(T-t)^{s_{2}}} \quad \text { in }(0,1) \times(0, T), \\
v_{x}(0, t)=0, \quad v_{x}(1, t)=u^{p_{21}}(1, t) v^{p_{22}}(1, t) \leq C_{3} \frac{v^{p_{22}}(1, t)}{(T-t)^{s_{2}}}, \tag{3.13}\\
v(x, 0)=v_{0}(x), \quad \text { in }(0,1),
\end{gather*}
$$

where $0<l_{22}<1,0<p_{22}<1, \tilde{s}_{2}=-\alpha_{1} l_{21} / 2$, and $s_{2}=\left(-\alpha_{1} p_{21}\right) / 2$. Using again assumption (A), we get $s_{2}>1 / 2$ and $\tilde{s}_{2}<1+\left(1-l_{22}\right)\left(2 s_{2}\right.$ $-1) /\left(2\left(1-p_{22}\right)\right)$. Thus, by Theorem 1.3 we obtain

$$
\max _{x \in[0,1]} v(x, t) \leq \frac{C_{4}}{(T-t)^{\left(s_{2}-1 / 2\right) /\left(1-p_{22}\right)}} .
$$

We observe that $\left(s_{2}-1 / 2\right) /\left(1-p_{22}\right)=\left(-\alpha_{2}\right) / 2$. Therefore, we have

$$
\begin{equation*}
\max _{x \in[0,1]} v(x, t) \leq \frac{C_{5}}{(T-t)^{-\alpha_{2} / 2}} \quad(0<t<T) . \tag{3.14}
\end{equation*}
$$

Combining (3.9), (3.11), (3.12), with (3.14), we complete the proof of Theorem 1.1.

Proof of Theorem 1.2. We begin with $u(x, t)$. By Lemma 3.1, we have

$$
\begin{gather*}
u_{t} \leq u_{x x}+\tilde{C}_{1} u^{l_{11}+l_{12} / r} \quad \text { in }(0,1) \times(0, T), \\
u_{x}(0, t)=0, \quad u_{x}(1, t)=u^{p_{11}}(1, t) v^{p_{12}}(1, t) \leq C_{1} u^{p_{2}}(1, t), \tag{3.15}\\
u(x, 0)=u_{0}(x), \quad \text { in }(0,1),
\end{gather*}
$$

where $r=\alpha_{1} / \alpha_{2}, \max \left\{\tilde{C}_{1}, C_{1}\right\}>1$, and $p_{2}=\left\{\alpha_{1} p_{11}+\alpha_{2} p_{12}\right\} / \alpha_{1}>1$. By (A), we can take a constant l_{3} such that $l_{11}+l_{12} / r<l_{3}<2 p_{2}-1$ and $l_{3}>1$. We can also take another constant K large enough such that $\max \left\{\tilde{C}_{1} K^{1-l_{3}} C_{1} K^{1-p_{2}}\right\} \leq 1$. Let $\bar{u}=K u$. Taking into account (3.15), by (C) we get

$$
\begin{gather*}
\bar{u}_{t} \leq \bar{u}_{x x}+\bar{u}^{l_{3}} \quad \text { in }(0,1) \times(0, T), \\
\bar{u}_{x}(0, t)=0, \quad \bar{u}_{x}(1, t) \leq \bar{u}^{p_{2}}(1, t), \tag{3.16}\\
\bar{u}(x, 0)=K u_{0}(x), \quad \text { in }(0,1),
\end{gather*}
$$

By Proposition 2.2 and condition (C), for any $0 \leq r<1$ there exists a constant $C_{7}=C_{7}(r)$ such that

$$
\begin{equation*}
\max _{x \in[0, r]} u(x, t) \leq C_{7}(r), \quad t \in[0, T) \tag{3.17}
\end{equation*}
$$

By Lemma 3.1 and (3.17), we obtain

$$
\begin{equation*}
\max _{x \in[0, r]} v(x, t) \leq C_{8}(r), \quad t \in[0, T) . \tag{3.18}
\end{equation*}
$$

This completes the proof of Theorem 1.2.

ACKNOWLEDGMENTS

This work was done while the first author was visiting the Faculty of Mathematics and Mechanics, Moscow State University. He thanks Professor O. A. Oleinik for encouragement and help. He also sincerely thanks Professor A. S. Kalashnikov for a helpful suggestion. This work was supported in part by Excellent Youth Teacher Foundation and Returned Oversea Scholar Foundation of Education Ministry of China and in part by NNSF of China.

REFERENCES

1. K. Deng, Blow-up rates for parabolic systems, Z. Angew Math. Phys. 46 (1995), 110-118.
2. Yu. V. Egorov and V. A. Kondratiev, On a nonlinear boundary problem for a heat equation, C. R. Acad. Sci. Paris. Ser. I 322 (1996), 55-58.
3. Yu. V. Egorov and V. A. Kondratiev, On blow-up solutions for parabolic equations of second order, in "Differential Equations, Asymptotic Analysis and Mathematical Physics" (M. Demuth and B. W. Schulze, Eds.), pp. 77-84, Serie: Math. Research 100, AkademieVerlag, Berlin, 1997.
4. M. Fila and P. Quittner, The blow-up rate for the heat equation with a nonlinear boundary condition, Math. Methods Appl. Sci. 14 (1991), 197-205.
5. J. L. Gómez, V. Marquez, and N. Wolanski, Blow-up results and localization of blow-up points for the heat equation with a nonlinear boundary condition, J. Differential Equations 92 (1991), 384-401.
6. B. Hu and H. M. Yin, The profile near blow-up time for the solution of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc. 346 (1995), 117-135.
7. V. K. Kalantarov, On destruction of solutions to parabolic and hyperbolic equations with nonlinear boundary conditions, J. Soviet Math. 27 (1984), 2601-2606.
8. H. A. Levine and L. E. Payne, Some nonexistence theorems for initial-boundary value problems with nonlinear boundary conditions, Proc. Amer. Math. Soc. 46 (1974), 277-284.
9. Z. G. Lin and M. X. Wang, The blow-up properties of solutions to semilinear heat equations with nonlinear boundary conditions, Appl. Math. J. Chinese Univ. Ser. B. 13 (1998), 281-288.
10. Z. G. Lin and C. H. Xie, The blow-up rate for a system of heat equations with nonlinear boundary conditions, Nonlinear Anal. 34 (1998), 767-778.
11. C. L. Mu, The blow-up rate for a system of semilinear heat equations with nonlinear boundary conditions, Appl. Math. Letters 13 (2000), 89-95.
12. J. D. Rossi, The blow-up rate of a system of heat equations with non-trivial coupling at the boundary, Math. Methods Appl. Sci. 20 (1997), 1-11.
13. M. X. Wang, "Nonlinear Equations of Parabolic Type," Science Press, Beijing, 1993 (in Chinese).
14. M. X. Wang, Existence and nonexistence of global positive solutions for quasilinear parabolic systems with nonlinear boundary conditions, Preprint, 1997.
15. S. Wang, M. X. Wang, and C. H. Xie, Quasilinear parabolic systems with nonlinear boundary conditions, Z. Angew Math. Phys. 50 (1999), 361-374.
