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INTRODUCTION 

If G is an infinite periodic group, then its automorphism group is also 
infinite (Baer [I]); if G, in addition, is abelian, then more detailed information 
is available on the cardinal number of Aut (G) (Boyer [2]; Walker [13]). 
But in contrast, if G is torsion-free, then Aut (G) may well be a finite group. 
The simplest example shows this: the infinite cyclic group C, , which has 
only one automorphism other than the identity. 

The problem we shall discuss in this paper is the following: for what finite 
groups A is there a torsion-free group G such that Aut (G) is isomorphic 
to A ?’ We remark immediately that under these circumstances G is necessarily 
abelian. For if Aut (G) is finite, then so is its subgroup consisting of the inner 
automorphisms, which is isomorphic to the factor group of G over its center 
Z(G). But by a celebrated theorem of Schur,2 if the center of a group is of 
finite index, then its derived group G’ is finite. And in our case, since G 
is torsion-free, this means that G’ : 1 or that G is abelian. 

We do not concern ourselves with the apparently hopeless task of finding 
all the torsion-free abelian groups whose automorphism group is a given 
finite group. It may suffice here to state that if a finite group A occurs at all, 
then it will become clear from the examples we shall construct in Part II that 
even among countable torsion-free abelian groups G of finite rank there are 
always uncountably many nonisomorphic ones having the given A as their 
automorphism group. 

In fact, much more is known even in the simplest case when A F C, is 
cyclic of order 2. Preliminary results by de Groot [7], Hulanicki [IO], 
Fuchs [5], and Saqiada [II] showed successively that for every cardinal 

1 To .save circumlocution we shall occasionally say in this case that A “occurs” as 
an automorphism group. 

2 For a short proof see [8]. 
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number Y less than 2Q 2@“, 2” 
&I 

there are torsion-free abelian groups G of 
rank Y with 1 Aut (G) i =. 2, and in 1959 Fuchs [6] stated that there is no 
restriction whatever on the cardinal number Y of the rank of such a group. 
True, a flaw in Fuchs’ argument was revealed by Corner 131, but he at least 
was able to save the result for all ranks Y smaller than the hypothetical first 
“strongly inaccessible” cardinal number. 

Our interest in the present problem arises from the paper by de Vries and 
de Miranda E12] who investigated what groups of small order (not exceeding 8) 
occur as the automorphism groups of other groups. Of course, every torsion- 
free abelian group G has the “inversion” antomorphism p = - 1 : gp = -- g 
for all g E G, so that the order of Aut (G), if finite, must be even.” De Vries 
and de Miranda show that of the ten groups of order 2, 4, 6, or 8 seven do 
occur as automorphism groups of torsion-free groups, and three do not. The 
latter are the cyclic group C’s and the dihedral groups II), and D,% . Note that 
among their examples there is a single nonabelian automorphism group, the 
quaternion group QN . 

‘The first part of this paper is devoted to a search for conditions that are 
necessary for a finite (or for that matter, periodic) group A to occur as the 
~~ut~morphism group of a torsion-free group G. The subsequent second part 
will deal with the sufhciency of these conditions, tlrat is, with the task of 
constructing torsion-free groups having a prescribed finite automorplljsm 
group. 

I 

We may perhaps anticipate our final result in the form of a 

Nl~rr; THEOREM. I f  a finite group R is the automorphism group of a torsion- 
free group G, then A is a sz~bgroup of a direct product of a jkite number of 
groups of thefo~L0~~~~ fix type.@: 

cyclic groups C, , C, , C, of order 2, 4, 6; 

the quaternion group Q8 of ordeer 8; 

the dicyclic group DC,, of order 12; 

the binary tetra~edrff~ group BT,, of order 24. 

.__- 

:I And it is well known that groups of odd prime order cannot be automorphism 

grOUpS. 

‘$ It will he shown in Part II that these six groups and all finite direct products of 

them do, in fact, occur as automorphism groups. Note that each of these groups has a 
single element of order 2 and is therefore indecomposable qua automorphism group. 
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The last three groups can be given conveniently by generators and 
defining relations: 

8s = {a, B II 2 = P = ($q2); 
DC,, = (a, j3 /I 2 = p2 = ($?)2}; 

BT,, = {a, ,B 11 a3 = /P = (afl)2), 

The theorem indicates that the class of finite automorphism groups of tor- 
sion-free abelian groups is rather special; it should be contrasted with the 
remarkable result of Corner [4] that every countable, reduced, torsion- 
free ring (associative and with unit element) is the endomorphism ring of a 
torsion-free abelian group. 

We begin the proof with a description of the (quite elementary) method 
by which we derive information on A from the assumption that it is the 
automorphism group of a torsion-free abelian group G. We denote by ZA 
the integral group ring of A. Its elements xi xiai , (xi E Z, 01~ E A), induce 
endomorphisms in G in the obvious way: g(& xiai) = & xi(gai). We form 
the two&led ideal I’of those y E ZA for which this is the zero endomorphism: 
gy = 0 for all g E G. The residue class ring ZA/r can now be embedded 
in End (G), the endomorphism ring of G. We set ZA/I’ = R(G) and call it 
the automorphism ring of G, that is, the subring of End (G) generated by 
Aut (G). 

Now the units of the ring End (G) are precisely the automorphisrns, and 
they are contained, as monomials l.or, in R(G). Following G. Higman [9] 
we call them tritd units of R(G). But suppose that we can deduce from 
intrinsic properties of the finite group A (without specific information on the 
way the elements of A act on those of G) that no matter what the group G 
is, the ring R(G) must contain other, nontrivial units. Then our assumption 
that A is the automorphism group of a suitable G is false and A cannot 
occur. And if such a nontrivial unit is of infinite order, then A cannot even 
be a subgroup of a finite (or periodic) automorphism group. To illustrate 
our method we take the case of the dihedral group D4 of order 8. 

D, = {a, ,L3 I( a4 = B” = (0r/3)~ = l}. 

Here the element 7 = 1 + a(1 + /I) of R(G) turns out to be a unit, because 
with 7’ = 1 - (~(1 + 8) we have 77 = r]‘~ = 1. It is easy to show that 7 
cannot be one of the 8 trivial units of R(G).5 

’ It may be useful to compare our method with that of de Vries and de Miranda. 
Apart from the obvious fact that the inversion automorphism must be given by 
01~ = - 1 we have not used any knowledge about the action of the elements of D, on 

those of G. A slight mistake in their paper concerning D, is corrected in IMath. Rev. 
22, 136516, #8061. 

Alternatively, in their notation, as soon as the statement yR = P, 9P = R is reached, 
a contradiction arises to their assumption that @i # 6~. 
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The ring End (G) (and hence R(G)) 1 ras the following two properties of 
\vhich we shall make repeated USC. 

PI. End (G) is itself torsion-free, that is, integers are not divisors of zero. 
If  for an element E E End (g), E -;i- 0, we have no =- 0, i.e., g(nc) =I 0 for all 
g E G, then (ng) E =m 0, but E + 0, hence ng = 0 and, as G is torsion-free, < 
n -0. 

P2. End (G) contains no nilpotent elements, other than 0. If  for an element 
E E End (G), E + 0, we have 8 ~- 0 with k 2 2, then (Cl)% -= 0. So we may 
assume that 9 = 0. Rut then 7 = 1 (- E is a unit of R(G) with 7’ = 1 - t 
as its two-sided inverse. This unit 77 is nontrivial, because it is of infinite 
order: 

(I + E)” = I f  725 # 1 for n >A 0. 

‘The fact that every torsion-free abelian group G has the inversion auto- 
morphism p : g/L m= -~ g for all g E G, gives us trivially: 

N 0’ The center qf .-I contains an element of order 2. 

The next condition imposes a severe restriction on the orders of the 
elements of A. 

x1. 811 the elements $ ‘4 hnae orders dividing 12. Hence A is of expo- 
nent 2, 4, 6, or 12. 

Proof. (i) Let 01 E A be an element of odd prime power order k = pz. 
\Ve shall show that k T= 3. For if K > 3, vve form the elemen@ of R(G): 

which we can write unambiguously as 

This 17 is a unit of R(G). To see this we remark that its inverse q’, if it exists, 
has to be 

1 tn: 1 + (2 T)f _ ---T = ($ __- 
1 ;~&L 1 +$ 

and all we have to do is to write this fraction as a polynomial in oi. Using the 
relation CL“’ =m 1 u-e find explicitly: 

6 When k is a prime number and oi a primitive kth root of unity, then 7 is a unit of 

the cyclotomic field Q(N)” 
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for k = 1 (mod 4) 

291 

1 + c$+1 
+==a2 1 +012 =013-a4$ _... + ,71+1; 

for k = 3 (mod 4) 

lxk + cy. 
7)’ = a3 1 + oL2 -L- 013 - a5 + - ... + a7c. 

We now show that 7 is a unit of infinite order, hence nontrivial. Let g(x) 
be the minimal polynomial for which g(a) annihilates G. Then g(x) divides 

xp” - 1 = (&’ - 1) @&q, 

where the second factor is the cyclotomic polynomial. But g(x) does not 
divide xP’-~ - 1, because a: is of order pz, and since @,l(x) is irreducible, 
OPE(x) must divide g(z). Thus we can map 01 to a primitive kth root of unity w 
and extend this mapping to a homomorphism of the (commutative) subring 
of R(G) generated by 01 into the complex numbers. Then the image of 17 is 
(1 + 0.-~)/(1 + w). If 7 were of finite order, then its image would also be, 
so that the complex number (1 + a-“)/( 1 + OJ) would have absolute value 1. 
But this implies that m-2 = w or 6, and we have a contradiction to our 
assumption that k > 3. 

(ii) Let 01 E A be an element whose order is a power of 2, say 2z. We 
shall show that 1 < 2. For if 1 > 2, we may assume that 1 = 3, replacing cy, 
if necessary, by 01 alm3. We now examine the element’ 

7 = 1 + (1 - a”) (1 + N(1 -a”)). 

A short calculation, which we omit, will show that 

7)’ = 1 + (1 - a”) (1 - a(1 - a”)) 

is a two-sided inverse of 7. Hence 7 is a unit of R(G) and is nontrivial, 
because the mapping 01+ o = (1 + i)/d2 gives 17 -+ 3 + 2 42, a funda- 
mental unit of Q(w), and shows that 7 is of infinite order. 

The next condition is vacuous when A does not contain elements of 
order 12. 

N,. A contains an element of order 2 that is not the sixth power of any 
element of order 12. 

’ The choice of this element 7 is motivated by the construction of a nontrivial unit 
in the integral group ring of a cyclic group of order 8. For details see Higman [9]. 
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Proof. I f  every element of A of order 2 is the sixth power of an element of 
order 12, then so is, in particular, the inversion automorphism p = - 1. 
Butifor6= - 1,then 

1 + IX.5 
“=1+X 

___ = 1 - 01 $ a2 ~- 013 -c &!a = 1 - lx(1 + 4 (1 - &!) 

turns out to be a unit whose inverse q’ can be written in the form 

1ta 
rl’ = 1 $. w5 

I__ = 1 - 012 - a3 - a* - 015 = 1 - a‘yl + a”) (1 + 01), 

and again 17 can be shown in the same way as before to be of infinite 0rder.s 

%- All elements of A of order 2 are contained in the center Z(A). 

Proof. Let OL, p E A, 01~ = 1. Consider the elements of R(G) 

El = (1 + a)8(1 - a) and E2 = (1 - Lx) /3(1 + a). 

Here ci = 6; = 0, hence <I = c2 = 0, by P, . But then 

El - E2 = 2(43 - pa) = 0 

and so $3 = /301, by P, . Therefore 01 E Z(A), as required. 
In deriving the next two conditions we shall make repeated use of an 

important lemma on divisors of zero in R(G). 

LEMMA. Let f (t) and g( t) be coprime polynomials with integer coefficients, and 

n = Wf(t) + b(t) k?(t) 

a representation of their greatest common divisor, where n and the coefficients 
of a(t) and b(t) are integers. Suppose that f(a)g(a) = 0 for some OL E A. We 
define the subgroups H and K of G by 

H = {Y E G II yf(4 = O>, K = {z E G /I zg(cx) = 01. 

Then H n K = 0, nG < H @ K, H and K are characteristic in G, and 
End (H) and End (K) contain no nilpotent elements other than 0. 

a It will appear later, in Part II, that unlike a6 4 1 7 0, the condition aI2 - 1 = 0 
does not lead to a contradiction so that A may contain elements of order 12. Our 

restrictions on R(G) and A are less etringent than those of Higman [9] on a finite 
group with only trivial units in its integral group ring. In fact, in the homomorphism 
ZA - R(G) a nontrivial unit of the integral group ring may become trivial. See also 

p. 296. 
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Proof. For every element x E G we have 

nx = x * u(a)f(a) + x - b(ci)g(a). 

Here the first term lies in K, the second in H, and so nG < H + K. 
If an element x E G is annihilated by both f(a) and g(a), then also 

by n : nx = 0, and so x = 0. Hence H n K = 0. 
To show that His characteristic in G, we take an arbitrary element /3 E A. 

Then (g(a) /3f(~~))~ = 0 and so g(a) #(cx) = 0, by P, . For every element 
y E H we have 

nY = YM4f(4 + b(4 g(4) = Y * bc-4 g(4. 

Hence ny@f(ol)) = 0 or y(lsf(~~)) = 0. This shows that yp also lies in H, as 
required. Similarly, K is characteristic in G. 

Finally, for every x E G we have nx = y + Z, y E H, z E K, and so 

m * b(a) g(a) = y * b(a) g(a) + 27 * b(a) g(a) 

= Y ’ 44 El4 

= Y * b(4 d4 + Y * 44fM 

= ny. 

In this way every endomorphism c of H gives rise to an endomorphism 
b(or)g(ar) E of nG and hence of G, because G is torsion-free. But if E were 
nonzero and nilpotent on H, then b(a) g(a) l would also be nilpotent on G 
and nonzero, because b(or)g(cu) annihilates K and acts as multiplication by 
n on H. This is a contradiction to P,; therefore End (H), and similarly 
End (K), contains no nonzero nilpotent elements. 

%* The Sylow 3-subgroups of A are (elementary) abelian. 

Proof. If this were not the case, then two noncommuting elements of a 
Sylow 3-subgroup would generate a subgroup of A of order 27 and exponent 3. 

(i) We show, first of all, that if OL and ,B are two elements of a Sylow 
3-subgroup and 

1 + OL + (Y2 = 1 + /9 + /9” = 1 + (c$) + (a/9)2 = 0 

in R(G), then OL = 8. Indeed, 

(a@)2 = (a/?)-1 = pa- = pa” = - (1 + (8) - - (1 + CL) = 1 + OL + j3 + /3or; 

on the other hand, 
(4q2 = - (1 + qq. 

so 
l+~+/J+@Y=-l-c+ 
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or 

(ii) We now assume that iy. and p are non-co~uting elements of a Syiow 
3-sub~ro~lp. We write y = [a, 83 for their commutator and apply the pre- 
ceding lemma to 

f(t) 1=: 1 -+ t + t2, g(t) = 1 - t, E ::= 3, a(t) = 1, b(t) c- 2 f t. 

Here f(r)g(y) = 0 in R(G), hence 3G < ItI @ K, where y is the identity 
on K, so that by assumption G $; K. We shall show that y is the identity 
on N and so derive a contradiction. 

In accordance with the lemrn~, let NJ and k-r be the characteristic sub- 
groups of N such that 3N < r-J, @ KI and H,(l -f- ty. + (x2) = 0, 
K,fl -” Cx) := 0. since CY = 1 on K, , we also have y = 1 on K, f $1, hence 
k’, = 0. So 3H < I-r, , but 

3frl(l -f- lx -+ 2) = 0 
implies that 

H(1 -t N -+ 03) -72; 0. 

We now proceed in the same way with /I and ~$3 and find that on N: 

1 -+ a + cx’” = 1 -+- p -+ Ig‘A =n: I -+ (0$) + (qi3)” = 0. 

Hence 01 C=L ,8 on N, by the lemma and what was proved under (i). But 
then y = 1 on Ii. Together with H n K .= 0 this shows that Ii I= 0 or 
3G < K. Rut 3G(1 -- y) .= 0 implies that g(l - r> = 0. Hence G =: R 
and we have reached a cont~diction to the assumption that 01 and /? do not 
CommLite, 

iv,, Let (Y. be an ~~~it~~~~ e~e~e~~t of A of order 2. Thn G has a c~a~ffcte~~st~c 
s~~gyo~~ RR zoith the fol~~~~~~~g p~o~~~~~~: $ ‘pn denotes the YestYictio~ Amoco- 
~~orp~lis$~ of A into Aut (Ha), then 

I. c?igb: is the &version ~zit~~a~~~~s~ on I& , and 

2. the order of &pm divides 24. 

PYOO$ (i) We begin by applying the lemma to 

f(c) L! 1 + t, g(r) z= 1 -- t, If :-;; 2, a(“) = b(t) == 1, 

Here j”((o1) g(a) = 0, 2G & HI 33 KI , HI f 0, where a acts as the inversion 
a~tomo~~~~isrn on fir and as the iden~.it~f on ICI . Let vpl be restriction homo- 
morphism of A into Aut (H,), i.e., Xq, -̂ .= XI,% for all X E A. 
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The conditions N, and N, are clearly inherited by homomorphic images 

of A, but N, and Na need not be. We shall now show that in the present 
circumstances it is still true that every element of Aq, of order 2 lies in the 
center of Aut (Hi). I f  this were not so, then we could find a ,6 E Aq, , /3” = 1, 
and a y  E Aut (Hr) such that [/3, r] # 1. Now consider the elements 

El = (1 + P> r(l -PI and 62 = (1 - 8) r(l + B) 

of the endomorphism ring End (HJ. Both are nilpotent, cf = ci = 0. 
But if both or and l a were zero, then pi - Ed = 2(py - #) = 0, so that ,!? 
and y  would commute after all. Hence End (Hr) would contain at least one 

nonzero nilpotent element. This is a contradiction to the lemma and shows 
that /3 lies in the center of Aut (Hi). 

(ii) Now if Ap, contains, apart from 01qi , another element of order 2, 
say ,8 (in the center as we have just seen), then we can again apply the lemma 
with respect to /3 and “split” HI : 2H, < H, @ Ka , where /3 is the inversion 
automorphism on H, and the identity on Ka . Here Hz and K, are charac- 
teristic in HI , consequently in G. Continuing in this manner we arrive after 
a finite number of steps at a characteristic subgroup H of G such that the 
restriction OIP, of 01 to H is the only element of order 2 in the image Ag, of A 
in Aut (H). 

Now a finite 2-group having a single element of order 2 in its center is 
cyclic or a generalized quaternion group. Bearing N, in mind, we can say 
at this stage that the Sylow 2-subgroups of Ap are cyclic of order 2 or 4, 
or quaternion groups. Hence Ap is of order 2’3”, Y < 3. 

(iii) I f  s = 0 or 1, we set Ha = H, p)a = 9 and have satisfied the condi- 
tions of N, . But ifs > 1, we proceed again to apply the lemma with respect 
to an element 8 E Ap, of order 3, this time with 

f(t) = 1 + t + P, g(t) = 1 - t, n = 3, u(t) = 1, b(t) = 2 + t. 

Then 3H < H’ @ K’, H’ # 0, where I + 6 + P = 0 on H’ and S is the 
identity on K’. I f  the restriction of -4~ to H’ contains a further element 5 of 
order 3 for which H’(1 + 5 + 5”) # 0, we continue the process. Eventually 
we reach a subgroup H, that is characteristic in H’, hence in H and in G, 
such that for any two distinct elements B, y  of a Sylow 3-subgroup of 
A ya = A,, we have 1 + B + /3” = 1 + y  + y2 = 0 on Ha . But then the 
proof of N,“, (i) shows that /3 and y  are inverses of each other, so that the 
order of a Sylow 3-subgroup of A?, is 3 and the order of Aya divides 24, 
as required. 

We are now ready for the proof of the Main Theorem. 
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Proof. (i) Suppose that the subgroup of A consisting of the elements of 
order 2 (and the unit element) is of order 2k and that the Sylow 3-subgroups 
of A are of order 3z. By a repeated application of the process described in the 
proof of N, we arrive at the relationship of the form 

where each Hi is characteristic in G and the (even) order of Aqi = AiHi 
divides 24. Here n divides 2”3z and m is less than or equal to 2”fz. 

We now define a map v  of A into the direct product of the groups Acpi: 

q = (qq 1 q&2, ...I Y%l) for all QL E A. 

This is clearly a homomorphism. But if 01 E Ker y, then olyi = alHi = 1. 
Hence 01 induces the identity automorphism on HI OH, @ 3.. @H, , 
hence on nG, and as G is torsion-free, also on G. 

Hence Ker v  = 1 and we can embed A in the direct product: 

(ii) A straightforward inspection of the groups of order dividing 24 that 
satisfy the relevant conditions N, , N, , N, , and N, shows that each Acpi 
is of one of the following types: 

the six groups C, , C, , C, , Qs , DC,, , BT,, 

mentioned in the statement of the theorem, 

or the two groups C,, and DC,, = {a, p 11 al2 = 1, 8” = ~8, /?‘a/? = 01-l). 

The last two cannot occur as automorphism groups, because they have 
elements of order 12 and a single element of order 2, and hence violate the 
the condition N, . But they can occur as subgroups of automorphism groups, 

e.g.y cl2 < c4 @ c6 , and our final step is to eliminate these two groups 
if they occur among the A9i and to replace them by other homomorphic 

images of A. 

(iii) Suppose that A contains an element OL of order 12. Then the group 
ring ZA contains a nontrivial unit 7 of infinite order (see Higman [9]). How 
can this 7, a polynomial in oi, become a trivial unit in R(G) ? Since the group 
rings of the cyclic groups C, and C, have no nontrivial units, it is easy to see 
that this can only happen if the kernel r of the homomorphism from ZA 
to R(G) contains (I -- a”) (1 + aa). 

But with (1 - OF) (1 $- a”) = 0 on R(G) we can again apply the lemma to 

f(t)=I-t6, g(t)=l+P, n=2, a(t)=l, b(t)=l-P+t4, 

f(a) A4 = 09 

and find that 2G < H @ K, where CP H = 1, cy2, K = - 1. I f  the 
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image of A in Aut (H) or Aut (K) still contains an element of order 12, 
we can continue the procedure until all the elements of order 12 are elimi- 
nated from the groups Ayi . 

This concludes the proof of the Main Theorem. We may perhaps illustrate 
the last step of the proof on the example of the group of order 48 

A{a, /I 11 cP = 1, ,!3” = 1, ,3-i@ = a-‘}. 

I f  we use as kernels of restriction homomorphisms the subgroups Ki = {a} 
and K, = {a6fi2}, then AT, E C, and A?, g DC,, , A < C, @ DC, . 
But with the more judicious choice of K3 = {LY”} and K4 = {a4, a2p2}, we 
have Ay3 z Qs and Ap, s DC,, , hence A ,< Q8 @ DC,, . It will become 
apparent, m Part II, that A is, in fact, an automorphism group of a torsion- 
free group G. 

In conclusion, we mention that there is a somewhat shorter but more 
sophisticated approach to the Main Theorem, starting from the group 
algebra QA over the rationals rather than the group ring. This will be the 
subject of a separate paper [9a]. 
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