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Let K ⊆ C be a subfield of the complex numbers, and let D be the ring of K-linear

differential operators on R = K[x1, . . . , xn]. If M and N are holonomic left D-modules
we present an algorithm that computes explicit generators for the finite dimensional

vector space HomD(M, N). This enables us to answer algorithmically whether two given

holonomic modules are isomorphic. More generally, our algorithm can be used to get
explicit generators for Exti

D(M, N) for any i in the sense of Yoneda.
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1. Introduction

Let D = K〈x1, . . . , xn, ∂1, . . . , ∂n〉 denote the nth Weyl algebra over a computable sub-
field K ⊂ C, and let HomD(M,N) denote the set of left D-module maps between two
left D-modules M and N . Then HomD(M,N) is a K-vector space and can also be
regarded as the solutions of M inside N in the following way: given a presentation
M ' Dr0/D · {L1, . . . , Lr1}, let S denote the system of vector-valued linear partial dif-
ferential equations,

S = {L1 • f = · · · = Lr1 • f = 0},
and let Sol(S;N) denote the N -valued solutions f ∈ Nr0 to S. Then the homomorphism
space HomD(Dr0/D · {L1, . . . , Lr1}, N) is isomorphic to the solution space Sol(S;N)
where a homomorphism ϕ in HomD(Dr0/D·{L1, . . . , Lr1}, N) corresponds to the solution
[ϕ(e1), . . . , ϕ(er0)]

T ∈ Nr0 of S, while a solution f = [f1, . . . , fr0 ]
T ∈ Nr0 of S corre-

sponds to the homomorphism which sends ei to fi.
If M and N are holonomic (which may be determined algorithmically; see, for example,

Saito et al., 1999), then the set HomD(M,N) as well as the higher derived functors
ExtiD(M,N) are finite-dimensional K-vector spaces. In this paper, we give algorithms
that compute explicit bases for HomD(M,N) and ExtiD(M,N) in this situation. Our
algorithms are a refinement of algorithms given in Oaku et al. (2001), which were designed
to compute the dimensions of HomD(M,N) and ExtiD(M,N) over K. Algebraically, the
problem of computing a basis of homomorphisms is easy to describe. Namely, since a
map of left D-modules from M to N is uniquely determined by the images of a set
of generators of M , we must determine which sets of elements of N constitute legal
choices for the images of a fixed set of generators of M under a homomorphism. Since
HomD(M,N) lacks any D-module structure in general and is just a K-vector space, this
is not a straightforward computation.

In recent years, one of the fundamental advances in computational D-modules has been
the development of algorithms by Oaku (1997), Oaku and Takayama (2001) to compute
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the derived restriction modules TorDi (D/{x1, . . . , xd} · D,M) and derived integration
modules TorDi (D/{∂1, . . . , ∂d} ·D,M) of a holonomic D-module M to a linear subspace
x1 = · · · = xd = 0. These algorithms have been the basis for local cohomology and
de Rham cohomology algorithms (Oaku and Takayama, 1999; Walther, 1999) and have
been extended to algorithms for derived restriction and integration of complexes with
holonomic cohomology in Walther (2000).

The algorithm of Oaku et al. (2001) to compute the dimensions of HomD(M,N) and
ExtiD(M,N) is also based on restriction by using isomorphisms of Kashiwara (1978)
and Björk (1979). These isomorphisms are,

ExtiD(M,N) ∼= TorDn−i(ExtnD(M,D), N), (1)

which turns an Ext computation for holonomic M into a Tor computation, and

TorDj (M ′, N) ' TorD2n
j (D2n/{xi − yi, ∂i + δi}ni=1 ·D2n, τ(M ′) �N), (2)

which turns any Tor computation into a twisted restriction computation in twice as many
variables (an explanation of the notation used above can be found in Section 4).

In this paper, we will obtain an algorithm for computing an explicit basis of ExtiD(M,N)
by analyzing the isomorphisms (1) and (2) and making them compatible with the restric-
tion algorithm. In Section 2, we present a proof of isomorphism (1) adapted from Björk
(1979). In Section 3, we give an algorithm for computing HomD(M,N) in the case
N = K[x1, . . . , xn], which is used to compute polynomial solutions of a system S. In
Section 4, we give our main result, which is an algorithm to compute HomD(M,N) and
ExtiD(M,N) for general holonomic modules M , N . In Section 5, we give an algorithm to
determine whether M and N are isomorphic and if so to find an isomorphism. Finally,
the algorithms described in this paper have been implemented in the (The D-module
package, 2000) of the computer algebra system Macaulay 2 (1999).

1.1. notation

Throughout we shall denote the ring of polynomials K[x1, . . . , xn] by K[x], the ring
of polynomials K[∂1, . . . , ∂n] by K[∂], and the ring K[x]〈∂〉 of K-linear differential
operators on K[x] by D.

Let us also explain the notation we will use to write maps of left or right D-modules.
As usual, maps between finitely generated modules will be represented by matrices, but
some attention has to be given to the order in which elements are multiplied due to the
non-commutativity of D. Let us denote the identity matrix of size r by idr, and similarly
the identity map on the module M by idM .

Let A be an r × s matrix A = [aij ] with entries in D. We get a map of free left
D-modules,

Dr ·A−→ Ds : [`1, . . . , `r] 7→ [`1, . . . , `r] ·A,
where Dr and Ds are regarded as modules of row vectors, and the map is matrix multi-
plication. Under this convention, the composition of maps Dr ·A−→ Ds and Ds ·B−→ Dt is
the map Dr ·AB−→ Dt where AB is usual matrix multiplication.

In general, suppose M and N are left D-modules with presentations Dr/M0 and
Ds/N0. A induces a left D-module map (Dr/M0)

·A−→ (Ds/N0) from M to N precisely
when L · A ∈ N0 for all row vectors L ∈ M0. This condition need only be checked for a
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generating set of M0. Conversely, any map of left D-modules between M and N can be
represented by some matrix A in the manner above.

Now let us discuss maps of right D-modules. The r × s matrix A also defines a map
of right D-modules in the opposite direction,

(Ds)T A·−→ (Dr)T : [`′1, . . . , `
′
s]
T 7→ A · [`′1, . . . , `′s]T ,

where the superscript-T means to regard the free modules (Ds)T and (Dr)T as consisting
of column vectors. (Ds)T may be regarded as the dual module HomD(Ds, D). The map
(Ds)T A·−→ (Dr)T is equivalent to the map obtained by applying HomD(−, D) to Dr ·A−→
Ds. We will suppress the superscript-T when the context is clear. A induces a right D-
module map between right D-modules N ′ = (Ds)T /N ′0 and M ′ = (Dr)T /M ′0 whenever
A · L ∈ M ′0 for all column vectors L ∈ N ′0. We denote the map by (Ds)T /N ′0

A·−→
(Dr)T /M ′0.

1.2. left–right correspondence

The category of left D-modules is equivalent to the category of right D-modules, and
for convenience, we will sometimes prefer to work in one category rather than the other—
for instance, we will phrase all algorithms in terms of leftD-modules. In the Weyl algebra,
the correspondence is given by the algebra involution

D
τ−→ D : xα∂β 7→ (−∂)βxα.

The map τ is called the standard transposition or adjoint operator. Given a leftD-module
Dr/M0, the corresponding right D-module is

τ

(
Dr

M0

)
:=

Dr

τ(M0)
, τ(M0) = {τ(L)|L ∈M0}.

Similarly, given a homomorphism of left D-modules φ : Dr/M0−→Ds/N0 defined by
right multiplication by the r × s matrix A = [aij ], the corresponding homomorphism
of right D-modules τ(φ) : Dr/τ(M0)−→Ds/τ(N0) is defined by right multiplication by
the s × r matrix τ(A) := [τ(aij)]T . The map τ is used similarly to go from right to left
D-modules. For more details, see Oaku et al. (2001).

1.3. restriction and integration

Our algorithm for HomD(M,N) relies on the algorithms in Oaku and Takayama (2001)
for derived restriction and integration of D-modules. We give here a brief summary of
their algorithm. Let X = Kn+d and Y = Kn with coordinates (x1, . . . , xn, t1, . . . , td)
and (x1, . . . , xn). Put DX = K〈x, t,∂x,∂t〉 and DY = K〈x,∂x〉, and let M be a left
DX -module.

Definition. The ith restriction of M to Y (with respect to the inclusion ι : Y → X
where ι(x) = (x, 0)) is equal to TorDX

i (ΛY ,M) as a left DY -module, where ΛY is the
right DX -module DX/{t1, . . . , td} ·DX .

Definition. The ith integration ofM along Y (with respect to the projection π : X → Y
where π(x, t) = x) is equal to TorDX

i (ΩY ,M) as a left DY -module, where ΩY is the right
DX -module DX/{∂t1 , . . . , ∂td} ·DX .
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In principle, restriction and integration to Y can thus be computed as the homology
of the Koszul complexes K•(M ; t1, . . . , td) and K•(M ; ∂t1 , . . . , ∂td), or as the homology
of the complexes ΛY ⊗DX

P • and ΩY ⊗DX
P • where P • is a projective resolution of M .

The problem is that the maps in K•(M ; t1, . . . , td) and K•(M ; ∂t1 , . . . , ∂td) are not maps
of left DX -modules while the modules in ΛY ⊗DX

P • and ΩY ⊗DX
P • are no longer left

DX -modules. All of these complexes are indeed complexes of left DY -modules but the
modules are no longer finitely generated as DY -modules.

Oaku and Takayama’s algorithm identifies quasi-isomorphic complexes which do con-
sist of finitely generated DY -modules. Let us describe the main ideas.

Definition. The VY -filtration F •Y (−) of a shifted free module Dr[m] with respect to Y
is F iY (Dr

X [m]) = SpanK{xµ∂
ν
xtα∂βt ~el : µ, ν, α, β ∈ Nn, |β| − |α| ≤ i+ ml}.

Definition. The ṼY -filtration F̃ •Y (−) of a shifted free module Dr[m] with respect to Y
is F̃ iY (Dr[m]) = SpanK{xµ∂

ν
xtα∂βt ~el : µ, ν, α, β ∈ Nn, |α| − |β| ≤ i+ ml}.

The VY -filtration and ṼY -filtration induce filtrations on submodules and quotients in
the usual manner, and there are associated graded objects gr•Y (−) and g̃r•Y (−) respec-
tively.

Definition. The b-function of M for restriction (respectively integration) to Y is the
monic polynomial b(s) ∈ K[s] of least degree, if any, which satisfies b(θ) gr0Y (M) = 0
where θ = t1∂t1 + · · ·+ td∂td (respectively b(θ̃)g̃r0Y (M) = 0 where θ̃ = −θ − d).

Definition. A free resolution P • : · · · −→ D
rj+1
X [mj+1]

ψj+1−→ D
rj

X [mj ] −→ · · · of M is
said to be VY -strict (respectively ṼY -strict) if

ψj+1(Γi(D
rj+1
X [mj+1])) ⊂ ΓiY (Drj

X [mj ]))

for all i and j where Γ is the VY -filtration FY (respectively the ṼY -filtration F̃Y ), and if
the graded complex associated to Γ

grΓ(P •) : · · · −→ grΓ(Drj+1
X [mj+1])

grΓ(ψj+1)−→ grΓ(Drj

X [mj ]) −→ · · ·

is in fact a resolution.

With these definitions, Oaku and Takayama prove the following theorem about restric-
tion and integration. They also provide algorithms based on Gröbner bases for b-functions
and strict resolutions, which makes the theorem algorithmic.

Theorem 1.1. Let M be holonomic and let P • be a VY -strict (respectively ṼY -strict)
resolution of M with m0 = 0. Then the b-function of M for restriction (respectively
integration) to Y is nonzero, and if k is its maximum integer root, then the ith restriction
(respectively integration) of M is equal to the ith cohomology of

Γk(Π⊗DX
P •) : · · · −→ Γk(Π⊗DX

D
rj+1
X [mj+1])

ψj+1−→ ΓkY (Π⊗DX
D
rj

X [mj ]) −→ · · ·

where Γ = FY and Π = ΛY (respectively Γ = F̃Y and Π = ΩY ).
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2. Basic Isomorphism

The following identification, taken with its proof from Björk (1979), is our main theo-
retical tool to explicitly compute homomorphisms of holonomic D-modules.

Theorem 2.1. (Björk, 1979) Let M and N be holonomic left D-modules. Then

ExtiD(M,N) ∼= TorDn−i(ExtnD(M,D), N). (3)

Proof. Since it will be useful to us later, we give the main steps of the proof here. The
interesting bit of the construction is the transformation of a Hom into a tensor product.
Let X• be a free resolution of M ,

X• : 0→ Dr−a
·M−a+1- · · · → Dr−1

·M0- Dr0 →M → 0.

We may assume it is of finite length by virtue of Hilbert’s syzygy theorem—namely,
Schreyer’s proof and method carries over to D (see, for example, Cox et al., 1998). The
dual of X• is the complex of right D-modules,

HomD(X•, D) : 0← (Dr−a)T︸ ︷︷ ︸
degree a

�M−a+1· · · · ← (Dr−1)T �M0· (Dr0)T︸ ︷︷ ︸
degree 0

← 0.

Since HomD(Dr, D) ⊗D N ' HomD(Dr, N), we see that HomD(X•, D) ⊗D N '
HomD(X•, N), whose cohomology groups are by definition ExtiD(M,N). Now replace
N by a free resolution Y • of finite length,

Y • : 0→ Ds−b
·N−b+1- · · · → Ds−1

·N0- Ds0 → N → 0. (4)

We get the double complex HomD(X•, D)⊗D Y •,
0

↑
0

↑
0

↑

0← (D
r−a )T⊗DDs0 � (M−a+1·)⊗ids0 ··· � (D

r−1 )T⊗DDs0 �(M0·)⊗ids0
(Dr0 )T⊗DDs0 ←0

0← (D
r−a )T⊗DD

s−1

(− idr−a
)a⊗(·N0)

6

�
(M−a+1·)⊗ids−1

··· � (D
r−1 )T⊗DD

s−1

− idr−1 ⊗(·N0)

6

�
(M0·)⊗ids−1

(Dr0 )T⊗DD
s−1

idr0 ⊗(·N0)

6

←0

↑
...

↑
...

↑
...

0← (D
r−a )T⊗DD

s−b

(− idr−a
)a⊗(·N−b+1)6

�
(M−a+1·)⊗ids−b

··· � (D
r−1 )T⊗DD

s−b

− idr−1 ⊗(·N−b+1) 6

�
(M0·)⊗ids−b

(Dr0 )T⊗DD
s−b

idr0 ⊗(·N−b+1) 6

←0

↑
0

↑
0

↑
0

(5)

Since the columns of the double complex are exact except for at positions in the top
row, it follows that the cohomology of the total complex equals the cohomology of the
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complex induced on the table of E1 terms (vertical cohomologies),

0← HomD(Dr−a , N)︸ ︷︷ ︸
degree a

�HomD((M−a+1·),N) · · · �HomD((M0·),N)
HomD(Dr0 , N)︸ ︷︷ ︸

degree 0

← 0 (6)

which are the ExtiD(M,N).
On the other hand, since M is holonomic, the complex HomD(X•, D) is exact except in

degree n, where its cohomology is by definition ExtnD(M,D). Hence the rows of the double
complex are also exact except at positions in the column containing terms (Dr−n⊗D (−)).
It follows that the cohomology of the total complex also equals the cohomology of the
complex induced on the other table of E1 terms (horizontal cohomologies), which in this
case is

0→ ExtnD(M,D)⊗D Ds−b → · · ·
idExtn

D
(M,D)⊗(·N0)

- ExtnD(M,D)⊗D Ds0 → 0. (7)

By definition, the complex (7) has cohomology groups TorDj (ExtnD(M,D), N), which
establishes the identification. 2

Our goal is to compute an explicit basis of cohomology classes of the complex (6). In
particular, the cohomology in degree 0 corresponds explicitly to HomD(M,N) because
any map ψ ∈ HomD(Dr0 , N) which is in the degree 0 kernel, i.e. in

H0(HomD(Dr−1 , N)︸ ︷︷ ︸
degree 1

�HomD((M0·),N)
HomD(Dr0 , N)︸ ︷︷ ︸

degree 0

← 0), (8)

factors through M ' Dr0/M0, hence defines a homomorphism ψ : M → N . The reason
why it is hard to compute these cohomology classes is that the modules HomD(Dri , N)
in the complex (6) are left D-modules while the maps HomD((Mi·), N) are not maps of
left D-modules. In the next few sections, we will explain how the ingredients of the proof
of Theorem 2.1 can be combined with the restriction algorithm to compute the desired
representatives of cohomology classes.

3. Polynomial Solutions

In this section, we give an algorithm to compute HomD(M,K[x]) for holonomic M .
This vector space is more efficiently computed by Gröbner deformations as described
in Oaku et al. (2001), but we wish to discuss this special case in order to introduce the
general methodology.

For N = K[x], the isomorphism (3) of Theorem 2.1 specializes to

ExtiD(M,K[x]) ' TorDn−i(ExtnD(M,D),K[x]). (9)

In this case, the proof of Theorem 2.1 also leads directly to an algorithm. As a D-module,
the polynomial ring has the presentation K[x] ' D/D · {∂1, . . . , ∂n} and can be resolved
by the Koszul complex,

K• : 0→ D︸︷︷︸
degree n

·[(−1)n−1∂n,...,∂1]- Dn → · · · → Dn

·

∂1...
∂n


- D︸︷︷︸

degree 0

→ 0.



Computing Homomorphisms 603

The complex (7) whose cohomology computes TorDn−i(ExtnD(M,D),K[x]) then special-
izes to ExtnD(M,D)⊗D K• and is equivalently the derived integration complex of ExtnD
(M,D) in the category of right D-modules. The integration algorithm of Oaku and
Takayama (2001) can now be applied to obtain a basis of explicit cohomology classes in
Hn(ExtnD (M,D)⊗D K•) ' TorDn (ExtnD(M,D),K[x]). These classes can then be trans-
ferred via the double complex (5) to cohomology classes in the complex (8), where they
represent homomorphisms in HomD(M,K[x]). The method and details are probably best
illustrated through an example.

Example 3.1. Consider the Gelfand–Kapranov–Zelevinsky hypergeometric system
MA(β) associated to the matrix A = {1, 2} and parameter vector β = {5}. Thus, n = 2
and MA(β) is the D-module associated to the equations,

u = θ1 + 2θ2 − 5, v = ∂2
1 − ∂2.

Here, θi stands for the operator xi∂i.
A free resolution for MA(β) is

X• : 0→ D1 ·[−v u+2]- D2
·[uv]- D1 → 0

while a resolution for K[x1, x2] is the Koszul complex,

K• : 0→ D
·[∂1,∂2]- D2

·
[
∂2
−∂1

]
- D → 0.

The augmented double complex HomD(X•, D)⊗D K• is

K[x1, x2] � [−v u+2]•
K[x1, x2]2 �[uv]•

K[x1, x2]

Ext2D(MA(β), D) � D1

6

� [−v u+2]·
D2

6

� [uv]·
D1

6

Ext2D(MA(β),D)2

·
[
∂2
−∂1

] 6

� D2

·
[
∂2
−∂1

] 6

�
[−v0

u+2
0

0
−v

0
u+2]·

D4

·

 ∂2
0
−∂1
0

0
∂2
0
−∂1


6

�

[u
v
0
0

0
0
u
v

]
·

D2

·
[
∂2
−∂1

]6

Ext2D(MA(β),D)

·[∂1 ∂2]

6

� D1

·[∂1 ∂2]

6

� [−v u+2]·
D2

·
[
∂1
0

0
∂1
∂2
0

0
∂2

] 6

� [uv]·
D1

·[∂1 ∂2]

6

Here, we interpret an element of a module in the above diagram as a column vector for
purposes of the horizontal maps and as a row vector for purposes of the vertical maps.
The induced complex at the left-hand wall is the derived integration to the origin of
Ext2D(MA(β), D) in the category of right D-modules. Applying the integration algorithm,
we find that the cohomology at the module D1 in the bottom left-hand corner is one-
dimensional and spanned by the residue class of

L1,0 = −(2x5
1x2 − 40x3

1x
2
2 + 120x1x

3
2)∂1 − (x6

1 − 30x4
1x2 + 180x2

1x
2
2 − 120x3

2).
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We lift this class to a cohomology class of the complex induced in the top row via a
“transfer” sequence in the total complex given schematically by

D2 � [uv]·
D1 3 L1,2

D2 �
[−v0

u+2
0

0
−v

0
u+2]·

D4 3 L1,1

·

 ∂2
0
−∂1
0

0
∂2
0
−∂1


6

D1 3 L1,0

·[∂1 ∂2]

6

In other words, L1,1 is obtained by taking the image of L1,0 under the vertical map and
then a pre-image under the horizontal map, and similarly for L1,2. We find that,

L1,1 =


2x5

1x2 − 40x3
1x

2
2 + 120x1x

3
2

−(x5
1 − 20x3

1x2 + 60x1x
2
2)

−(x6
1 − 20x4

1x2 + 60x2
1x

2
2)

(x5
1 − 20x3

1x2 + 60x1x
2
2)∂1 + (10x4

1 − 120x2
1x2 + 120x2

2)

 ,
L1,2 =

[
x5

1 − 20x3
1x2 + 60x1x

2
2

]
.

(The elements L1,0, L1,1 and L1,2 are, as opposed to the cohomology classes of L1,0 in
Ext2D(MA(β), D) and of L2,1 in K[x1, x2], not unique.)

The space of polynomial solutions is spanned by the residue class of L1,2 in K[x1, x2],
which is x5

1 − 20x3
1x2 + 60x1x

2
2.

Remark. The transfer sequence above is used to show that Tor is a balanced functor
in Weibel (1994). A generalization of the transfer sequence is also used to compute the
cup product structure for de Rham cohomology of the complement of an affine variety
in Walther (2001).

From a practical standpoint, the method outlined above is not quite the final story. The
detail we have left out is how the integration algorithm of Oaku and Takayama (1999)
actually computes the cohomology classes of a Koszul complex such as ExtnD(M,D)⊗D
K•. Their algorithm does not compute these classes directly. Rather, their method
(phrased in terms of right D-modules) is to first compute a Ṽ -strict resolution Z• of
ExtnD(M,D) (more details about the Ṽ -filtration can be found in Walther, 2001). Then
they give a technique to compute explicitly the cohomology classes of Z• ⊗D K[x]. This
complex is quasi-isomorphic to ExtnD(M,D)⊗DK•, and cohomology classes can be trans-
ferred to ExtnD(M,D) ⊗D K• by setting up another double complex Z• ⊗D K•. Thus,
our method as described to compute polynomial solutions would require two transfers
via two double complexes.

Given the true nature of the integration algorithm, the two transfers can be collapsed
into a single step. Namely, we start with HomD(X•, D),

HomD(X•, D) : 0← · · · �M−n· (Dr−n)T︸ ︷︷ ︸
degree n

�M−n+1· · · · � M0· (Dr0)T︸ ︷︷ ︸
degree 0

← 0



Computing Homomorphisms 605

which is exact except in cohomological degree n because M is holonomic. We are inter-
ested in explicit cohomology classes for H0(HomD(X•, D)⊗DK[x]). To obtain them, we
replace HomD(X•, D) with a quasi-isomorphic Ṽ -adapted resolution E• along with an
explicit quasi-isomorphism π• from E• to HomD(X•, D). That is, we make a map πn
from a free module (Ds−n)T onto some choice of generators of ker(M−n·), take the pre-
image P of im(M−n+1·) under πn, and compute a Ṽ -adapted resolution E• of Ds−n/P .
Schematically,

0← (Ds−n )T

P
� (Ds−n )T �N−n+1·

(Ds−n+1 )T ··· �
N0·

(Ds0 )T←(Ds1 )T ←···

0←···←(Dr−n−1 )T �M−n·
(Dr−n )T︸ ︷︷ ︸
degree n

πn

?
�M−n+1·

(Dr−n+1 )T

?
··· �

M0·
(Dr0 )T︸ ︷︷ ︸
degree 0

?
←0

Using the integration algorithm, the cohomology classes of the top row can now be
computed. In order to transfer them to HomD(X•, D) ⊗D K[x], a chain map lifting πn
is computed and utilized as suggested by the dashed arrows.

4. Holonomic Solutions

In this section, we give an algorithm to compute a basis of HomD(M,N) for holonomic
left D-modules M and N . We will use the following notation. As before, D will denote
the ring of differential operators in the variables x1, . . . , xn with derivations ∂1, . . . , ∂n.
Occasionally we will write Dx for D. In a similar fashion, Dy will stand for the ring of
differential operators in the variables y1, . . . , yn with derivations δ1, . . . , δn.

If X is a Dx-module and Y a Dy-module then we denote by X�Y the external product
of X and Y over K. It equals the tensor product of X and Y over the field K, equipped
with its natural structure as a module over D2n = Dx �Dy, the ring of differential op-
erators in x1, . . . , xn, y1, . . . , yn with derivations {∂i, δj}1≤i,j≤n. In addition, let η denote
the algebra isomorphism,

η : D2n −→ D2n

{
xi 7→ 1

2xi − δi, ∂i 7→ 1
2yi + ∂i,

yi 7→ − 1
2xi − δi, δi 7→ 1

2yi − ∂i

}n

i=1

,

and let ∆ and Λ denote the right D2n-modules,

∆ :=
D2n

{xi − yi, ∂i + δi : 1 ≤ i ≤ n} ·D2n
, Λ :=

D2n

xD2n + yD2n
= η(∆).

An algorithm to compute the dimensions of ExtiD(M,N) was given in Oaku et al.
(2001) based upon the K-isomorphisms (1) and (2):

ExtiD(M,N) ∼= TorDn−i(ExtnD(M,D), N),

TorDn−i(M
′, N) ∼= TorD2n

n−i (D2n/{xi − yi, ∂i + δi}ni=1 ·D2n, τ(M ′) �N).

Combining these isomorphisms where M ′ = ExtnD(M,D) produces

ExtiD(M,N) ' TorD2n
n−i (D2n/{xi − yi, ∂i + δi}ni=1 ·D2n, τ(ExtnD(M,D)) �N). (10)

In order to compute HomD(M,N) explicitly, we will trace the isomorphism (10). We
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explain how to do this step by step in the following algorithm. The motivation behind
the algorithm is discussed in the proof.

Algorithm 4.1. (Holonomic Solutions by Duality)

Input: Presentations M = Dr0/M0 and N = Ds0/N0 of holonomic left D-modules.
Output: A basis for HomD(M,N).

(1) Compute finite free resolutions X• and Y • of M and N ,

X• : 0→ Dr−a︸ ︷︷ ︸
degree −a

·M−a+1- · · · → Dr−1
·M0- Dr0︸︷︷︸

degree 0

→M → 0.

Y • : 0→ Ds−b︸ ︷︷ ︸
degree −b

·N−b+1- · · · → Ds−1
·N0- Ds0︸︷︷︸

degree 0

→ N → 0.

Also, dualize X• and apply the standard transposition to obtain

τ(HomD(X•, D)) : 0← Dr−a︸ ︷︷ ︸
degree a

�·τ(M−a+1) · · · ← Dr−1 �·τ(M0)
Dr0︸︷︷︸

degree 0

← 0.

(2) Form the double complex τ(HomD(X•, D)) � Y • of left D2n-modules and its total
complex

Z• : 0← D2n
ta︸ ︷︷ ︸

degree a

← · · · ← D2n
t0︸ ︷︷ ︸

degree 0

← · · · ← D2n
t−b ← 0

where
D2n

tk =
⊕
i−j=k

Dr−i �Ds−j .

Let the part of Z• in cohomological degree n be denoted

D2n
tn+1 �·Tn

D2n
tn �·Tn−1

D2n
tn−1 .

(3) Compute a surjection πn : D2n
un� ker(·η(Tn)), and find the preimage P := π−1

n

(im(·η(Tn−1))).
(4) Compute the derived restriction module H0((Λ ⊗LD2n

D2n
un/P )[n]) using the re-

striction algorithm of Oaku and Takayama (2001). In particular, this algorithm
produces,

(i) A V -strict free resolution E• of Dun
2n/P of length n+ 1,

E• : 0← D2n
un︸ ︷︷ ︸

degree n

← D2n
un−1 ← · · · ← D2n

u1 ← D2n
u0︸ ︷︷ ︸

degree 0

← D2n
u−1 .

(ii) Elements {g1, . . . , gk} ⊂ D2n
u0 whose images in Λ⊗D2n E

• form a basis for

H0

((
Λ⊗LD2n

D2n
un

P

)
[n]

)
' H0(Λ⊗D2n

E•) ' ker (Λ⊗D2n
D2n

u1 ← Λ⊗D2n
D2n

u0)
im (Λ⊗D2n

D2n
u0 ← Λ⊗D2n

D2n
u−1)

(5) Lift πn to a chain map π• : E• → η(Z•) with πi : Dui
2n → Dti

2n.
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(6) Compute the image of each gi under the composition of chain maps,

E• ∆⊗D2n
Z•

'- Tot•(HomD(X•, D)⊗D Y •)

η(Z•)

π•

?
η−1

- Z•

6

HomD(X•, N)

p1

?

Here p1 is the projection onto HomD(X•, D)⊗Y 0 followed by factorization through
N0. These are all chain maps of complexes of vector spaces. Step by step, we do
the following. Evaluate {L1 = η−1(π0(g1)), . . . , Lk = η−1(π0(gk))}, and write each
Li in terms of the decomposition,

Li = ⊕jLi,j ∈
⊕
j

Dr−j �Ds−j
(
= D2n

t0
)
.

Now re-express Li,0 modulo {xi− yi, ∂i + δi : 1 ≤ i ≤ n} ·D2n⊗D2n
(Dr0 �Ds0) so

that xi and ∂j do not appear in any component. Using the identificationDr0�Ds0 '
Ds0

2ne1⊕ · · · ⊕D
s0
2ner0 , where {ei} forms the canonical D-basis for Dr0 , we then get

an expression

Li,0 = `i,1e1 + · · ·+ `i,r0er0 ∈ (Dy)s0e1 ⊕ · · · ⊕ (Dy)s0er0 .

Let {`i,1, . . . , `i,r0} be the images in (Ds0/N0) ' N . Finally, set φi ∈ HomD(M,N)
to be the map induced by

{e1 7→ ¯̀
i,1, e2 7→ ¯̀

i,2, . . . , er0 7→ ¯̀
i,r0}.

(7) Return {φ1, . . . , φk}, a basis for HomD(M,N).

Proof. The main idea behind the algorithm is to adapt the proof of Theorem 2.1. In that
proof, we saw that Tot•(Hom(X•, D)⊗D Y •)

p1−→ HomD(X•, N) is a quasi-isomorphism.
Thus it suffices to compute explicit generating classes for

H0(Tot•(HomD(X•, D)⊗D Y •)) '−→ H0(HomD(X•, N)) ' HomD(M,N).

Here, the double complex HomD(X•, D)⊗DY • is in some sense easier to digest because
it consists entirely of free D-modules. However, it too only carries the structure of a
complex of (infinite dimensional) K-vector spaces, making its cohomology no easier to
compute than the cohomology of HomD(X•, N).

Instead we consider the double complex τ(HomD(X•, D)) � Y • of Step 2, whose total
complex T • does carry the structure of a complex of left D2n-modules. Moreover, we
claim that as a double complex of vector spaces, HomD(X•, D)⊗D Y • can be naturally
identified with the double complex,

∆⊗D2n
(τ(HomD(X•, D)) � Y •),

the “restriction to the diagonal”. To make the identification, first note that the natural
map

Dy −→
D2n

{xi − yi, ∂i + δi : 1 ≤ i ≤ n} ·D2n
= ∆

is an isomorphism of left Dy-modules. Let {e1, . . . , er} denote the canonical basis of a free
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module Dr. Then an arbitrary element of ∆⊗D2n (Dx
r�Dy

s) can be expressed uniquely
as

∑
k ek �mk, where mk ∈ Dy

s. Similarly, an element of Dr ⊗D Ds can be expressed
uniquely as

∑
k ek ⊗mk where mk ∈ Ds. Hence we get an isomorphic identification as

Dn-modules of ∆ ⊗D2n
(Dx

r � Dy
s) and Dr ⊗D Ds. In particular, this shows that the

modules appearing in the double complexes are the same.
It remains to show that the maps in the double complexes can also be identified. An

arbitrary vertical map of ∆⊗D2n (τ(HomD(X•, D)) � Y •) acts on an arbitrary element∑
k 1⊗ ek �mk according to,

∆⊗D2n
(Dx

ri �Dy
sj ) ∑

i(−1)iek�(·Nj)(mk)

∆⊗D2n
(Dx

ri �Dy
sj+1)

id∆⊗(− idri
)i�(·Nj)

6

∑
k 1⊗ek�mk

6

This is exactly the way the corresponding vertical map in HomD(X•, D) ⊗D Y • works
on the corresponding element:

Dx
ri ⊗D Dy

sj ∑
k(−1)iek⊗(·Nj)(mk)

Dx
ri ⊗D Dy

sj+1

(− idri
)i⊗(·Nj)

6

∑
k ek⊗mk

6

Likewise, an arbitrary horizontal map of ∆⊗D2n (τ(HomD(X•, D)) � Y •) acts on an
arbitrary element according to,

∆⊗D2n
(Dx

ri+1 �Dy
sj )

id∆⊗(·τ(Mi))�1- ∆⊗D2n
(Dx

ri �Dy
sj )

∑
k 1⊗ek�mk

- ∑
k 1⊗(·τ(Mi))(ek)�mk.

Here, we would like to re-express the image
∑
k 1⊗(·τ(Mi))(ek)�mk in the form

∑
k 1⊗

ek � nk. To help us, note the following computation in ∆⊗D2n
(Dx

r �Dy
s):

(1⊗ xα∂βei �m) = 1⊗ ∂βei � yαm = 1⊗ ei � (−δ)βyαm = 1⊗ ei � τ(yαδβ)m.
Using it, we get that∑

k

1⊗ (·τ(Mi))(ek) �mk =
∑
k

∑
j

1⊗ τ(Mi)jkej �mk

=
∑
k

∑
j

1⊗ ej � τ(τ(Mi)jk)mk

=
∑
k

∑
j

1⊗ ej � (Mi)jkmk.

This is exactly the way the corresponding horizontal map in HomD(X•, D)⊗D Y • works
on an arbitrary element:

Dri+1 ⊗D Dsj
(Mi·)⊗idsj - Dri ⊗D Dsj

∑
k ek⊗mk

- ∑
k

∑
j ej⊗(Mi)jkmk.
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Thus, we have given an explicit identification of ∆ ⊗D (τ(HomD(X•, D)) � Y •) and
HomD(X•, D)⊗D Y •.

The task now becomes to compute explicit cohomology classes which are a basis for
H0(∆ ⊗D2n

Z•). To do this, we note that Z• is exact except in cohomological degree
n, where its cohomology is τ(ExtnD(M,D)) �N . This follows because τ(HomD(X•, D))
is exact by holonomicity except in degree n, where its cohomology is τ(ExtnD(M,D)),
and Y • is exact except in degree 0, where its cohomology is N . Thus, the complex
∆⊗D2n

Z• is essentially a restriction complex: after applying the algebra isomorphism η,
we get an honest restriction complex Λ⊗η(Z•) for the restriction of η(τ(ExtnD(M,D))�
N) to the origin (the restriction complex of a left D2n-module M ′ is by definition
Λ⊗LD2n

M ′).
We can therefore compute the cohomology groups of Λ ⊗D2n

η(Z•) by applying the
restriction algorithm. Since we are after explicit representatives for the cohomology
classes, we need to use a presentation of η(τ(ExtnD(M,D)) � N) which is compatible
with η(Z•). This is the content of Step 3. Once equipped with a compatible presenta-
tion, we apply the restriction algorithm to it, which is the content of Step 4. This step
produces explicit cohomology classes of Λ ⊗D2n E

•, where E• is a V -strict resolution
of η(τ(ExtnD(M,D)) � N). To then get explicit cohomology classes of Λ ⊗D2n

η(Z•),
we construct a chain map between E• and η(Z•), which is the content of Step 5. The
cohomology classes can now be transported to Λ⊗D2n

η(Z•) using the chain map, then
to ∆ ⊗D2n Z

• using η−1, then to Tot•(HomD(X•, D) ⊗D Y •) using the natural iden-
tification described earlier, and finally to the complex HomD(X•, N) using the natural
augmentation map. These steps are all grouped together in Step 6. This completes the
proof of the algorithm. 2

Example 4.2. Let M = D/D · (∂ − 1) and N = D/D · (∂ − 1)2, where D is the first
Weyl algebra. Then for Step 1, we have the resolutions,

X• : 0→ D1 ·(∂−1)- D1 → 0 Y • : 0→ D1 ·(∂−1)2- D1 → 0.

For Step 2, we form the complex Z• = Tot(τ(HomD(X•, D)) � Y •),

Z• : 0← D2
1︸︷︷︸

degree 1

�
·
[

(∂x+1)

(∂y−1)2

]
D2

2︸︷︷︸
degree 0

�·[(∂y−1)2,−(∂x+1)]
D2

1︸︷︷︸
degree −1

← 0.

For Steps 3–5, we get the output,

η(Z•) : 0← D2
1 �
·
[ 1

2y+∂x+1

( 1
2y−∂x−1)2

]
D2

2 � ·[( 1
2y−∂x−1)2,− 1

2y−∂x−1]
D2

1 ← 0

E• : 0← D2
1[0]

π1=·[1]

6

�
·
[ 1

2y+∂x+1

y2

]
D2

2[−1, 2]

π0=·
[

1
3
2y−∂x−1

0
1

]6

� ·[y2,− 1
2y−∂x−1]

D2
1[1]← 0.

The complex E• is a V -strict resolution of the cohomology of η(Z•) at degree 1, and the
restriction b-function is b(s) = (s+ 1)(s+ 2). Hence Λ⊗D E• is quasi-isomorphic to its
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sub-complex F−1(Λ⊗D E•)

0← 0 �
·
[ 1

2y+∂x+1

y2

]
SpanK


0⊕ 1
0⊕ ∂x
0⊕ ∂y

 �·[y
2,− 1

2y−∂x−1]
SpanK{1} ← 0.

Hence the cohomology H0(Λ⊗DE•) is spanned by {0⊕1, 0⊕∂y}. Applying π0, H0(Λ⊗D
η(Z•)) is spanned by the images of {( 3

2y−∂x−1)⊕1, ∂y( 3
2y−∂x−1)⊕∂y}. Next applying

η−1, H0(∆⊗D Z•) is spanned by the images of {L1 = (∂x+2∂y−1)⊕1, L2 = − 1
2 (x∂x+

2y∂y+y∂x+2x∂y−x−y)⊕− 1
2 (x+y)}. Modulo the right ideal generated by {x−y, ∂x+∂y},

we can re-express these cohomology classes by {(∂y−1)⊕1, (y∂y−y−1)⊕−y}. Applying
p1 we get {L1,0 = ∂y−1, L2,0 = y∂y−y−1}, which corresponds to a basis of HomD(M,N)
given by,

φ1 :
D

D · (∂ − 1)
·[∂−1]- D

D · (∂ − 1)2

φ2 :
D

D · (∂ − 1)
·[(x∂−x−1]- D

D · (∂ − 1)2
.

Example 4.3. Consider the Weyl algebra D = K〈x, y, ∂x, ∂y〉 and the modules M =
D/D · {x2 − y3, 3y2∂x − 2x ∂y} and N = D/D · {x, y}. Let X stand for the vector field
x ∂x/2+y ∂y/3. As aD-module,M is isomorphic toD[s]/D[s]·{x2−y3, 3y2∂x−2x ∂y, X−
s}, which can be interpreted as the module D[s] • F s/D[s] · F • F s where F = x2 − y3

and D[s] operates on F s by “the power rule” (see, for example, Björk, 1979, Chapter 1).
The module M has an s-action defined by s · P = P ·X.

The module N can be interpreted as the D-module of δ-functions supported at the
point (0, 0), which happens to coincide with the singular locus of x2 − y3. If f ∈
HomD(M,N), then one can define s · f by (s · f)(P ) = f(PX). This gives HomD(M,N)
a K[s]-structure.

Since HomD(M,N) is a finite dimensional vector space, it has has a minimal polyno-
mial b2(s). A theorem of Kashiwara asserts that the set of roots of this minimal polyno-
mial, together with −1, coincides with the set of roots of the Bernstein–Sato polynomial
of x2−y3. (This does not take into account multiplicities, although some statements can
be made about that too—for more details, see Yano, 1978, Section 9.)

With Macaulay 2 one computes HomD(M,N) to be a two-dimensional vector space,
spanned by f : f(P ) = P and g : g(P ) = P∂y. Let us investigate the minimal polynomial
b2(s). Since

(s · f)(P ) = f(PX) = P · (x ∂x/2 + y ∂y/3) = −5
6
P

we conclude that (s+ 5/6) kills f . Similarly one calculates that (s+ 7/6) kills g. Hence
the Bernstein–Sato polynomial of x2−y3 has roots −5/6,−1,−7/6. (It turns out that in
this case each root has multiplicity one, which one could also deduce from the statements
in Yano, 1978.)

Remark. Algorithm 4.1 for the computation of HomD(M,N) can also be modified to
compute explicitly the higher derived functors ExtiD(M,N) for holonomic M and N .
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A useful way to represent ExtiD(M,N) is as the ith Yoneda Ext group, which consists of
equivalence classes of exact sequences,

ξ : 0→ N - Q - X−i+2−→ · · · −→X0 - M −→ 0,

for any list of (not necessarily free) D-modules Q,X−i+2, . . . , X0. Two exact sequences
ξ and ξ′ are considered equivalent when there is a chain map of the form,

ξ : 0 −→ N - Q - X−i+2−→ · · · −→X0 - M −→ 0

· · ·

ξ′ : 0 −→ N

idN

?
- Q′

?
- X ′

−i+2
?

−→ · · · −→X ′0
?

- M

idM

?
−→ 0.

In our modified algorithm we follow the same steps as in Algorithm 4.1, except that in
Step 4 we compute H−n+i(Λ⊗LD2n

(D2n
un/P )) instead of H−n(Λ⊗LD2n

(D2n
un/P )). The

output is a basis {ϕ1, . . . , ϕk} of the finite-dimensionalK-vector spaceHi(HomD(X•,N)),
where X• is a free resolution of M ,

X• : 0→ Dr−a︸ ︷︷ ︸
degree −a

·M−a+1- · · · → Dr−1
·M0- Dr0︸︷︷︸

degree 0

→M → 0.

To obtain the ith Yoneda Ext group from our output for ExtiD(M,N), we follow the
presentation of Weibel (1994, Section 3.4) and associate to a cohomology class ϕ ∈
Hi(HomD(X•, N)) the exact sequence,

ξ(ϕ) : 0 −→ N −→ Q −→ Dr−i+2 −→ · · · −→ Dr0 →M → 0.

Here, Q is the cokernel of (·M−i+1, ϕ) : Dr−i −→ Dr−i+1 ⊕N , and the maps are all the
natural ones. The reader may verify that N is indeed a submodule of Q. Notice that the
only difference between any ξ(ϕ) and ξ(ϕ′) are their corresponding Q’s and the maps to
and from them.

Example 4.4. LetD = K〈x, ∂〉 be the first Weyl algebra andM = D/D·∂,N = D/D·x.
Then for Step 1 of Algorithm 4.1, we have the resolutions,

X• : 0→ D1 ·∂- D1 → 0, Y • : 0→ D1 ·x- D1 → 0.

For Step 2, we form the complex Z• = Tot(τ(HomD(X•, D)) � Y •),

Z• : 0← D2
1︸︷︷︸

degree 1

�
·
[
∂x
y

]
D2

2 �·[y,−∂x]
D2

1 ← 0.

For Steps 3–6, we find that H1(∆ ⊗D2 Z
•) is spanned by {1}, and projecting by p1,

Ext1D(M,N) ' H1(HomD(X•, D/D · x) is spanned by the natural projection ϕ : D →
(D/D · x). For κ ∈ K, the cohomology classes κϕ correspond to the extensions on the
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bottom row of the following diagram,

0→ D
·∂ - D - D

D · ∂
→ 0

0→ D

D · x

·κ

?
·[1,0]- D · ~e1 ⊕D · ~e2

D · x~e1 +D · (κ~e1 + ∂ ~e2)

·[0,1]

?
·[01]- D

D · ∂

idD/D·∂

?

→ 0.

When κ 6= 0, the module Q(κ) = (D · ~e1⊕D · ~e2)/(D ·x~e1+D ·(κ~e1+∂ ~e2)) is generated by
~e2 and is always isomorphic to D/D ·x∂. When κ = 0, the module is no longer generated
by ~e2 and is not isomorphic to D/D · x∂.

In fact, the module (D · ~e1 ⊕D · ~e2)/(D · x~e1 +D · (κ~e1 + ∂ ~e2)) is always generated by
the residue class of ~e1 + ~e2 and has the cyclic presentation D/D · {∂2x+ κx∂, x2∂} with
respect to this generator. Using this presentation, the extensions take the form,

0→ D

D · x
·[−x∂]- D

D · {∂2x+ κx∂, x2∂}
·[x∂+1]- D

D · ∂
→ 0.

One can picture Q(κ) as the K[x]-module K[x] + x−1K[x−1] with the twisted multipli-
cation rule x · (x−1) = κ which is a direct sum if κ = 0.

5. Isomorphism Classes of DDD-modules

In this section, we give an algorithm to determine whether two holonomic D-modules
M and N are isomorphic, and if so to produce an explicit isomorphism. Here, EndD(M)
denotes the space of endomorphisms of a D-module M , where an endomorphism is a
D-linear map from M to M . Similarly, IsoD(M) denotes the units of the ring EndD(M).

If the holonomic modules M and N are isomorphic, then HomD(M,N) ' EndD(M)
is a finite-dimensional K-algebra. In the theory of finite dimensional K-algebras, the
Jacobson radical J is the intersection of all maximal left ideals of E, and it has the
property that the quotient E/J is a semi-simple K-algebra. By the Wedderburn–Artin
theorem, a semi-simple algebra is isomorphic to a product of matrix rings over division
algebras, and hence by taking the algebraic closure, we find that E/J⊗KK is isomorphic
to a product of matrix rings over the field K,

(E/ Jac(E))⊗K K̄ ∼=
d∏
i=1

EndK̄(K̄di). (11)

One consequence of this decomposition is that the non-units of E/J ⊗K K form a deter-
minantal hypersurface. In particular, the units of E/J ⊗K K form a Zariski open dense
set, and hence the units of E/J also form a Zariski open dense set. Moreover, units and
non-units respect the Jacobson radical in the sense that if j is in the Jacobson radical of
E and if u is a unit of E then u + j is also a unit, and similarly, if n is not a unit of E
then n+ j is not a unit. We can thus conclude the following lemma.

Lemma 5.1. Let M be a holonomic D-module. Then the space of D-linear isomorphisms
IsoD(M) from M to itself is open and dense in EndD(M) under the Zariski topology.
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The lemma says that if holonomic M and N are isomorphic then most maps from M
to N are isomorphisms. We now give an algorithm to determine whether M and N are
isomorphic based on Algorithm 4.1 and Lemma 5.1.

Algorithm 5.1. (Is M Isomorphic to N?)

Input: Presentations M ' DmM /D · {P1, . . . , Pa} and N ' DmN /D · {Q1, . . . , Qb} of
left holonomic D-modules.
Output: “No” if M 6' N ; and “Yes” together with an isomorphism ι : M → N if
M ' N .

(1) Compute bases {s1, . . . , sσ} and {t1, . . . , tτ} for the vector spaces V = HomD(M,N)
and W = HomD(N,M) using Algorithm 4.1, where si and tj are respectively
mM ×mM and mN ×mN matrices with entries in D representing homomorphisms
by right multiplication. Recall that we view DmM and DmN as consisting of row
vectors. If σ 6= τ , return “No” and exit.

(2) With new indeterminates µ = {µi}τ1 and ν = {ν}τ1 form the “generic homomor-
phisms”

∑
i µisi ∈ HomD(M,N) and

∑
j νjtj ∈ HomD(N,M). The compositions∑

i,j µiνjsi · tj : M → N →M and
∑
i,j µiνjtj · si : N →M → N are respectively

mM ×mM and mN ×mN -matrices over D[µ,ν].
(3) Reduce the rows of the matrix

∑
i,j µiνjsi · tj − idmM

modulo a Gröbner basis for
D · {P1, . . . , Pa} ⊂ DmM . Force this reduction to be zero by setting the coefficients
(which are inhomogeneous bilinear polynomials in µi, νj) of every standard mono-
mial in every entry to be zero. Collect these relations in the ideal IM ⊂ K[µ,ν].

(4) Similarly, reduce the rows of the matrix
∑
i,j µiνjtj · si − idmN

modulo a Gröbner
basis for D · {Q1, . . . , Qb} ⊂ DmN . Force this reduction to be zero by setting the
coefficients of every standard monomial in every entry to be zero, and collect these
relations in the ideal IN ⊂ K[µ,ν].

(5) If I(V,W ) = IM + IN ⊆ K[µ,ν] contains a unit, return “No” and exit.
(6) Otherwise compute an isomorphism

∑τ
i=1 kisi in HomD(M,N) by finding the first τ

coordinates of any point in the zero locus of I(V,W ). We can do this by inductively
finding ki ∈ K for each i from 1 to τ such that I(V,W ) + (µ1− k1, . . . , µi− ki) is a
proper ideal. For each i, this can be accomplished by trying different numbers for
ki until a suitable choice is found.

(7) Return “Yes” and the isomorphism (
∑τ
i=1 kisi) : M → N .

Remark. Algorithm 5.1 can also be modified to detect whether M is a direct summand
of N . Namely M is a direct summand of N if and only if the ideal IM of Step 3 is not
the unit ideal. Similarly N is a direct summand of M if and only if the ideal IN of Step
4 is not the unit ideal.

Remark. Algorithm 5.1 can be further modified to compute an ideal in K[ν] defining
the closed set of non-isomorphisms, EndD(M)\ IsoD(M). Namely, we first perform Steps
1 through 4 with M = N to obtain the ideal I(V, V ) ⊂ K[µ,ν]. Then we regard each of
the ζ generators of I(V, V ) as a linear inhomogeneous equation in the variables µi with
coefficients involving νj as parameters, and collect all these equations in a single matrix
equation A · µ = b, A ∈ K[ν]ζ×τ . An ideal defining the non-isomorphisms is generated
by all τ × τ minors of A. We leave the proof of this fact as an exercise.
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Proof. (Of The Correctness of Algorithm 5.1) Reducing
∑
i,j µiνjsi ·tj−idmM

modulo D · {P1, . . . , Pa} in Step 3 leads to a generic remainder which depends on
the parameters µi, νj . Since a Gröbner basis of D · {P1, . . . , Pa} is parameter-free, this
generic remainder has the property that its specialization to a fixed choice of parameters
µi = ai, νj = bj gives the remainder of

∑
i,j aibjsi · tj − idmM

modulo D · {P1, . . . , Pa}.
Thus setting the remainder to zero in Step 3 corresponds to deriving conditions on the
parameters µi, νj which makes the endomorphism given by

∑
i,j µiνjsi · tj equal to the

identity on M . This is possible if and only if M is a direct summand of N . The analo-
gous statement holds for reduction of

∑
i,j µiνjtj ·si− idmN

modulo D ·{Q1, . . . , Qb} and
setting its resulting remainder to zero. Since setting a remainder to zero is equivalent
to the vanishing of the coefficients of its standard monomials, we collect these vanishing
conditions in the ideal I(V,W ) of K[µ,ν].

Now a linear combination
∑
i aisi : M → N is an isomorphism with inverse

∑
bjtj :

N → M if and only if the composition
∑
i,j aibjsi · tj is congruent to idmM

modulo
D ·{P1, . . . , Pa} and the opposite composition

∑
i,j aibjtj ·si is congruent to idmN

modulo
D · {Q1, . . . , Qb}. Thus the common zeroes (a1, . . . , aτ , b1, . . . , bτ ) of I(V,W ) correspond
to isomorphisms

∑
i aisi and their inverses

∑
j bjtj . In particular, if I(V,W ) is the entire

ring, which we detect by searching for 1 in a Gröbner basis of I(V,W ), then there are no
isomorphisms.

On the other hand if I(V,W ) is proper, then M and N are isomorphic and we obtain
an explicit isomorphism from finding any common solution of I(V,W ). By Lemma 5.1,
the invertible homomorphisms from M to N are Zariski dense in the vector space
HomD(M,N). Hence, a common solution can be explicitly found by by intersecting the
zero locus of I(V,W ) with τ = dimK(HomD(M,N) ∼= EndD(M)) hyperplanes {µi = ki}.
Since IsoD(M) is dense in EndD(M), if I(V,W ) + 〈µ1 − k1, . . . , µi−1 − ki−1〉 is proper,
then there are only finitely many ki for which the sum I(V,W ) + 〈µ1 − k1, . . . , µi − ki〉
is the unit ideal. Thus the ki can be found by trial and error. 2

Remark. Once we have specialized the µi in a common solution of I(V,W ), then the νj
are determined because of the bilinear nature of the relations (which give linear relations
for the νj once all µi are chosen). This also means that if there is any solution, then the
µi are rational functions in the νj and vice versa. In particular, if φ ∈ HomD(M,N) is
defined over the field K then φ−1 is defined over K as well.

We now give some simple examples. Unfortunately, due to the complexity of the HomD

(M,N) algorithm, our current implementation in Macaulay 2 cannot compute much more
complicated examples.

Example 5.2. Let n = 1 and M = N = D/D · ∂2. One checks that V = W =
HomD(M,N) is generated by the four morphisms s1 = ·(∂), s2 = ·(x∂), s3 = ·(1),
and s4 = ·(x2∂ − x). We obtain the generic morphism

4∑
i=1

4∑
j=1

µiνjtj · si − 1 = (µ3ν3 − µ1ν4 − 1)

+ (−µ4ν3 − µ2ν4 − µ3ν4)x
+(µ3ν1 + µ1ν2 + µ1ν3)∂
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+(−µ4ν1 + µ2ν2 + µ3ν2 + µ2ν3 + µ1ν4)x∂
+(µ4ν3 + µ2ν4 + µ3ν4)x2∂

plus nine other terms which are in D · ∂2 independently of the parameters.
Hence in order for

∑4
i=1 µisi to be an isomorphism, the µi need to be part of a solution

to the ideal

I(V,W ) = K[µ,ν]{µ3ν3 − µ1ν4 − 1,
−µ4ν3 − µ2ν4 − µ3ν4,

µ3ν1 + µ1ν2 + µ1ν3,

−µ4ν1 + µ2ν2 + µ3ν2 + µ2ν3 + µ1ν4,

µ4ν3 + µ2ν4 + µ3ν4}.

This ideal is not the unit ideal and has degree 8. Hence there are isomorphisms between
M and N . Pick “at random” µ1 = 1, µ2 = 2, and µ3 = 0. Then the ideal I(V,W )+(µ1−
1, µ2 − 2, µ3 − 0) equals the ideal (µ1 − 1, µ2 − 2, µ3, ν4 + 1, ν2 + ν3, ν1 + 1

2ν3, µ4ν3 − 2).
We see that we have to avoid µ4 = 0 but otherwise have complete choice.

Example 5.3. Let n = 1, M = D/D · ∂2, and N = D/D · ∂. One checks that V =
HomD(N,M) is generated by t1 = ·(∂) and t2 = ·(x∂ − 1) while W = HomD(M,N) is
generated by s1 = ·(1) and s2 = ·(x). The sum

∑
µiνjsi · tj takes the form µ2ν2x

2∂ +
(µ1ν2 + µ2ν1)x∂ + µ1ν1∂ − (µ1ν2 + µ2ν2). Modulo D · ∂ we want this to be 1, so we get
the relation

K[µ,ν] · (µ2ν1 − µ1ν2 − 1) = IN .

Since this equation has solutions, M can be realized as a summand of N . On the other
hand, the sum

∑
µiνjtj · si takes the form µ1ν1∂ + (µ1ν2 + µ2ν1)x∂ − µ1ν2 − µ2ν2x +

µ2ν2x
2∂. Modulo D · ∂2 we want this to be 1, so we obtain

K[µ,ν] · {−µ1ν2 − 1, µ1ν1 − 0, µ1ν2 + µ2ν1 − 0, µ2ν2 − 0} = IM .

IM + IN is the unit ideal, and hence M and N are not isomorphic.

Example 5.4. Let n = 2 and D = K〈x, y, ∂x, ∂y〉. Consider the ideals Ii = D · {x∂x +
y∂y + 3i, (x2 + 2xy)∂x − (y2 + 2xy)∂y} with associated modules Mi = D/Ii.

For i = 0 and 1, one computes with Macaulay 2 that HomD(M0,M1) is one-dimensional,
generated by (right multiplication by) s = x2y+ y2x, while HomD(M1,M0) is generated
by t1 = ∂2

x∂y−∂2
y∂x, t2 = y∂x∂

3
y−y∂4

y+3∂x∂2
y−3∂3

y , t3 = 2y∂2
x∂

2
y−2y∂x∂3

y+3∂2
x∂y−3∂x∂2

y

and t4 = y∂3
x∂y − y∂2

x∂
2
y .

Then µν1s · t1 +µν2s · t2 +µν3s · t3 +µν4s · t4 reduces modulo I0 to zero, and similarly
µν1t1 · s+ µν2t2 · s+ µν3t3 · s+ µν4t4 · s is in D[µ,ν] · I1. Hence the only D-morphism
M0 →M1 →M0 or M1 →M0 →M1 is the zero morphism.

In general, it is known that Mi and Mi+1 are isomorphic for i integral and positive.
This follows from the fact that the Bernstein–Sato polynomial of f = x2y + y2x is
(s+1)(s+3/4)(s+1)(s+5/4) and so Ii = ann(f i) and Mi is isomorphic to K[x, y, f−1]
for i integral and positive (see Kashiwara, 1978). Similarly, by applying the Fourier
transform, Mi and Mi−1 are isomorphic if i is integral and not positive.

Remark. Methods of computational algebraic geometry can also be used to get struc-
tural information about EndD(M), namely the invariants di in the decomposition (11).
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One proceeds to compute the de Rham cohomology groups of IsoD(M) ⊂ EndD(M) =
Cτ = Spec(C[ν]) using the algorithm in Walther (2000). This algorithm allows us to pre-
tend that K is algebraically closed since although it can be used on input defined over any
computable subfield of the complex numbers, it always computes dimC(H•dR(Cn \Y,C)).
The obtained output equals the cohomology of the units of E/ Jac(E) ⊗K C since this
space is homotopy equivalent to the units of E⊗K C. Finally, we note that the cohomol-
ogy of the units Gl(n,C) of a matrix algebra is well known, behaves well under products,
and hence can be used to determine the di.

To be explicit, in Example 5.2, the non-isomorphisms are defined by the vanishing of the
polynomial ν2

2ν
2
3 +2ν2ν3

3 +ν4
3 +2ν1ν2ν3ν4+2ν1ν2

3ν4+ν2
1ν

2
4 in (K̄)4. With Macaulay 2 one

obtains that the de Rham cohomology of IsoD(M,N) is one-dimensional in degrees 0, 1,
3 and 4 and zero otherwise. From Weyl (1939, Theorems 7.11.A and 8.16.B) one concludes
that in the decomposition (11) d equals 1 and d1 = 2.

Let us conclude by mentioning a well-known application of the endomorphism ring
E = EndD(M) towards decompositions of M (see, for example, Lam, 1991 for these
basic facts). Namely, there is a bijective correspondence between (1) the decompositions
of M into a direct sum of submodules and (2) the decompositions of the identity ele-
ment 1 = e1 + · · · + es of E into pairwise orthogonal idempotents. The correspondence
is obtained by taking a set of orthogonal idempotents {e1, . . . , es} and producing the
decomposition M = e1 ·M ⊕ · · · ⊕ es ·M . Moreover by the Krull–Schmidt–Azumaya
theorem, a D-module M has a (unique up to re-ordering) decomposition into a direct
sum of indecomposable submodules (meaning that they cannot be further decomposed
into a direct sum of nonzero submodules). Thus, an algorithm which produces a full set of
orthogonal idempotents for the K-algebra EndD(M) combined with Algorithm 4.1 gives
a method to decompose holonomic D-modules into indecomposables. We remark that
algorithms for computing idempotents as well as for computing many other properties of
finite-dimensional K-algebras is a field of active research (see, for example, work of Friedl
and Ronyai, 1985 and of Eberly, 1991). Many algorithms have been developed although
there are restrictions on the field K.

In Example 5.2, we have the two idempotents x∂ and 1 − x∂ which correspond to
the decomposition D/D · ∂2 ∼= (D/D · ∂)2 where the two factors are the modules in M
generated by x∂ and 1− x∂ respectively.
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