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Abstract

We considerawarpedoraneworld scenariovith two branesGauss—Bonnegravity in the bulk, andbranelocalisedcurvature
terms.Whenmatteris presenion bothbraneswe investigate the lineaequations of motiomnddistinguishthreeregimes At
very high energy andor an observeonthepositivetensionbrane, gravitys four-dimensionaandcouplecdto thebranebending
modein a Brans—Dickefashion.The couplingto matter andbranebendingon the negativetensionbraneis exponentially
suppressedn an intermediateregime,gravity appeardo be five dimensionalwhile the branebending modeemains four-
dimensional At low energy,matteron both branescoupleto gravity for an observeron the positive tensionbrane,with a
Brans—Dickedescriptionsimilar to the 2-braneRandall-Sundrunsetup.We also considethe zero modetruncationat low
energy angshowthat themoduli approximatiorfails to reproducethe lowenergyaction.

0 2004ElsevierB.V. Open access under CC BY license.

1. Introduction

Sincethepioneeringwvork of RandallandSundruni1,2], braneworld modelshave beestudiedintensively.n
the simplest setupyhich providesa potentialsolutionof the hierarchyproblem two branes otensionT; (i = 4)
areembeddedh a5D bulk AdS spacetimavith negative cosmological constant Theactionfor the systemis
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whereR is the Ricci scalar2 the gravitational constant, a@;’lU denotes the induced metric on ttth brane. We
have also included the Gibbons—Hawking boundary term for outgoing normal vectors. ThevAgid solution
with 4D Poincaré invariance ariéh symmetry about each brane, located at constaist

dszzefzkznlw dx"dx" +dz?, 1.2)
requiring the well-known fine-tunings
A=—6k> (<0), T,=-T_=6k (>0). (1.3)

In general, when matter is added to the branes, theighg§the RS model cannot be derived from a 4D action
since the brane is not decoupled from the bulk, and hence the system of brane equations is nf8]clasémiv
energieskE « |T;|, the situation is different and the 4D low energy effective action correspondifiytphas
been thoroughly studied. In this limit, the degrees eeftom are the two brane positions and the 4D graviton zero
mode[4,5]. In the Einstein frame, one of the two moduli, the dilaton, decouples leaving only one physical modulus,
the radion. As stressed [f], the resulting effective action is non-perturbative and hence can describe the physics
of strong gravity systems such as black holes on the Higne

Our aim is to derive a similar 4D low energy effective action when Gauss—Bonnet (GB) gravity rather than
Einstein gravity acts in the bulk. This particular higher derivative combination is the only one which gives equations
of motion depending on the metric and its first two derivatives:

1
Sos =5 | d°xv/=gs[-24+ R +(R? — 4R4R™ + Raped R*")]
5

1 — :
T Z 2 / dix /=g (_Ti + 2£i)oundar3)’ (1.4)
ji=+ "5 i
where the boundary term is given[8]. The coupling constant has mass dimension2, and when interpreted

as the string slope in a derivative expansi@n; 0. Action (1.4) has a solution of the same form @s2), but now
with correction$ linear in« [11]

4
A=—6k*(1—2ak?), Ty =-T_ =6k (1 —~ §ak2>. (1.5)

Static brane worlds with Gauss—Bonnet gravity have been intensively sfddipahile time-dependent solu-
tions have also been considered9il2,13] The addition of a bulk scalar field has been investigatd,iv,16]
However, the effective brane gravity in a system consistirtgvofMinkowski branes and Gauss—Bonnet gravity in
the bulk has not yet been studied: it is the aim of this Letter.

As opposed t@l.1), the actior{1.4)is not a suitable starting point to derive a low energy effective action when
GB gravity acts in the bulk. One reason is that in contrast with the RS model, the AdS s@lubdis unstable:
the spin 2 fluctuations contain a tachyonic mode which is localised around the negative tensidid Bfr.aheis
instability is a generic problem of any GB system containing a negative tension brane. Clearly in order for the
effective action to make any sense, this mode must be ‘removed’. Here we follow the procedure andliged in
and add induced gravity terms to the brane so that the 5D action we consider is

StotalcB= SGB + Sind (1.6)
where
Sind= /352 /d4x —g' Ri, 1.7)
b 2xE )

2 Note that due to an improper brane delta function regularization, the poneing relations given if9,10] have an incorrect coefficient.
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whereR; is the Ricci scalar constructed from the 4D induced metric on each @fgn@he required constraints
on B; have been discussed[it7] (see als@2.21). Note that warped brane worlds with brane curvature terms have
been studied before, for instance[118,19]

The outline of the Letter is the following. First, we recall the linear equations of motion for GB brane worlds
with two branes and induced gravity on each brane. Wdyae the high energy game from the point of view
of an observer on the positive tension brane. We find that the coupling to matter on the negative tension brane
is exponentially suppressed. Gravity becomes 4D withranB-Dicke coupling to the brane bending mode. At
intermediate energy, gravity becomes 5D while the brane bending mode retains its 4D character. Finally, at low
energy, we find that the effective gravity and brane bending equations are equivalent to the field equations ob-
tained from an effective action involving only one scdield, i.e., the radion. We then consider the same brane
world model from the point of view othe moduli approximation and show thae resulting action obtained af-
ter integration over the fifth dimension differs from the low energy action derived from the linear equations of
motion.

2. Low energy action and linear equations of motion
2.1. Propagator

Following [4,5], we first give the equations of motion for perturbations about the background solution given
in (1.2) and (1.5). Starting from a general gauge for the metric with the two branes located at constant un-

perturbed positionsoi, we then impose the GN gauge;s = hss = 0, so that the perturbed metric takes the
form

ds? = (a®(@nuy + hyw) +dz?, (2.1)
where
a(z)=e k. (2.2)

In addition, we furthermore impose th@nsverse-traceless gauge condition
h=n"hy, =0=09,h"", (2.3)
so that the branes are no longer gihdibut located at perturbed positions

E(x) = &5 +EE(x). (2.4)

Note that throughout the following, 4D indices are raised with the flat megricFurthermore, it will be useful to
introduce

Yuv = a2y (2.5)
The perturbed bulk Einstein equations now take the fir

(1 — dok?) (92 — 4kd, +a—20%)y,, =0, (2.6)

where the GB term acts as an overall multiplicative constant. Note that the quadratic expansion of the GB term
around dlat backgroundranishe$15], therefore not modifying the propagator. For an At&ckground, however,

the quadratic contribution is non-zero though it preserves the linearized bulk equations of motion. Thus, as long
as 4rk? +# 1, the solution 0{2.6)is just as in the RS model: in momentum space, whelfey,,, = —pzyw, it is
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given by
_ (ky)?
Y (p.2) = —7(Aw(p)lz(y) + B (p)Y2(y)). (2.7)
Here
_V=p?
y= ) (2.8)

is the conformal variable rescaled W and.J», Y» are the Bessel functions of the first and second kind. The
p-dependent functiong,,, andB,,, are determined by the boungaconditions for the gravitational perturbation
which, in this gauge, are given jy4]

070 (p. 2)| . — PPlrar v (p. )|, = Fhéai? T35, (p). (2.9)
Here

ax =a(&y) (2.10)
are the scale factors at the unperturbeane positions, and the length scalesare given by
1 (EBik+8ak?
=" kax \ 2(1—4ak?) )

These scales, which will play an importantrole later, vanish in the RS limit but more generally can be either positive
or negative. Note that i(2.9)we have added matter with stress-energy teﬂrg'prto each brane so that the source
termis

1 1 _
Eiv = m[(’rli - éTin/w) + 2K5 Zwiauavéi} (2.12)

where we have defined

(2.11)

wi = (1+ fok + dak?). (2.13)
The stress-energy tensors are defined with respect to the induced metrics:

2 SLE

Ti = _ _ matter‘ (214)
SRV TaF T

Finally, the relative signs i2.9) arise from the change of orientation on the second brane compared to the first

brane, and these equations generalise thopt ¢d GB gravity. From(2.9)andy = 0, it follows thatX* = 0 and

hence

2
O@Wgt — 2 6 7+ (2.15)
Gwi

On substituting the solutiof2.7)into (2.9), the boundary conditions become

ky+{ Ao (P)J£(p) + Buy (P)Y1(p)} = FHEZE (p), (2.16)
where from(2.8)

_p2

—_— 2.17
kai ( )

y+=y+(p) =
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and

J(p) = J1(y+) + (kly)azy+Ja(y+), (2.18)

Y(p) = Y1(y+) + (kli)asry+Yo(ys). (2.19)

Let us consider the homogeneous solution§2016) corresponding tonv = 0. A first solution of(2.16)is

when y+ = 0 so thatp? = 0—the zero mode corresponding to the massless graviton. The other solutions are
obtained when the relevant determinan{2fL6)vanishes:

Det(p) = J_(p)Y4(p) — T+ (p)Y_(p) =0. (2.20)

As discussed if17], for @ # 0 andB+ = 0, Eq.(2.20) has solutions when is imaginary, and these tachyonic
modes withp? > 0 are non-perturbative ia. However, for non-zero induced gravity terris they can be pre-
vented provided17]

€4 - <0. (2.21)

For realy, Eq. (2.20)yields the Kaluza—Klein tower.
We now assume th&R.21)holds and solve the linear equation in the presence of matter on both branes. From
the boundary condition®.16)we find (away from the locus Dgt) = 0 which corresponds to a discrete spectrum

in p?)

k2 1 (ZL(Y-(p) T, ()Yi(p)
Au(p) = -2 By v , 2.22
v () kDet()( o ) (2:22)
k2 1 (ZL(I-(p)  En(p)i(p)
Byuy(p)=—-—= ( 2 + ) 2.23
w P) =" Det(p) " . (2.23)
Thus, from(2.7), the general solution foy,,, is
By (%, 2) = a? (@) ypn (x, 2) = / d*x (AT, X, ) ZH ) + A7 (e, X 2 Dy, (), (2.24)
where the propagators are given by
d4p : ’
+ / — ip-(x'—x) A%
A (x,x,z)—/—(zn)4e A% (p.2)
_ / d*p ip—o €80x (Ye(p)T2(y) = Te(p)Y2() (2.25)
(2m)4 V—p? Det(p)

with y = y(p, z) givenin(2.8).

Finally, from (2.24) the perturbed metric on each brane can be calculated. For the positive (respectively, neg-
ative) tension brane, we transform to a GN coordinate systém x¢ — &4, giving a straight brane located at
7= égt, as well asfzu5 = hss = 0. After a 4D gauge transformatidga,5], the perturbed metric on each brane is

thenh,,, (x, 7 = &) with
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iluv(xa Eoi) = huv - Zinmwéi
1 1
~ [ [ (G

1 kkZa? 1
+ A" (x, X, SSE)(TM_U — §an_>(x’):|} + 33}; mTinw. (2.26)
This expression together wifR.25)and(2.15)captures the physics of the Gauss—Bonnet brane world models with
induced gravity on the branes. Notice that the perturbeft;gnx, z) depends on the sources on both branes. In
particular, the brane positions play an important role in the dynamics of the system. At low energy, we will show
that there is only one effective scalar degree of freedom. Before considering the low energy action reproducing the
linear equations of motion, let us concentrate on the high energy regime.

2.2. High energy limit

At high energy, the effect of the induced brane terms is highly relevant. In particular, we find that at very high
energy gravity propagates in 4D while its behaviour is 5D in an intermediate range.
Consider first the positive tension brane and Bgt= &~ = 0. In order to evaluate the propagators on the

positive tension brane it is convenient to work in Euclidean space and definei/— p2 with ¢ real. Notice that
this also corresponds to space-like momerta- 0 as relevant when computing the static potential between point
sources. In the high energy limits| = |¢|/(ka+) > 1, we obtain the propagator

2
KEay 1
A%(q.59) ~ 5q <q€++1>, 2.27)

from which two different energy regimes appeatr.

e Atlarge momenta or small distances,! <« |, | the propagatosc g —2 leading to

1 2kk? 1 1— dak?
5 |: + _anT++ TY;WT+:|
6w+

1.
a_zhlw(q’s(?:) = T/w )

2 q2 Bk + 8ak?
1 22 1 1
= y Ity ——— .
[ T2 2@ 20(@e) ™ }
We consideraiifz,w as the gravitational perturbation associated to a Minkowski backgrgundn this limit,
the interaction with matter mediated by gravity ifoar-dimensionatensor—scalar theory which is given in a
Brans—Dicke parametrisati¢®0] by a background Brans—Dicke parameter

3 Bk + 8ak?
w(Po) = E’BI—W’ (2.29)

where the background Brans—Dicke field is
®o  Pik+8ak?

(2.28)

K} kxé , (2.30)
and its fluctuation
2
O L (2.31)
ol B+k + 8ak?

It coincides with the results ¢14] and the Minkowski limit in[13]. This should be contrasted to the RS model
in which ¢, = 0 and where gravity is always five-dimensional at short distance.
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o If k|¢4+]a+ « 1, there is an intermediate high-energy regime in wr}jgyf > g~ 1> |£4]. In this case the
propagatorx ¢ — 1 leading to an effective gravity given by
2 2, 2
~ e Kgay . 1 n kgkay .
hu(q.8q) = 71— 4ak?) <T/w - §ﬂuvT - WT N - (2.32)

The 1/¢ momentum dependence associated with tf® ttace factor instead of 1/2 means that there is 5D
propagation of a combination of a 4D-tensor and a 4D-scalar mode. The teftetm corresponds to the 4D
propagation of a 4D-scalar mode. Again note that in the RS model one is always in this regime at high energy.

So far we have not taken into account the presence of a second brane. In fact, one finds

(64 ~ 242 q(1 1A|f1 1 1
A7) ~ 2 “*aexp{k(m a_>”q<1+£+q> <1—z_q>}' (2:33)

Notice that the propagator from the negative tension biattee positive tension brane is exponentially suppressed,
i.e., no gravitational effect is transmitted from one brane to another at high energy. Hence, at high energy, the two
brane system behaves like a single brane system with no influence from the second brane.

In the following section we show that in the low energy limit, gravity is always 4D.

2.3. Low energy limit

Here we are interested in determining the dynamics and the number of degrees of freedom in the low energy
limit, y+ < 1. In that limit, Eqs(2.22) and (2.23)educe to

k2w Xt +w, X
X P (2.34)
p Wy — S W_
ay
a® _
mcé Euv + a_zzuv
B, ~ (1 Aok ) % 2 , (2.35)
W4 — 5 W-—
ay
while we have
452
i~ B (2.36)
1
N |24 T++G,T 4ka’w. (8,9, — O@)e+
a_2~_w+—aaw_[ 4( + /W) + “"( wOv — Nuv )E
- AkaZw— (9,0, = mu)e7] (2.37)

wherex2 = kx2 and we have use(@.15)
These equations have the structure of the equations of motion from a low energy effective action involving
tensor gravityy,,, (x) and two scalar fields* (x). They can be reproduced by a quadratic action, expanding

1
> / d* V=g ([F+ (") — F_(€)|R — BLE)(BET)% — B_(E7)(97)?)
4

+ Sthatte A+ € gu) + Smatte A- () gpuv) (2.38)
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to second order aroung,, = 7.y, &% = 0. Here matter on each brane is minimally coupled to the indicated metric.
We find that one can identify

Py = :|:wjzaz(f§0i +&%) (2.39)
and the sigma model coefficients

By = F6k?wia® (&5 +£7). (2.40)
The coupling functions to matter are given by

Ax = d?(gF +&7%) (2.41)

implying that matter couples to the induceetric on each brane. Notice that in lae> 0 andS. — 0 limits, one
obtains the scalar-tensor theory corresponding to the Randall-Sundrum case.

A quick glance at the action that we have just derigegms to indicate that there are two scalar degrees of
freedom while there is only one effective scalar degree of freedom in the R-S case. To determine the structure of
the effective action, it is convenient to go to the Einstein frame where the Planck mass is fixed. In the following we
will assume that

w+a5_ >w_a® (2.42)

guaranteeing that the squared effective Planck mass igveds the brane frame (and thus in all frames so that
the graviton is not a ghost). The corresponding t&imsframe action is the quadratic expansion, arogpd=
(F9 — FO)n,,, ande* =0, of

1 . A A_
Ser=— | d*x /=g (R —0;;06'087) + St ——— St ——— 2.43
EF ZKE X g( Ojj §'0& )+ mat<F+ —F & | + Smat Fi—F_ guv ( )

with

3, F, 2 B 3 FLF.
_(EEE) tEme we 2.44
Gij = 3 FLF. 3, F. 2 B_ ’ (2.44)

T2(F—-F)? E(FJ;F,) + Fi—F_

andi, j =1, 2=+, —. This sigma model matrix simplifies drastically in our case and takes the form

6k2F, F_ (1 _1>

1 (2.45)

W R
It is easy to see that this matrix has a zero eigenvalue leading to the presence of only one physical scalar degree of
freedom, the radion= R + &£~ — &7, whereR = & — 55“ is the unperturbed interbrane distance. Therefore, the
action is the quadratic expansion of

1 6k2w_a?(r
SEF: ] d4x v —E& (R— w ( ) 2(8)")2>

2Ky wy(l- ﬁaz(r))

8y — 8uv

Sl —5— ) + Spatl ————). 2.46
+ mat(wJr _ az(r)w> + m51t<ag(r)u)+ _ w) ( )

Requiring that the radion is not a ghost implies that
wyw_ > 0. (2.47)

When the graviton and the radion are not ghosts, the low energy effective action provides useful information on
the Gauss—Bonnet brane world at low energy.
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Let us assume théi_| < |w4| and define

w—

— ¢~ % =tanhp. (2.48)
W+
The effective action becomes now (the quadratic expansion of)
cosit sint?
SEF— — f d*x N (R 6(dp) ) + Smat( w p&w) + Saat(w—pgl“/)' (2.49)

Notice that the only difference with the RS effective action resides in the prefagtoiie the coupling of the

radion to matter. When these prefactors are equal to unity, the effective action is the RS one as derived within the
moduli space approximation. We will compare the effective action obtained from the linear equations of motion
and the moduli space approximation in the following section.

The coupling to gravity has to be such that the presence of a massless degree of freedom does not modify
gravity. To carry out this analysis, it is convenient to use another form of the action. The action can be put in the
Brans—Dicke form using the metric on each brane as theigtional field. For the positive tension brane matter,
the action becomes (the quadratic expansion of)

w )
Sp = Z,j f d*x /= (m = <aw>2)+sntat<gw>+smat( B2 (W) gun) (2.50)
where the Brans—Dicke field is
U=1—— 2" (2.51)
w+
with a Brans—Dicke parameter
3 v
YU)y=——— 2.52
w1 (¥) 1w ( )

and a coupling to matter of the second brane
ABD(g) = Y (1 g, (2.53)
w—

Notice that the Brans—Dicke parametan be arbitrarily large when the brarsge far apart. Hence ordinary matter
can be located on the positive tension brane. This coincides with the usual R—S result.
Similarly for the negative tension brane this is the second order expansion of

_ w— (CD)
Sap = T / d*x = (@R - ——(P) ) + St ARP (@) 810) + Smar(guv) (2.54)
with a Brans—D|cke parameter
3 @
__> 2.55
- ="51 % (2.55)
and a coupling to matter
ABP(@) = = (14 @), (2.56)
W4
where the Brans—Dicke field is
o= _q (2.57)
w_—

Notice that the Brans—Dicke parameter is here negative for large brane distances, ruling out the possibility of having
ordinary matter on the second brane.
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2.4. The projective approach

The previous action can be retrieved using the projective appii@@} in which the Einstein equations on
both branes are written in terms of the matter ggemomentum tensors and the projected Weyl tersgr.
Eliminating the projected Weyl tensor between the two brane equations leads to the effective Einstein equation on
either brane. Here we will concentrate on the aase0 for simplicity. The projective approach for Gauss—Bonnet
branes has been first considereff]. This general case is beyond the scope of the present Letter. At low energy
one can neglect the quadratic terms in the matter content of the branes. The Einstein equation on the first brane
reads

wyGuv(8,) =kkET, — Epy, (2.58)
where we have indicated the dependence on the induced metric explicitly, and the contribtiocomes from
the brane curvature term. Similarly, on the second brane,
E,

4’
wheres2 =a_/a, corresponds to the radion field. Usigg, = .ngj[v to lowest order in a derivative expansion,
one can eliminaté,,, and obtain the Einstein equation

w-Gpu(80,) = ki€ Ty, — (2.59)

e KR (o we -
G/Lv(guv) = E T‘ILU + w_ (1 - W)TMV
o) 1 2 1 9 _
+z (DMII/Dle/ - 5(D¥) g,ju> + E(DMD,}I/ - Dwgr), (2.60)

which coincides with the Einstein equations deduced from the effective action obtained in the previous section.
Hence, the projective approach leads toghme results as the linear equations of motion.

2.5. The failure of the moduli space approximation

In the RS case, it has been shown that the effective action can also be deduced using the moduli space ap-
proximation. In this section, we examine the validity of the moduli space approximation for Gauss—Bonnet brane
worlds, i.e., keeping only the massless degrees of freedom represented here by the 4B mphuis two real 4D
scalar fields giving the brane positions in the fifth dimension. Within this approximation, one obtains the Einstein
frame effective action

1
=5 / d*x V=8 [R = Vo5 (00)% = ¥p(8p)* — 25 (3p) (95)] (2.61)
5

with the normalization matrix

S

96k’ + 68, k 96ak? — 68_k .
o = —————— costf(p) — ———————sinl?
Yoo = T dak2 1 Bk O T T gz — gy ST,
6 — 72ak? 6 — 72ak?
=" cosR(p)— —" sink
Yoo = Ty aak? — gk SO O) T T g g g o)

_ KB+ + BB —T20K)
(1 +dak? 4 Bk) (1 + dak? — B_k)
As can be easily seen the sigma model matrix is of rank teaxding to the existence of two massless degrees of

freedom in the scalar sector. This contradicts the linear equations and therefore invalidates the moduli approxima-
tion in the Gauss—Bonnet case. The failure of the moduli space approximation here, and the non-equivalence with

sinh(p) coshp). (2.62)

Ypo
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the projective approach deserves further study. In particular, its link with either the presence of higher derivative
terms or the necessity of extending the moduli ansatz needs to be investigated. This is left for future work.

3. Conclusion

We have analysed brane worlds with a bulk Gauss—Bonnet term and induced brane gravity terms. We have
studied the high energy and low energy limits. In particular, we have shown that the low energy effective action
involves only one field, the radion, and differs from the RS case. The difference with the RS case arises in the
coupling of the radion to matter and the value of the effective Planck mass.

We have also noted that the moduli approximation fails for Gauss—Bonnet brane worlds. Indeed, it fails to repro-
duce the linear equations of motion and involves a spurious scalar degree of freedom. This means that dimensional
reduction does not commute with taking the equations afene from the action; the correct procedure consists
in first taking the higher-dimensional equations of motémd then dimensionally reducing them. Similar cases of
non-commutativity have been described22] where it is specifically due to the Gauss—Bonnet term, ¢28j}
where it has been shown more gerigrtnat it can arise from symmetries of the equations of motion which are not
symmetries of the action. In this context, a better understanding of the link between the moduli approximation and
the projective approach deserves to be further investigated and is left for future work.
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