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Abstract

We study the stability of the giant gravitons in the string theory background with NSNS B field. We consider the perturbation
of giant gravitons formed by a probe D(8 − p)-brane in the background generated by D(p − 2)–D(p)-branes for 2 � p � 5.
We use the quadratic approximation to the brane action to find the equations of motion. The vibration modes for ρ, φ and r

are coupled, while those of xk’s (k = 1, . . . , p − 2) are decoupled. For p = 5, they are stable independent of the size of the
brane. For p �= 5, we calculated the range of the size of the brane where they are stable. We also present the mode frequencies
explicitly for some special cases.

 2002 Published by Elsevier Science B.V.

1. Introduction

Stable extended brane configurations in some string theory background, called giant gravitons, attracted interests
in connection with the stringy exclusion principle. Myers [1] found that certain D-branes coupled to RR potentials
can expand into higher-dimensional branes. McGreevy, Susskind and Toumbas [2] have shown that a massless
particle with angular momentum on the Sn part of AdSm × Sn spacetime blows up into a spherical brane of
dimensionality n− 2. Its radius increases with increasing angular momentum. The maximum radius of the blown-
up brane is equal to the radius of the sphere that contains it since the angular momentum is bounded by the
radius of Sn. This is a realization of the stringy exclusion principle [3] through the AdS/CFT correspondence [4].
Later it was shown that the same mechanism can be applied to spherical branes on the AdS part [5,6]. However,
they can grow arbitrarily large since there is no upper bound on the angular momentum. To solve this puzzle,
instanton solutions describing the tunneling between the giant gravitons on the AdS part and on the S part were
introduced [5,7]. Giant graviton configurations preserving less than half of the supersymmetry were studied by
Mikhailov [8]. A magnetic analogue of the Myers effect was investigated by Das, Trivedi and Vaidya [9]. They
suggested that the blowing up of gravitons into branes are possible on some backgrounds other than AdSm × Sn

spacetime.
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Recently it is known by Camino and Ramallo [10] that the giant graviton configurations are also possible in a
string background with NSNS B field. They considered the geometry formed by a stack of non-threshold bound
state of the type (D(p − 2),Dp) for 2 � p � 6 [11], which is characterized by the non-zero Kalb–Ramond field B

from the NS sector together with the corresponding RR fields. In this background they put a probe brane such that it
could capture both the RR flux and the flux of B field. The probe brane and the branes of the background have two
common directions. The probe brane is a D(8 −p)-brane wrapped on an S6−p sphere transverse to the background
and extended along the plane parallel to it. They showed that, for a particular choice of the worldvolume gauge
field, one can find configurations of the probe brane which behave as massless particles and they can be interpreted
as giant gravitons.

One important issue related to the giant gravitons is whether they are stable or not under the perturbation
around their equilibrium configurations. Perturbation of the giant gravitons was studied first by Das, Jevicki and
Mathur [12]. Using the quadratic approximation to the action, they computed the natural frequencies of the normal
modes for giant gravitons in AdSm×Sn spacetime for both cases when gravitons are extended in AdS subspace and
they are extended on the sphere Sn. All modes have real positive ω2 for any size of the branes so that they are stable.
Perturbation analysis of giant gravitons whose background geometry is not of a conventional form of AdSm × Sn

was considered by the author [13]. The normal modes of giant gravitons in the dilatonic D-brane background were
found and they turned out to be stable too.

In this Letter, we will study the stability analysis and present the spectrum of the perturbation modes of giant
gravitons in the string background with NSNS B-field described in Ref. [10]. We consider the perturbation of giant
gravitons in the near-horizon geometry. In the previous analysis, the perturbation of the brane along the transverse
direction was not considered. Here we consider the perturbation of this variable too. The organization of the Letter
is as follows. In Section 2 we review the giant gravitons with NSNS B field [10] and set up some preliminaries for
our calculation. In Section 3 we consider the perturbation up to second order and derive the equations of motion
from which one determines the normal modes. From these equations we discuss the stability of the giant gravitons.
We also present the mode frequencies explicitly for some special cases. Finally in Section 4, we conclude and
discuss our results.

2. Review of giant graviton configuration

Consider the supergravity background generated by a stack of N non-threshold bound states of Dp- and
D(p − 2)-branes for 2 � p � 6. The metric and dilaton are given by [10,11]

(1)ds2 = f
−1/2
p

[
−(dx0)2 + · · · + (dxp−2)2 + hp

{(
dxp−1)2 + (dxp

)2}]+ f
1/2
p

(
dr2 + r2 dΩ2

8−p

)
,

(2)eφ̃D = f
3−p

4
p h

1/2
p ,

where dΩ2
8−p is the line element of S8−p , r is the radial coordinate parametrizing the distance to the brane bound

state and φ̃D = φD − φD(r → ∞). The functions fp and hp in Eqs. (1) and (2) are given by

(3)fp = 1 + R7−p

r7−p
, h−1

p = sin2 ϕf−1
p + cos2 ϕ,

where ϕ is the angle characterizing the degree of mixing of the Dp- and D(p − 2)-branes. The parameter R is
given by

(4)R7−p cosϕ = Ngs25−pπ
5−p

2
(
α′) 7−p

2 Γ

(
5 − p

2

)
,
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where N is the number of branes of the stack, gs is the string coupling constant (gs = eφD(r→∞)) and α′ is the
Regge slope. The metric of S8−p can be written as

(5)dΩ2
8−p = 1

1 − ρ2 dρ2 + (1 − ρ2)dφ2 + ρ2 dΩ2
6−p,

where dΩ2
6−p is the metric of a unit 6−p sphere. The range of the variable ρ and φ are 0 � ρ � 1 and 0 � φ � 2π .

The coordinate ρ plays the role of the size of the system on S6−p . The Dp-brane of the background extends on
x0 · · ·xp, while the D(p − 2)-brane lies along x0 · · ·xp−2. The component of RR field strengths are:

(6)F
(p)

x0,x1,...,xp−2,r
= sinϕ∂rf

−1
p , F

(p+2)
x0,x1,...,xp,r

= cosϕhp∂rf
−1
p .

The solution also has a rank two NSNS B field on the xp−1xp plane

(7)B = tanϕf−1
p hp dxp−1 ∧ dxp.

Note that F (p)’s for p � 5 are the hodge duals of those with p � 5, i.e., F (p) =∗ F (10−p). For ϕ = 0 the
(D(p − 2),Dp) solution reduces to the Dp-brane geometry whereas for ϕ = π/2 it is a D(p − 2)-brane smeared
along the xp−1xp directions.

Now we embed a probe D(8 −p)-brane in the near-horizon region of the (D(p − 2), Dp) geometry where r is
small. The probe D(8−p)-brane wraps the (6−p) transverse sphere and extends along the xp−1xp directions. The
action for this case, ignoring the fermions, is given by the sum of a Dirac–Born–Infeld (DBI) and Wess–Zumino
(WZ) terms

(8)S = SDBI + SWZ.

Taking the worldvolume coordinates ξα (α = 0,1, . . . ,8 − p) in the static gauge as

(9)ξα = (t, xp−1, xp, θ1, . . . , θ6−p
)
,

the dynamical variables are described by

(10)r = r(t), ρ = ρ(t), φ = φ(t).

Evaluating the probe brane action under the ansatz of Eq. (10), the total action can be written as [10]

(11)S =
∫

dt dxp−1 dxpL,

where the Lagrangian density L is given by

(12)L= T8−pΩ6−pR
7−p

{
−ρ6−pλ1

√
r−2f−1

p − r−2ṙ2 − ρ̇2

1 − ρ2 − (1 − ρ2
)
φ̇2 + λ2(−1)p+1ρ7−pφ̇

}
.

In Eq. (12) the functions λ1 and λ2 are defined as

(13)λ1 =
√
hpf

−1
p +F 2h−1

p , λ2 = F cosϕ,

where F is the only non-zero component of the U(1) worldvolume gauge field F = Fxp−1,xp , and F = F −P [B].
The dynamics of the system is determined by the standard Hamiltonian analysis. Absorbing the (−1)p+1 sign

into the redefinition of φ̇ if necessary, the conjugate momenta are calculated as

(14)Pq = ∂L
∂q̇

≡ T8−pΩ6−pR
7−pλ1πq,
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for q = r , ρ and φ, where πq ’s are defined as

πr = ρ6−p

r2
ṙ√

r−2f−1
p − r−2ṙ2 − ρ̇2

1−ρ2 − (1 − ρ2)φ̇2
,

πρ = ρ6−p

1 − ρ2
ρ̇√

r−2f−1
p − r−2ṙ2 − ρ̇2

1−ρ2 − (1 − ρ2)φ̇2
,

(15)πφ = (1 − ρ2)ρ6−p φ̇√
r−2f−1

p − r−2ṙ2 − ρ̇2

1−ρ2 − (1 − ρ2)φ̇2
+Λρ7−p.

In the third expression of Eq. (15), Λ is defined as Λ = λ1/λ2. The hamiltonian density can be calculated as

(16)H = ṙPr + ρ̇Pρ + φ̇Pφ −L ≡ T8−pΩ6−pR
7−pλ1h,

where h the reduced Hamiltonian in analogy with the reduced ones for momenta

(17)h = r−1f
−1/2
p

[
r2π2

r + ρ2(6−p) + (1 − ρ2)π2
ρ + (πφ −Λρ7−p)2

1 − ρ2

]1/2
.

We consider the solution of the equations of motion derived from the reduced Hamiltonian Eq. (17). From
Eq. (5) the coordinate ρ plays the role of the size of the system on S6−p sphere. For this reason we look for
the solution of the equations of motion with constant ρ which corresponds to the giant graviton configuration.
The same problem was considered in Ref. [9] for the case of probe branes moving in the near-horizon Dp-brane
background. Comparing the right-hand side of Eq. (17) with the corresponding expression in Ref. [9], the same
kind of arrangement is possible if the condition

(18)Λ = λ1

λ2
= 1,

is satisfied. Indeed, if this condition is satisfied, h can be expressed as

(19)h = r−1f
−1/2
p

[
π2
φ + r2π2

r + (1 − ρ2)π2
ρ + (πφρ − ρ6−p)2

1 − ρ2

]1/2
.

We can find the brane configuration with constant ρ under the condition Eq. (18). From Eq. (15), we have πρ = 0.
Then, from the Hamiltonian equation of motion for πρ , i.e., π̇ρ = −∂h/∂ρ, the last term on the right-hand side of
Eq. (19) must vanish. For p < 6 this happens either for

(20)ρ = 0,

or when πφ is given by

(21)πφ = ρ5−p.

For p = 6, only Eq. (21) gives the constant ρ configuration. Since h does not depend on φ explicitly, πφ is a
constant of motion. Thus, for p �= 5, Eq. (21) makes sense only when ρ is constant. Actually the constant value
of ρ is determined by the value of πφ . When p = 5, πφ = 1 regardless of the value of ρ.

Taking Λ = 1, from the last expression of Eq. (15), φ̇ is calculated as

(22)φ̇ = πφ − ρ7−p

1 − ρ2

[
r−2(f−1

p − ṙ2)− ρ̇2

1−ρ2

]1/2

[
π2
φ + (πφρ−ρ6−p)2

1−ρ2

]1/2
.
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Since ρ̇ = 0, one can easily check that φ̇ and ṙ satisfy

(23)fp
(
r2φ̇2 + ṙ2)= 1,

whenever one of the two conditions in Eq. (20) or Eq. (21) is met. For the configurations we are considering, the
last two terms inside the square root of the reduced Hamiltonian Eq. (19) vanish and this configuration certainly
minimizes the energy. Eq. (23) is the condition satisfied by a particle moving in the (r,φ) plane at ρ = 0 along a
null trajectory in the metric Eq. (1). Thus the configurations have the characteristic of a massless particle, i.e., the
giant graviton.

The momentum pφ and pr can be obtained by integrating the momentum densities Pφ and Pr over the xp−1xp

plane. The momentum density Pφ can be obtained from Eqs. (14) and (21)

(24)Pφ = Tf

2π
FNρ5−p.

and pφ is obtained as

(25)pφ =
∫

dxp−1 dxpPφ = NN ′ρ5−p,

where N ′ is the total flux defined by

(26)
Tf

2π

∫
dxp−1 dxpF = N ′.

For p < 5, the size of the wrapped brane increases with the momentum pφ . Since 0 � ρ � 1, the maximum value
of the momentum is

(27)pmax
φ = NN ′

for ρ = 1. It is known that the existence of the maximum angular momentum is the manifestation of the stringy
exclusion principle [3]. For p = 5 the momentum pφ is independent of the value of ρ. For p = 6, the value in
Eq. (27) is actually the minimum. We will not consider p = 6 case significantly since we cannot define angular
momentum on S6−p for p = 6.

The energy of the giant graviton can be obtained by integrating the Hamiltonian density H over the xp−1xp

plane

(28)HGG = f
−1/2
p

(
p2
r + p2

φ

r2

)1/2
= R

p−7
2
(
r7−pp2

r + r5−pp2
φ

)1/2
.

Requiring the conservation of energy HGG = E, we have

(29)ṙ2 + r7−p

R7−p

(
p2
φ

E2R7−p
r5−p − 1

)
= 0.

The solution of this differential equation, for p �= 5, is given by

(30)
(
r∗
r

)5−p

= 1 + (5 − p)2r
5−p∗ Rp−7

(
t − t∗

2

)2
(p �= 5),

where r∗ is defined as

(31)(r∗)5−p = E2

p2
φ

R7−p.

Note that t∗ is the value at which r = r∗. So we can take t∗ = 0 without loss of generality. For p < 5, r → 0 as
t → ±∞, i.e., the giant graviton falls asymptotically to the horizon. However, for p = 6, r → ∞ as t → ±∞, i.e.,
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it always escapes to infinity. The solution for p = 5 is a special case and easier to integrate

(32)r = r0e
± t

R

√
1− p2

φ

E2R2 (p = 5).

The solution connects asymptotically the point r = 0 and r = ∞.
Similarly we can express φ as a function of t . We substitute the r(t) expression into Eq. (23) to get φ̇ then we

integrate it over t . The result for p �= 5 is

(33)tan
[

5 − p

2
(φ − φ∗)

]
= 5 − p

2

(
r∗
R

) 5−p
2 t

R
(p �= 5),

and for p = 5,

(34)φ = φ∗ + pφ

ER2 t (p = 5).

3. Stability analysis and mode frequencies

In the previous section we have reviewed how the giant graviton picture appears in the near horizon background
of D(p − 2)–Dp-branes. Here we will consider the perturbations of the giant gravitons from the equilibrium
configurations. A small vibration of the brane can be described by defining spacetime coordinates (r, ρ,φ, xk
(k = 1, . . . , p − 2)) as functions of the worldvolume coordinates (t, xp−1, xp, θ1, . . . , θ6−p)

r = r0(t) + εδr
(
t, xp−1, xp, θ1, . . . , θ6−p

)
,

ρ = ρ0 + εδρ
(
t, xp−1, xp, θ1, . . . , θ6−p

)
,

φ = φ0(t)+ εδφ
(
t, xp−1, xp, θ1, . . . , θ6−p

)
,

(35)xk = εδxk
(
t, xp−1, xp, θ1, . . . , θ6−p

)
(k = 1, . . . , p − 2).

Here ρ0 is a constant with ρ0 = 0 or ρ5−p

0 = πφ . r0(t) and φ0(t) are the solutions of the unperturbed equilibrium
configuration found in the previous section. The action of the probe brane can be expanded in orders of ε as

(36)S =
∫

dt dxp−1 dxp dθ1 · · ·dθ6−p
{
L0 +L1(ε)+L2

(
ε2)+ · · ·}.

Obviously L0 gives the zeroth order Lagrangian density that we have used in Section 2.

3.1. First order perturbation

First we expand the action to linear order in ε. We substitute Eq. (35) into the brane action Eq. (8) and a
straightforward calculation gives

L1(ε)= εT8−pR
7−p

√
ĝ6−p λ1

×
[
δρ

{
− ρ

7−p

0 φ̇2
0√

r
5−p

0 /R7−p − ṙ2
0/r

2
0 − (1 − ρ2

0 )φ̇
2
0

− (6 − p)ρ
5−p

0

√√√√ r
5−p

0
R7−p

− ṙ2
0
r2

0
− (1 − ρ2

0
)
φ̇2

0

+ (7 − p)ρ
6−p
0 φ̇0

}
+ ˙δφ

{
(1 − ρ2

0 )ρ
6−p

0 φ̇0√
r

5−p

0 /R7−p − ṙ2
0/r

2
0 − (1 − ρ2

0 )φ̇
2
0

+ ρ
7−p
0

}
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+ δr

r0

{
− ρ

6−p
0√

r
5−p

0 /R7−p − ṙ2
0/r

2
0 − (1 − ρ2

0 )φ̇
2
0

(
5 − p

2
r

5−p
0

R7−p
+ ṙ2

0
r2

0

)}

(37)+ δ̇r

ṙ0

{
ρ

6−p

0√
r

5−p

0 /R7−p − ṙ2
0/r

2
0 − (1 − ρ2

0 )φ̇
2
0

ṙ2
0
r2

0

}]
.

If we substitute

(38)φ̇2
0 = r−2

0
(
f−1
p − ṙ2

0
)
,

obtained from Eq. (23), the square root in Eq. (37) is just ρ0φ̇0. Then one can easily check that the coefficient of
δρ vanishes. The coefficient of ˙δφ is constant (ρ5−p

0 ) and thus this term does not contribute to the variation of the
action with fixed boundary values. The last term (δ̇r term) can be integrated by parts with respect to t . Neglecting
the boundary terms, this term can be replaced by

(39)
∫

dt δ̇r

(
ρ

5−p
0 ṙ0

φ̇0r
2
0

)
= −

∫
dt δr

d

dt

(
ρ

5−p
0 ṙ0

φ̇0r
2
0

)
.

Combining this term with the third term (δr term), the coefficient of δr is

−ρ
5−p

0

[
1

r0φ̇

(
5 − p

2
r

5−p

0
R7−p

+ ṙ2
0
r2

0

)
+ d

dt

(
ṙ0

φ̇0r
2
0

)]

(40)= −ρ
5−p

0
1

r0φ̇0

(
5 − p

2
r

5−p

0
R7−p

− ṙ2
0
r2

0
− ṙ0

r0

φ̈0

φ̇0
+ r̈0

r0

)
.

To simplify this expression we substitute the following equation,

(41)φ̈0 = 1
φ̇0

(
5 − p

2
r

4−p

0
R7−p

ṙ0 + ṙ3
0

r3
0

− ṙ0r̈0

r2
0

)
,

obtained from Eq. (38), into Eq. (40), the coefficient of δr is calculated as

−ρ
5−p
0

1
r0φ̇

3
0

[(
5 − p

2
r

5−p

0
R7−p

− ṙ2
0
r2

0
+ r̈0

r0

)
φ̇2

0 −
(

5 − p

2
r

3−p

0
R7−p

ṙ2
0 + ṙ4

0
r4

0
− ṙ2

0 r̈0

r3
0

)]

(42)= −ρ
5−p

0
1

r0φ̇
3
0

[
5 − p

2
r

2(5−p)
0

R2(7−p)
− (6 − p)

r
3−p
0

R7−p
ṙ2

0 − r
4−p
0

R7−p
r̈0

]
.

We have used Eq. (38) in the above equation to get the second line. This expression can be simplified further.
Differentiating Eq. (29), we have

(43)r̈0 = −(6 − p)
p2
φ

E2R2(7−p)
r

11−2p
0 + 7 − p

2
r

6−p

0
R7−p

.

Substituting Eqs. (29) and (43) into Eq. (42), one can show that the square bracket is just zero. Thus, we find that
the first order term in ε vanishes. This confirms that the zeroth order solution described in Section 2 is the right
solution which minimizes the action.
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3.2. Second order perturbation

Now we consider the second order term in ε. The second order term is calculated as

L2
(
ε2)= −ε2

2
T8−pR

7−pρ
7−p

0 λ1ω0

√
ĝ6−p

×
[
− 1
ρ2

0 (1 − ρ2)ω2
0
(δ̇ρ)2 +

6−p∑
i=1

1
ρ2

0 (1 − ρ2)

(
∂δρ

∂θi

)2
ĝθiθi + 1

λ2
1

p∑
j=p−1

r2
0

1 − ρ2

(
∂δρ

∂xi

)2

− 1 − ρ2

ρ4
0ω

2
0

(δ̇φ)2 +
6−p∑
i=1

1 − ρ2
0

ρ2
0

(
∂δφ

∂θi

)2
ĝθiθi + 1

λ2
1

p∑
j=p−1

r2
0
(
1 − ρ2

0
)(∂δφ

∂xi

)2
− 1

ρ2
0r

2
0ω

2
0
(δ̇r)2

+
6−p∑
i=1

1
r2

0ρ
2
0

(
∂δr

∂θi

)2
ĝθi θi + 1

λ2
1

p∑
j=p−1

(
∂δr

∂xj

)2
+ 1

ρ2
0r

2
0

5 − p

2

(
4 − p − 5 − p

2
1
ρ2

0

)
(δr)2

+
p−2∑
k=1

{
− 1
ρ2

0
(δ̇xk)

2 +
6−p∑
i=1

ω2
0

ρ2
0

(
∂δxk

∂θi

)2
ĝθi θi + 1

λ2
1

p∑
j=p−1

ω2
0r

2
0

(
∂δxk

∂xi

)2
}

(44)+ (5 − p)

(
− 2
ρ3

0ω0
δρδ̇φ + 5 − p

ρ3
0r0

δρδr + 1 − ρ2
0

ρ4
0ω0r0

δ̇φδr

)]
,

where ω0 = φ̇. In general ω0 and ṙ0 in the above expression are functions of time, so we have to consider the time
dependence of these variables in deriving the equations of motion. However, since our formalism is valid only for
the near-horizon region (r � R), we can consider the perturbation around this region. Thus we treat ω0 and r0 as
time independent values around the equilibrium configuration at t = t∗ = 0. The equations of motion for this case
are given by

1
ρ2

0 (1 − ρ2
0 )ω

2
0
δ̈ρ − 1

ρ2
0 (1 − ρ2

0 )

6−p∑
i=1

∂

∂θi

(
∂δρ

∂θi
ĝθiθi

)
− 1

λ2
1

r2
0

1 − ρ2
0

p∑
j=p−1

∂

∂xj

(
∂δρ

∂xj

)

(45)− (5 − p)
1

ρ3
0ω0

δ̇φ + (5 −p)2

2
1

ρ3
0r0

δr = 0,

1 − ρ2
0

ρ4
0ω

2
0
δ̈φ − 1 − ρ2

0
ρ2

0

6−p∑
i=1

∂

∂θi

(
∂δφ

∂θi
ĝθi θi

)
− 1

λ2
1
r2

0
(
1 − ρ2

0
) p∑
j=p−1

∂

∂xj

(
∂δφ

∂xj

)

(46)+ (5 − p)
1

ρ3
0ω0

δ̇ρ − 5 − p

2
1 − ρ2

0
ρ4

0ω0r0
δ̇r = 0,

1
ρ2

0r
2
0ω

2
0
δ̈r − 1

ρ2
0r

2
0

6−p∑
i=1

∂

∂θi

(
∂δr

∂θi
ĝθi θi

)
− 1

λ2
1

p∑
j=p−1

∂

∂xj

(
∂δr

∂xj

)
+ 5 −p

2
1

ρ2
0r

2
0

(
4 − p − 5 − p

2
1
ρ2

0

)
δr

(47)+ (5 − p)2

2
1

ρ3
0r0

δρ + 5 − p

2
1 − ρ2

0
ρ4

0r0ω0
δ̇φ = 0,
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(48)
1
ρ2

0
δ̈xk − ω2

0
ρ2

0

6−p∑
i=1

∂

∂θi

(
∂δxk

∂θi
ĝθi θi

)
− 1

λ2
1
ω2

0r
2
0

p∑
j=p−1

∂

∂xj

(
∂δxk

∂xj

)
= 0 (k = 1, . . . , p − 2).

We observe that δxk perturbations decouple from δρ, δφ and δr perturbations.
Let us introduce the spherical harmonics Yl on S6−p ,

(49)gθiθj
∂

∂θi

∂

∂θj
Yl(θ1, . . . , θ6−p) = −QlYl(θ1, . . . , θ6−p),

where Ql is the eigenvalue of the Laplace operator on the unit 6 − p sphere given by

(50)Ql = l(l + 5 − p), l = 1,2, . . . .

We will not consider the case l = 0, which corresponds to zero angular momentum on S6−p . Choosing the harmonic
oscillation, perturbations can be expressed as

δρ(t, xp−1, xp, θ1, . . . , θ6−p) = δ̃ρe−iωt eikp−1xp−1eikpxpYl(θ1, . . . , θ6−p),

δφ(t, xp−1, xp, θ1, . . . , θ6−p) = δ̃φe−iωt eikp−1xp−1eikpxpYl(θ1, . . . , θ6−p),

δr(t, xp−1, xp, θ1, . . . , θ6−p) = δ̃re−iωt eikp−1xp−1eikpxpYl(θ1, . . . , θ6−p),

(51)δxk(t, xp−1, xp, θ1, . . . , θ6−p) = δ̃xke
−iωt eikp−1xp−1eikpxpYl(θ1, . . . , θ6−p),

where kp−1 (kp) is the momentum along the xp−1 (xp) direction. From Eq. (48), we find the frequency for δxk
perturbations as

(52)ω2
xk

= ω2
0

{
Ql + ρ2

0r
2
0

λ2
1

(
k2
p−1 + k2

p

)}≡ ω2
0Q

′
l (k = 1, . . . , p − 2).

The δρ, δφ and δr perturbations are coupled and their normal modes are determined by the following matrix
equation

(53)




1
1−ρ2

0

(
Q′

l − ω2

ω2
0

)
i

5−p
ρ0

ω
ω0

(5−p)2

2
1

ρ0r0

−i
5−p
ρ0

ω
ω0

1−ρ2
0

ρ2
0

(
ρ2

0Q
′
l − ω2

ω2
0

)
i

5−p
2

1−ρ2
0

ρ2
0 r0

ω
ω0

(5−p)2

2
1

ρ3
0 r0

−i
5−p

2
1−ρ2

0
ρ4

0 r0

ω
ω0

1
ρ2

0 r
2
0

{
Q′

l + 5−p
2
(
4 − p − 5−p

2
1
ρ2

0

)− ω2

ω2
0

}



(
δ̃ρ

δ̃φ

δ̃r

)
= 0.

Defining X ≡ ω/ω0, the normal modes of the coupled equations can be found from the following equation obtained
from the determinant of the matrix

(
X2 −Q′

l

)(
X2 − ρ2

0Q
′
l

){
X2 −Q′

l − n

2

(
n− 1 − n

2ρ2
0

)}
+ n4

4
1 − ρ2

0
ρ2

0

(
X2 + ρ2

0Q
′
l

)

(54)− n2X2
{
X2 −Q′

l −
n

2

(
n− 1 − n

2ρ2
0

)}
− n2

4
1 − ρ2

0
ρ2

0
X2(X2 −Q′

l

)= 0,

where we defined n ≡ 5 − p for simplicity of the expression.

3.3. Stability analysis

The condition for the giant graviton to be stable over the perturbation is that Eq. (54) have all real roots. The
existence of imaginary part in ω means that the e−iωt term can grow exponentially, which means the instability of
the configuration. We will check whether it has all real roots or not from the functional analysis. For this purpose,



J.Y. Kim / Physics Letters B 529 (2002) 150–162 159

we define a function f (y) such that

f (y)= (y −Q′
l

)(
y − ρ2

0Q
′
l

){
y −Q′

l −
n

2

(
n − 1 − n

2ρ2
0

)}
+ n4

4
1 − ρ2

0
ρ2

0

(
y + ρ2

0Q
′
l

)

− n2y

{
y −Q′

l −
n

2

(
n − 1 − n

2ρ2
0

)}
− n2

4
1 − ρ2

0
ρ2

0
y
(
y −Q′

l

)
(55)≡ y3 + c2y

2 + c1y + c0,

where y = X2 = ω2/ω2
0 and ci ’s are calculated as

c0 = −ρ2
0Q

′3
l − 1

2
n

(
n − 1 − n

2ρ2
0

)
ρ2

0Q
′2
l + 1

4
n4(1 − ρ2

0
)
Q′

l ,

c1 = (1 + 2ρ2
0
)
Q′2

l + n

(
n− 1

2
+ n − 1

2
ρ2

0

)
Q′

l +
1
4
n3(n− 2),

(56)c2 = −(2 + ρ2
0
)
Q′

l −
1
4
n(5n− 2).

The condition for X = ω/ω0 to have all real roots is equivalent to for f (y) = 0 to have all non-negative real
roots. From the graphical analysis, this is satisfied if the following four conditions are satisfied. First of all,
df/dy = f ′(y) = 3y2 + 2c2y + c1 = 0 should have real solution, i.e.:

(57)(i) c2
2 − 3c1 � 0.

Let the two real roots of f ′(y) = 3y2 + 2c2y + c1 = 0 be α and β (α < β), then

(58)(ii) f (α)f (β) � 0,

and the smaller one (α) should be positive

(59)(iii) α =
−c2 −

√
c2

2 − 3c1

3
> 0.

The vertical-axis intercept f (y = 0) should be negative

(60)(iv) f (y = 0) = c0 < 0.

First we consider the condition (iv). One can easily check that for n = 0 (p = 5), c0 = −ρ2
0Q

′3
l , thus the

condition (iv) is automatically satisfied for all regions of 0 < ρ0 � 1 and Q′
l = l(l+n)+(ρ2

0 r
2
0/λ

2
1)(k

2
p−1 +k2

p) > 0.
For n �= 0, the condition (iv) is satisfied for

(61)ρ2
0 >

n2(Q′
l + n2)

4Q′2
l + 2n(n− 1)Q′

l + n4
(n �= 0),

from the first expression of Eq. (56).
Secondly, let us examine the conditions (i) and (iii). These two are satisfied for any c1 and c2 with

(62)c1 > 0, c2 < 0.

From Eq. (56), the conditions c1 > 0 and c2 < 0 are satisfied for

(63)ρ2
0 > −Q′2

l + n
(
n − 1

2
)
Q′

l + 3
4n

3(n − 2)
2Q′2

l + 1
2n(n − 1)Q′

l

,

(64)ρ2
0 > −2Q′

l + 1
4n(5n− 2)
Q′

l

.
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For n = 0 Eqs. (63) and (64) are is always satisfied for all values of 0 < ρ0 � 1 and Q′
l > 0. For n �= 0, for the

given range of ρ0 in Eq. (61), Eqs. (63) and (64) are automatically satisfied for all 0 < ρ0 � 1 and Q′
l > 0.

Finally we consider the condition (ii). We can write down the condition (ii) explicitly in terms of ci ’s. Using
3α2 + 2c2α + c1 = 0, we can write

(65)f (α) = 2
3

(
c1 − 1

3
c2

2

)
α + c0 − c1c2

9
,

and same expression for f (β). Then we have

f (α)f (β)=
{

2
3

(
c1 − 1

3
c2

2

)
α + c0 − c1c2

9

}{
2
3

(
c1 − 1

3
c2

2

)
β + c0 − c1c2

9

}

(66)= 4
9

(
c1 − 1

3
c2

2

)2
αβ + 2

3

(
c1 − 1

3
c2

2

)(
c0 − c1c2

9

)
(α + β)+

(
c0 − c1c2

9

)2
.

Since α and β are two real roots of 3y2 + 2c2y + c1 = 0, substituting

(67)α + β = −2
3
c2, αβ = 1

3
c1,

the condition (ii) can be written as

(68)
4
27

c1

(
c1 − 1

3
c2

2

)2
+ 4

9
c2

(
c1 − 1

3
c2

2

)(
c0 − c1c2

9

)
+
(
c0 − c1c2

9

)2
� 0.

For the given ranges of 0 < ρ0 � 1 and Q′
l > 0, this condition is always satisfied for all possible values of

n = 0,1,2,3 (p = 5,4,3,2).
We can summarize the above result as follows. For n = 0 (p = 5), the vibration modes are all real for all range

of 0 < ρ0 � 1. This means that the giant graviton configurations are stable for 0 < ρ0 � 1. For n �= 0 (p �= 5), the
vibration modes are all real for

(69)
n2(Q′

l + n2)

4Q′2
l + 2n(n− 1)Q′

l + n4
< ρ2

0 � 1 (n �= 0).

So the giant graviton configurations are stable for this range of ρ0.

3.4. Spectrum of the fluctuation modes

Now we can find the mode solution under the range of ρ0 where the stable solution can exist. The solution of
the coupled (ρ,φ, r) mode equation (54) gives six frequencies ω = ±ω1,±ω2,±ω3 where

ω2
1

ω2
0

= (s+ + s−)− c2

3
,

ω2
2

ω2
0

= −1
2
(s+ + s−)− c2

3
+

√
3 i

2
(s+ − s−),

(70)
ω2

3
ω2

0
= −1

2
(s+ + s−)− c2

3
−

√
3 i

2
(s+ − s−).

Here s± are defined as

(71)s+ = {r + (q3 + r2)1/2}1/3
, s− = {r − (q3 + r2)1/2}1/3

,

with

(72)q = 1
3
c1 − 1

9
c2

2, r = 1
3
(c1c2 − 3c0)− 1

27
c2

2.
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There are two special cases where the above expression becomes simple. One is the case when the size of the
giant graviton is maximum. For ρ0 = 1, Eq. (54) reduces to

(73)
{
X2 −Q′

l − 1
4
n(n− 2)

}{
X4 − (2Q′

l + n2)X2 +Q′2
l

}= 0,

and the solution (X = ω/ω0) is given by

(74)X2 = Q′
l + 1

4
n(n− 2), X2 = Q′

l + 1
2
n2 ± 1

2

√
4Q′

ln
2 + n4.

One can easily check that all values of X2 are real and positive using Eq. (50). We have shown that the giant graviton
configuration is stable at the point ρ0 = 1 regardless of n. Note that ρ0 = 1 case corresponds to the maximum value
of the angular momentum pφ , which is the realization of the stringy exclusion principle.

The other case we will consider is when p = 5. For n = 5 − p = 0, Eq. (54) becomes

(75)
(
X2 −Q′

l

)2(
X2 − ρ2

0Q
′
l

)= 0,

and the mode frequencies are

(76)ω2 = ω2
0Q

′
l (degenerate), ω2 = ρ2

0ω
2
0Q

′
l .

Note that the frequency of degenerate mode is the same as that of δxk in Eq. (52). For p = 5, δρ, δφ and
δr perturbations are decoupled. The degenerate frequency corresponds to δρ and δr perturbation modes and is
independent of the size of brane, while the frequency for δφ depend on ρ0.

4. Conclusion

We studied the stability analysis and found mode frequencies of the giant gravitons in the string theory
background with NSNS B field. We consider the perturbation from the stable configurations generated by
D(p − 2)–D(p)-branes for 2 � p � 5. The vibration modes for xk’s (k = 1, . . . , p − 2) are decoupled and the
frequencies are all real. The vibration modes for ρ, φ and r are coupled. For p = 5, they are stable independent of
the size of the brane. For p �= 5, we calculated the range of the size of the brane where they are stable. In the limit
when the angular momentum on S6−p is large, i.e., l is large, the condition in Eq. (69) becomes 0 < ρ2

0 � 1. This
means that the giant graviton configurations are stable for large angular momentum regardless of the size of the
branes. We would like to emphasize that Eq. (18) is the crucial condition in our calculation. It has been discussed
in Ref. [9] that one can draw the giant graviton picture whenever this condition is met.

In the previous work of the vibration modes of giant gravitons in the dilatonic backgrounds [13], the perturbation
along the transverse (r) direction was not considered. Only ρ and φ perturbations were considered and they are
coupled. Their normal modes are determined by a 2 ×2 matrix equation. If we turn off the NSNS B field by setting
ϕ = 0 (hp = 1), Eq. (1) reduces to the geometry of the dilatonic D(p)-brane. So with δr = 0, we have from Eq. (53)

(77)


 1

1−ρ2
0

(
Ql − ω2

ω2
0

)
i

5−p
ρ0

ω
ω0

−i
5−p
ρ0

ω
ω0

1−ρ2
0

ρ2
0

(
ρ2

0Ql − ω2

ω2
0

)

( δ̃ρ

δ̃φ

)
= 0.

This gives the frequencies of two modes

(78)
ω2±
ω2

0
= 1

2

[(
1 + ρ2

0
)
Ql + (5 − p)2 ±

√
(5 − p)4 + 2(5 − p)2

(
1 + ρ2

0
)
Ql +Q2

l

(
1 − ρ2

0
)2 ]

,
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which is exactly the same result obtained in Ref. [13]. For p = 5, we have ω+ = ±ω0
√
Ql and ω− = ±ρ0ω0

√
Ql .

This result corresponds with the solution in Eq. (76). This implies that our analysis is the generalization of the
previous work.

In our perturbation, we considered ω0 and r0 as time independent because the background configuration is valid
only in the near-horizon region. The brane motion in the transverse direction generally induces a cosmological
evolution of the brane universe, called the mirage cosmology [14]. The relevance of giant gravitons to the mirage
cosmology was pointed by Youm [15]. Further studies on this issue is expected in future.
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