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Based on a kinetic description of J/ψ dissociation and production in an expanding quark–gluon plasma
that is described by a 2+1 dimensional ideal hydrodynamics, we have studied the hot medium effects on
J/ψ production in p+Pb collisions at

√
sNN = 5.02 TeV. Including also the cold nuclear matter effects, we

are able to reproduce recent experimental results on the nuclear modification factor R pPb( J/ψ) measured
by the ALICE Collaboration. We have also made predictions for the R pPb of J/ψ and the double ratio
Rpro

pPb(ψ
′)/Rpro

pPb( J/ψ) of prompt quarkonia produced in the most central 10% p + Pb collisions. We find
that different from the cold nuclear matter effects, the R pPb( J/ψ) is slightly smaller than that in the
minimum bias collisions, and the double ratio is significantly less than one at backward rapidity.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

One of the important probes of the quark–gluon plasma (QGP)
produced in relativistic heavy ion collisions is the suppressed pro-
duction of J/ψ as a result of the color screening of the poten-
tial between charm and anticharm quarks, as first suggested in
Ref. [1]. Studies of J/ψ production in p + p, p + A, d + A, and
A + A collisions [2–10] have indicated, however, that besides this
hot medium effect [1,2], there is also the normal suppression [11]
due to cold nuclear matter effects. The cold nuclear matter ef-
fects [12–19] include the nuclear absorption [20] that the ini-
tially produced J/ψ can be destroyed by the passing nucleons,
the Cronin effect [21] that the gluons gain transverse momentum
before fusing into a J/ψ due to the scattering with other nucle-
ons, and the shadowing effect [22] that the parton distribution
function in a nucleus is different from that in free nucleons. Fur-
thermore, there are other hot medium effects due to the gluon
dissociation of J/ψ that have been described in terms of various
theoretical models [23–26]. Moreover, the charm and anticharm
quarks in the produced QGP may combine to form J/ψs. This
regeneration process has been studied either using the statistical
hadronization model [27] or included in the kinetic approach as
the inverse of the dissociation process [28–30]. The regeneration
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effect is expected to be large in A+A collisions at the Large Hadron
Collider (LHC) [31,32] due to the appreciable number of charm
quarks and anticharm quarks produced in these collisions. Its con-
tribution to J/ψ production in heavy ion collisions at the Super
Proton Synchrotron (SPS) can also be important due to the canoni-
cal enhancement effect in spite of the small number of charm and
anticharm quarks in collisions at lower energies [33,34]. Also, the
study of J/ψ has been extended to its excited states [35–37], bot-
tomonia [38–40] and Bc mesons [41,42].

For cold nuclear matter effects, it has been suggested that they
can be understood from studying p + A or d + A collisions because
a hot medium is not expected to be formed in these collisions. This
has been the case at the SPS and the Relativistic Heavy Ion Collider
(RHIC) [5,43–48]. At the LHC, because of the higher multiplicity of
produced particles, especially in central collisions, final-state hot
medium effects can also be present besides the initial-state cold
nuclear matter effects. For example, the multiplicity of charged
hadrons dNch/dy in p + Pb collisions at

√
sNN = 5.02 TeV [49] is

around 50 in the most central 5% collisions [50]. Since the energy
carried by these charged particles and other neutral particles is
initially localized in a volume of the size of a proton, the energy
density at the beginning of the collision can be sufficient high for
the formation of a QGP.

Recently, the ALICE Collaboration has measured the nuclear
modification factor of J/ψ in p + Pb collisions at

√
sNN = 5.02 TeV

[8]. Although the cold nuclear matter effects have been stud-
ied [50], there is not yet any study on the hot medium effects
in these collisions. In this Letter, we use a transport model [31,51],
which was previously used to study J/ψ suppression and regener-
ation at RHIC and LHC, to study the nuclear modification factor and
.

https://core.ac.uk/display/82394146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2013.12.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://dx.doi.org/10.1016/j.physletb.2013.12.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2013.12.016&domain=pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


438 Y. Liu et al. / Physics Letters B 728 (2014) 437–442
Fig. 1. (Color online.) Initial energy density ε at proper time τ = 0.6 fm/c in the
most central 10% p + Pb collisions at

√
sNN = 5.02 TeV from the AMPT model as a

function of the coordinate x relative to the center of the proton along the direction
of the impact parameter b for different rapidity y.

the double ratio Rpro
pPb(ψ

′)/Rpro
pPb( J/ψ) of prompt quarkonia pro-

duced in p + Pb collisions.
This Letter is organized as follows. In Section 2, we give a

short description of the 2 + 1 dimensional hydrodynamic model
used in the present study for describing the evolution dynamics of
produced QGP. The transport approach used for studying the dis-
sociation and regeneration of J/ψ in the QGP is then discussed in
Section 3. Results from the present study are shown in Section 4.
Finally, a short conclusion is given in Section 5.

2. The bulk dynamics

We describe the bulk dynamics of p + Pb collisions at
√

sNN =
5.02 TeV by the 2 + 1 dimensional ideal hydrodynamic equation

∂μT μν = 0 (1)

with the boost invariant condition vz = z/t , where T μν =
(ε + p)uμuν − gμν p is the energy–momentum tensor in terms
of the energy density ε , pressure p, and four velocity u. For the
equation of state ε(p), we use that of Ref. [31] based on an ideal
gas of massless partons for the QGP and massive hadrons for the
hadronic matter, together with a bag constant B = (236 MeV)4

that leads to a critical temperature Tc = 165 MeV [52–54]. Since
most colliding nucleons pass through each other without much
stopping, we take the net baryon density of produced matter to be
zero.

For the initial conditions of the hydrodynamic evolution, they
are generated from a multiple phase transport (AMPT) model [55]
(version: v2.26t1). Specifically, we run 9 × 105 p + Pb events and
select the most central 10% collisions to obtain the energy den-
sity ε . With the centrality determined by the multiplicity of ini-
tially produced partons in the whole rapidity range, which is ap-
proximately equal to that determined by the multiplicity of final
charged hadrons, the corresponding average impact parameter is
〈b〉 = 3.3 fm. By shifting the origin of the transverse coordinates
to the center of the proton in the transverse plane before taking
an average over all selected events and with the center of the Pb
nucleus lying on the negative x-axis, the resulting energy density
at an initial proper time τ = 0.6 fm/c as a function of coordinate
x is shown in Fig. 1 for different rapidity y with the proton and
Pb rapidities taken to be positive and negative, respectively. The
maximum energy density εmax ≈ 15 GeV/fm3 appears at rapidity
y = −2 and the corresponding temperature Tmax calculated from
the noninteracting QGP model is about 290 MeV, which is be-
tween the maximum values in A+A collisions at SPS and RHIC. For
Fig. 2. (Color online.) Energy density ε at rapidity y = −2 in the most central 10%
p + Pb collisions at

√
sNN = 5.02 TeV as a function of the coordinate x relative to

the center of the proton along the direction of the impact parameter b at different
proper time τ .

the centrality bin of 40–60%, in which the multiplicity of charged
hadrons is very close to that in the minimum bias case [50], the
initial energy density ε is about a factor of 3 smaller than that in
the most central 10% bin.

Fig. 2 shows the energy density at rapidity y = −2 for different
proper time τ during hydrodynamic evolution. It is seen that the
energy density at the center decreases quickly after τ0 = 0.6 fm/c
proper time. For example, at τ = 1.8 fm/c the energy density at
the center is reduced by one order of magnitude from its value at
the initial time τ0 = 0.6 fm/c. This is due to the fast expansion
of the produced matter not only in the longitudinal direction but
also in the transverse direction that is driven by the large pressure
or energy density gradient resulting from the high initial energy
density and the smaller size of the matter. Indeed, the transverse
diameter of the produced matter increases by about 2 fm from
τ0 = 0.6 fm/c to τ = 1.8 fm/c, indicating a transverse expansion
velocity close to half the velocity of light. As a result, the energy
density at the center decreases quickly and becomes even smaller
than that in the peripheral region at later times.

3. The transport approach

Because of color screening in QGP, a J/ψ cannot survive above
a dissociation temperature T D . We take the velocity dependence
of T D from Ref. [51] by including the effect due to the motion of
heavy charm and anticharm quarks in the QGP on the medium
response, which leads to a higher dissociation temperature for a
faster moving J/ψ . With the surviving J/ψ described by a dis-
tribution function f (x,p, t) in the phase space of coordinate x
and momentum p, its time dependence then satisfies the trans-
port equation

∂t f + v · ∇ f = −α f + β, (2)

where the left hand side are kinetic terms describing the free
streaming of J/ψ , which is responsible for the leakage effect [56].
On the right hand side, α and β are the dissociation rate and the
regeneration rate, respectively. For the dissociation rate, it is given
by

α(T , u, p) = Ng

E

∫
dk

(2π)3 E g
k · pf g(T , u,k)σD . (3)

In the above, p = (E,p) and k = (E g,k) are the 4-momentum of
J/ψ and gluon, respectively; Ng = 16 and f g are the degeneracy
and thermal distribution of gluons, which depends on the local
temperature T and velocity u; and σD is the cross section for the
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dissociation process J/ψ + g → c + c̄ and is taken to be that cal-
culated in Refs. [8,31] based on the operator expansion method of
Ref. [25].

The regeneration rate due to the inverse process c + c̄ →
J/ψ + g is given by

β(T , u, p) = Cce

2E

∫
dk

(2π)32E g

dqc

(2π)32Ec

dqc̄

(2π)32Ec̄
W (s)

× r fc f c̄(1 + f g)(2π)4δ(4)(p + k − qc − qc̄). (4)

In the above, p and k have the same meaning as in Eq. (3), and
qc = (Ec,qc) and qc̄ = (Ec̄,qc̄) are the momenta of charm and
anticharm quarks. The transition rate W is related to the J/ψ dis-
sociation cross section σD by the detailed balance relation. For the
distribution function fc of charm quarks, it is taken to have fol-
lowing factorized form for simplicity:

fc(x,p) = ρc(x)
N

eqc ·u/T + 1
, (5)

where ρc is the number density of charm quarks and satisfies the
conservation equation ∂tρc + ∇ · (ρcv) = 0 with v being the veloc-
ity of the medium, and N ≡ [(2π)−3

∫
dqc (eqc ·u/T + 1)−1]−1 is the

normalization factor for the Fermi distribution. For the anticharm
quarks, their distribution function f c̄ has a similar form.

The factors r and Cce in Eq. (4) take into account, respectively,
the charm quark non-equilibrium effect and the canonical effect
due to few pairs of charm and anticharm quarks produced in a
p + Pb collision, that are neglected in Refs. [31,51]. Because of
the short QGP lifetime, charm quarks are not expected to be fully
thermalized [34,57,58], leading to a reduction of the regeneration
rate through the relaxation factor r = (1 − exp(−τ/τr)) introduced
in Ref. [34]. For the relaxation time τr , we take its value to be
7 fm/c as that used in Ref. [57] for Pb + Pb collisions at SPS en-
ergy and Au + Au collisions at RHIC energy. The canonical effect
has been shown to be responsible for the suppressed production
of strange mesons [59,60] when few strange quarks are produced.
With few pairs of charm and anticharm quarks produced in an
event, the same effect becomes important and enhances charmonia
production in heavy ion collisions [33,61]. It modifies the relation
between the number of directly produced charm quarks Ndir

c and
the thermally equilibrated D-meson and J/ψ numbers Nth

D and
Nth

J/ψ [42,62] to

Ndir
c = γ Nth

D + (
1 + 1/Ndir

c

)
γ 2Nth

J/ψ , (6)

where γ is the fugacity of the charm quark, resulting in an en-
hanced production of J/ψ by the factor (1 + 1/Ndir

c ). Since a
charm and anticharm quark pair is produced at same rapidity, the
canonical enhancement factor for J/ψ production in a rapidity bin
�y = 1 becomes Cce = 1 + 1/(dNdir

c /dy) [42,62,63]. This canoni-
cal effect can be included in a more accurate way through kinetic
approaches, which will be studied in the future.

For the initial distribution of J/ψ , which is needed for solv-
ing the transport equation, it is obtained from the Glauber model
with the inclusion of initial-state cold nuclear matter effects. Since
there is no empirical J/ψ production cross section dσpp/dy for
p + p collisions at

√
sNN = 5.02 TeV, its value is obtained from the

experimental results at lower (
√

sNN = 2.76 TeV) [64] and higher
(
√

sNN = 7 TeV) [65] energies by interpolation, and the result is
dσpp/dy = 5.68 μb at midrapidity. Similarly, the first two moments
of the J/ψ transverse momentum distribution in the forward ra-
pidity region 2.5 < y < 4 are found to be 〈pT 〉 = 2.37 GeV and
〈p2

T 〉 = 7.73 GeV2.
Assuming a power-law distribution for the J/ψ transverse mo-

mentum at a given rapidity [66]
Fig. 3. Rapidity distributions of initially produced J/ψ with (solid line) and without
(dashed line) cold nuclear matter effects as well as of charm quarks (dotted line)
in the most central 10% p + Pb collisions at

√
sNN = 5.02 TeV. Positive and negative

rapidities correspond to those of proton and Pb, respectively.

d2σ

dy dpT
= dσ

dy

2(n − 1)

D y
pT

(
1 + p2

T

D y

)−n

, (7)

we obtain the ratio

〈pT 〉2
y

〈p2
T 〉y

= (n − 2)a2
n (8)

with an = (n − 1)B(n − 3/2,3/2) and B being the Beta function.
We then find n = 5.05 from the above values for 〈pT 〉 and 〈p2

T 〉.
For the rapidity distribution, we take dσ/dy = dσ/dy|y=0 ×

e−y2/(2ξ2 y2
m) , and D y = D0(1 − y2/y2

m) = (n − 2)〈p2
T 〉y , where ym =

ln(
√

sNN/m J/ψ ) is the maximum rapidity that a J/ψ can have
due to the constraint from energy conservation, and ξ = 0.39 [66,
67]. We then find 〈p2

T 〉y=0 = 9.5 GeV2. From the average thickness
function T (〈b〉0–10%) = 1.82 fm−2 in a p + Pb collision, where b
is the impact parameter of the collision, the rapidity distribution
of initially produced J/ψ can be determined and is shown by the
dashed line in Fig. 3. Including the cold nuclear matter effects by
multiplying the above distribution with the nuclear modification
factor estimated (see next section) from Refs. [8,50], we obtain the
solid line in Fig. 3, which is used as the initial J/ψ rapidity distri-
bution for solving the transport equation. The cold nuclear matter
effects, particularly the Cronin effect, can also modify the trans-
verse momentum distribution of initially produced J/ψ in p + Pb
collisions. From the average number of binary collisions per event
Ncoll = 12.3 in a central p + Pb collision, which leads to a broad-
ening of the transverse momentum �〈p2

T 〉 = 4.2 GeV2 [68], the
mean-squared transverse momentum of initially produced J/ψ is
then increased to 13.7 GeV2.

As to the density distribution of initially produced J/ψ in
space, it is assumed to be proportional to the thickness of a uni-
form solid sphere of radius r = 0.8 fm as that for the proton.

For the initial number of charm quarks, which is needed for
calculating the J/ψ regeneration rate, it is about 1.2 pairs in a
central p +Pb collision, obtained by using a total charm quark pro-
duction cross section of 6.8 mb in a p + p collision interpolated
from the experimental data [69] and the average thickness func-
tion T (〈b〉0−10%) = 1.82 fm−2. The rapidity distribution of charm
quarks is assumed to be the same as that of the initially produced
J/ψ with cold nuclear matter effects, and this is shown by the
dotted line in Fig. 3. As to the initial spatial distribution of charm
quarks in the transverse plane, it is obtained from the AMPT model
and has a qualitatively similar profile as that of the initial energy
density.
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Fig. 4. (Color online.) Nuclear modification factor R pPb of J/ψ in the 40–60% cen-
trality bin of p + Pb collisions as a function of rapidity y. The (blue) dash-double-
dotted line is for results with only cold nuclear matter effects [50]. The (black) thin
solid line and (black) thick solid line are the total R pPb without and with the canon-
ical enhancement, respectively. Experimental data are for minimum bias collisions
from the ALICE Collaboration [8].

The above treatment for the ground state J/ψ can be general-
ized to include its excited states χc and ψ ′ with different dissocia-
tion temperatures T D and cross sections [70,71] as in Ref. [51]. For
the initial abundance of these excited states, they are determined
from that of J/ψ by using the empirically known feed-down con-
tributions to J/ψ production in p + p collisions, i.e., the proportion
of direct J/ψ , feed-down from χc and that from ψ ′ is 6 : 3 : 1 [72].
They are further assumed to suffer the same cold nuclear matter
effects as the J/ψ .

For the contribution to J/ψ production from the decay of re-
generated χc and ψ ′ , they are included with the branch ratios
from Ref. [73].

4. Results

With the solution from the transport equation, observables on
J/ψ can be calculated. We first show in Fig. 4 the nuclear mod-
ification factor R pPb in the centrality bin of 40–60%, which has a
multiplicity of charged hadrons very close to that in minimum-bias
collisions [50] for which J/ψ production has been measured by
the ALICE Collaboration [8]. The nuclear modification factor R pPb
only due to cold nuclear matter effects calculated in Refs. [8,50],
which is used to modify our initial J/ψ distribution due to these
effects as mentioned in the previous section, is denoted by the
(blue) dash-double-dotted line1 and is seen to overestimate the
results at forward rapidity. The (black) thin and thick solid lines
are our results that include both initial cold nuclear matter effects
and final hot medium effects but without and with the canoni-
cal enhancement factor Cce = 1 + 1/(dNdir

c /dy) in Eq. (4), respec-
tively. Since the regeneration contribution is negligible without the
canonical enhancement, the former result reflects the contribution
only from the initial production. Comparing to the case including
only the cold nuclear matter effects, J/ψ production is seen to be
suppressed in the whole rapidity range of −5 < y < 5 as a result of
the hot medium effects. Furthermore, the suppression is stronger
at backward rapidity due to the higher temperature of produced
QGP, as already implied by the initial energy density distribution
shown in Fig. 1. By comparing the thin and thick solid lines, it can
be seen that including the canonical enhancement for J/ψ produc-
tion increases the contribution from the regeneration, particularly

1 Values shown here are averages of those in the upper and lower bands shown
in Ref. [8].
Fig. 5. (Color online.) Nuclear modification factor R pPb of J/ψ in the most central
10% p + Pb collisions as a function of rapidity y. The (blue) dashed line is for ini-
tial production. The (red) dash-dotted line and (red) dotted line are the R pPb from
regeneration without and with the canonical enhancement, respectively. The (black)
thin solid line and (black) thick solid line are the total R pPb without and with the
canonical enhancement, respectively.

at backward rapidity where there is a larger multiplicity of charm
quarks relative to that of the J/ψs from Glauber model as shown
in Fig. 3. With the inclusion of the hot medium effects, our results
show that the experimental data can be better described.2

For the most central 10% collisions, the initial energy den-
sity is roughly 3 times larger. Because of the higher tempera-
ture in the produced QGP, stronger hot medium effects are ex-
pected. To estimate the cold nuclear matter effects, we assume
that they are proportional to the thickness function T (b). With
the average impact parameter 〈b〉 = 3.3 fm for the 0–10% cen-
trality collisions and 〈b〉 = 5.7 fm for the 40–60% centrality col-
lisions, the thickness function ratio in these two cases is C =
T (〈b〉0–10%)/T (〈b〉40–60%) = 1.85. The nuclear modification factor of
J/ψ due to the cold nuclear matter effects is then estimated to be
Rcold

pPb (0–10%) = 1 − C(1 − Rcold
pPb (40–60%)). As shown by the dashed

line in Fig. 5, the initially produced J/ψs suffer stronger suppres-
sion in these more central collisions. Although the cold nuclear
matter effects increase the yield of J/ψs at backward rapidity and
reduce that at forward rapidity, the suppression is also stronger at
backward rapidity due to the higher temperature of the QGP. As
a result, the initially produced J/ψs do not differ much between
forward and backward rapidities. Without the canonical enhance-
ment, the regeneration contribution in the most central collisions
(dash-dotted line) is still less than 0.1 and can be neglected as
in semi-central collisions. The regeneration contribution becomes,
however, important after including the canonical enhancement ef-
fect, and the nuclear modification factor R pPb is again obviously
larger at backward rapidity than at forward rapidity as shown by
the dotted line. The total R pPb including both cold nuclear matter
and hot medium effects in the case without and with the canon-
ical enhancement are shown, respectively, by the thin and solid
lines in Fig. 5.

The above results indicate that the difference between the
R pPbs of J/ψ with and without the hot medium effects is less
than 20%. Considering the uncertainties in theories and experi-
ments, this difference in the R pPb of J/ψ is not sensitive enough

2 Cold nuclear matter effects with energy loss [74] can also lead to a similar R pPb,
indicating the large uncertainty in our current understanding of the cold nuclear
matter effects. We use the results from Ref. [75] for the cold nuclear effects because
the same model describes reasonably well the rapidity distribution of J/ψ in d+Au
collisions at RHIC [46]. Also, our main interest in the present study is on the hot
medium effects, rather the absolute value of the R A A of J/ψ .
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Fig. 6. The ratio of the nuclear modification factor R pPb of prompt ψ ′ to that of
prompt J/ψ in the most central 10% p + Pb collisions at

√
sNN = 5.02 TeV as a

function of rapidity y.

to verify whether there are hot medium effects in p +Pb collisions.
Since the hot medium effects on the ground state and the excited
states of quarkonia, are expected to be dramatically different ac-
cording to the picture of sequential dissociation [1], the double
ratio Rpro

pPb(ψ
′)/Rpro

pPb( J/ψ) of prompt ψ ′ to prompt J/ψ would be
a good probe to the hot medium effects. This is shown in Fig. 6,
where the double ratio is seen to be far less than one at the back-
ward rapidity. This is because the dissociation temperature T D of
ψ ′ is only slightly higher than the critical temperature Tc , lead-
ing thus to its strong suppression at backward rapidity where the
temperature of the fireball is high. The value of the double ra-
tio at the forward rapidity is, on other hand, much larger, since
the temperature of the fireball is lower and the hot medium ef-
fects are less important. Experimental study of the double ratio
Rpro

pPb(ψ
′)/Rpro

pPb( J/ψ) thus provides the possibility to verify the ex-
istence of the hot medium effects in p + Pb collisions at the LHC
energy.

We note that although the contribution of regenerated ψ ′ to
J/ψ production is small, its contribution to final ψ ′ is large at
backward rapidity where few initially produced ψ ′ survives. For
example, the number of regenerated ψ ′ at y = −2 is about twice
of the survived initially produced ψ ′ .

5. Conclusions

We have studied the hot medium effects on J/ψ production
in p + Pb collisions at

√
sNN = 5.02 TeV in a transport approach

based on a 2 + 1 dimensional ideal hydrodynamic model for the
bulk dynamics and found that the experimental data can be de-
scribed with the inclusion of these effects. Our results indicate that
the suppression of J/ψ production due to screening and thermal
dissociation is more important than the contribution due to re-
generation from the charm and anticharm quarks in the produced
QGP, which leads to a smaller J/ψ nuclear modification factor
R pPb than in the case of including only the cold nuclear matter
effects. We have also found that the canonical enhancement effect
due to smaller number of produced charm and anticharm quarks
is important for the regeneration contribution since it would be
negligible otherwise. We have further predicted the R pPb of J/ψ
for the most central 10% collisions and suggested the measure-
ment of the double ratio Rpro

pPb(ψ
′)/Rpro

pPb( J/ψ) in p + Pb collisions,
which would be dramatically smaller than one if there exist the
hot medium effects.
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