Topology Vol. 8, pp. 47-57. Pergamon Press, 1969. Printed in Great Britain

PARALLEL DYNAMICAL SYSTEMS†

LAWRENCE MARKUS

(Received 22 May 1968)

§1. TOPOLOGICAL PROPERTIES OF UNSTABLE FLOWS

A dynamical system

$$\mathscr{S}) \quad dx^{i}/dt = f^{i}(x^{1}, \ldots, x^{n})$$

on a differentiable n-manifold M^n is a differentiable tangent or contravariant vector field for which the corresponding flow

$$(t, x_0) \rightarrow \varphi(t, x_0): \mathbb{R}^1 \times M^n \rightarrow M^n$$

is defined for all times $t \in R^1$. Here M^n is a differentiable (that is, of class C^{∞}) manifold (connected separable metrizable space—without boundary) and $\varphi(t, x_0)$ is the orbit or solution initiating at $x_0 \in M^n$ at $t_0 = 0$. Two dynamical systems in M^n

$$\mathscr{G}_1$$
 $\dot{x} = f_1(x)$ and \mathscr{G}_2 $\dot{x} = f_2(x)$

are defined to be topologically (or differentiably) equivalent in case there exists a homeomorphism (or diffeomorphism) Ψ of M^n onto itself carrying each sensed (but not timeparametrized) solution curve of \mathscr{S}_1 onto a sensed solution curve of \mathscr{S}_2 , and vice versa for Ψ^{-1} .

We shall be primarily concerned with dynamical systems in the real number space \mathbb{R}^n . A dynamical system \mathscr{S} in \mathbb{R}^n is called *parallel* in case \mathscr{S} is topologically equivalent to the flow along parallel straight lines,

 $\mathscr{P}) \quad \dot{x}^1 = 1, \qquad \dot{x}^2 = 0, \ldots, \qquad \dot{x}^n = 0.$

Note that \mathscr{P} lies in the same *n*-dimensional space \mathbb{R}^n as does \mathscr{S} , and not in some higher dimensional space (or even Hilbert space) as in certain earlier studies [7].

For the 2-dimensional phase plane R^2 Poincaré [9] showed that a dynamical system \mathscr{S} without critical (equilibrium) points has solution curves each of which is a line homeomorph tending towards infinity in R^2 as $|t| \to \infty$. In particular, \mathscr{S} is then (Lagrange) unstable because each solution curve is unbounded in R^2 as $t \to \infty$ and also as $t \to -\infty$. Moreover, \mathscr{S} is completely unstable since each point $x_0 \in R^2$ is wandering (precise definitions below and in [8]).

[†] Research partially supported by NONR 3776(00).

Clearly a parallel differential system in R^n is completely unstable, but the converse is false as is demonstrated by the elementary example in R^2

$$\dot{x}^1 = x^1(x^1 - 2), \qquad \dot{x}^2 = x^1 - 1,$$

which has the two separatrices $x^1 = 0$ and $x^1 = 2$. It has been established [5] that a completely unstable dynamical system \mathscr{S} in \mathbb{R}^2 is parallel if and only if \mathscr{S} has no separatrices. In this paper we give a suitable definition of separatrices in higher dimensions and prove that the analogous assertion holds in \mathbb{R}^3 but is false for \mathbb{R}^4 . We also obtain certain related results for dynamical systems without separatrices on other differentiable manifolds M^n .

We recall [8] that a dynamical system \mathscr{S} in a differentiable manifold M^n is unstable in case no compact subset $K \subset M^n$ contains an entire half-orbit $\{\varphi(t, x_0) \mid \text{for } t \ge 0 \text{ or for} t \le 0\}$. Thus each solution curve of \mathscr{S} is a one-to-one continuous image of R^1 (although it need not be a topological line in M^n), and \mathscr{S} has no critical points or periodic orbits. If all α and ω limit sets of \mathscr{S} are empty, that is,

$$\bigcap_{\tau < 0} \overline{\bigcup_{t \le \tau} \varphi(t, x_0)} = \emptyset \quad \text{and} \quad \bigcap_{\tau > 0} \overline{\bigcup_{t \ge \tau} \varphi(t, x_0)} = \emptyset,$$

then \mathcal{S} is unstable in M^n . Of course, this implies that M^n is non-compact.

Also recall that a dynamical system \mathscr{S} in M^n is *completely unstable* in case each point $x_0 \in M^n$ is *wandering*; that is, there exists a neighborhood U of x_0 whose orbit $\varphi(t, U)$ fails to meet U for all sufficiently large |t|. A completely unstable flow \mathscr{S} has empty α and ω limit sets; hence, each solution curve is a topological line tending to infinity (leaving any prescribed compact set $K \subset M^n$) as $|t| \to \infty$, and so \mathscr{S} is unstable.

Nemitsky [7] defined the dynamical system \mathscr{S} in \mathbb{R}^n to have a saddle at infinity in case: there exists a convergent sequence of points x_i in \mathbb{R}^n , and two unboundedly increasing sequences of times $0 < \tau_i < t_i$ such that $\varphi(t_i, x_i)$ converges to some point of \mathbb{R}^n yet $\varphi(\tau_i, x_i)$ diverges to infinity. We use the same condition to define a saddle at infinity for \mathscr{S} in \mathbb{M}^n . Elementary continuity arguments show [8] that an unstable dynamical system or flow \mathscr{S} in \mathbb{M}^n with no saddle at infinity is completely unstable.

Unstable flows are qualitatively simpler than flows with bounded orbits. In R^3 there exist fantastically complicated differential systems without critical points, but with each solution curve bounded [12]. We reject these terrible complexities by considering only unstable flows in this paper.

Nevertheless, even completely unstable flows can be very intricate. For instance, in the plane R^2 there exist a noncountable number of different topological types of completely unstable flows [4 and 5]. Since the definition of an unstable dynamical system \mathscr{S} involves the time parameter *t*, as well as the topology of M^n , we first note the invariance of this property under topological equivalence.

THEOREM 1. In a differentiable manifold Mⁿ let

 \mathscr{S}_1) $\dot{x} = f_1(x)$ and \mathscr{S}_2) $\dot{x} = f_2(x)$

be topologically equivalent dynamical systems. If \mathscr{G}_1 is unstable, or completely unstable, or unstable with no saddle at infinity, then \mathscr{G}_2 has the corresponding property.

Proof. Let Ψ be a homeomorphism of M^n onto itself carrying the sensed solution curve family of \mathscr{S}_1 onto that of \mathscr{S}_2 , that is,

$$\Psi\varphi_1(t, x_0) = \varphi_2(s, \Psi x_0),$$

where $\varphi_1(t, x_0)$ is the solution of \mathscr{S}_1 initiating at x_0 when time t = 0, and $\varphi_2(s, \Psi x_0)$ is the solution of \mathscr{S}_2 initiating at Ψx_0 at time s = 0.

Assume \mathscr{S}_1 is unstable so each solution curve $\varphi_1(t, x_0)$ is a one-to-one continuous image of \mathbb{R}^1 , and the same holds for the solution $\varphi_2(s, \Psi x_0)$ of \mathscr{S}_2 . Thus, for each fixed $x_0 \in M^n$, there exists a function

$$s(t, x_0): \mathbb{R}^1 \times M^n \to \mathbb{R}$$

specified by the unique values determined in

$$(t, x_0) \rightarrow \varphi_1(t, x_0) \rightarrow \Psi \varphi_1(t, x_0) = \varphi_2(s, \Psi x_0)$$

Since the time duration between the endpoints of a solution segment of a dynamical system varies continuously with the two endpoints, $s(t, x_0)$ is continuous on $R^1 \times M^n$. Also, for each fixed x_0 , the map $t \to s(t, x_0)$ is an orientation preserving homeomorphism of R^1 onto itself. If a compact subset $K \subset M^n$ contained an entire half-solution of \mathscr{S}_2 , say $\varphi_2(s, \Psi x_0)$ for $s \ge 0$, then this would imply that $\varphi_1(t, x_0)$ lies in $\Psi^{-1}K$ for all sufficiently large t. Since \mathscr{S}_1 is unstable, $\varphi_1(t, x_0)$ is not entirely in the compact set $\Psi^{-1}K$ for all large t, and hence the contradiction proves that \mathscr{S}_2 is also unstable.

Next assume that \mathscr{S}_1 is completely unstable, so that \mathscr{S}_1 and hence \mathscr{S}_2 are unstable. Take an initial point $\Psi x_0 \in M^n$ and consider the flow of \mathscr{S}_1 initiating from a compact ball B_1 centered at x_0 . We take B_1 so small that there exists $t_1 > 0$ such that

$$\varphi_1(t, B_1) \bigcap B_1 = \emptyset \quad \text{for} \quad |t| > t_1.$$

Then $B_2 = \Psi B_1$ contains Ψx_0 in its interior and has an orbit under \mathscr{S}_2 such that

$$\varphi_2(s, B_2) \bigcap B_2 = \emptyset$$
 for all $|s| > s_1 = \max_{x_0 \in B_1} s(t_1, x_0)$.

Thus \mathscr{G}_2 is also completely unstable.

Finally assume that \mathscr{S}_1 is unstable with no saddle at infinity. Then \mathscr{S}_1 and hence \mathscr{S}_2 are completely unstable flows. Suppose \mathscr{S}_2 has a saddle at infinity; that is, there exists convergent sequences in M^n , $\Psi x_i \to \Psi \overline{x}$ (or $x_i \to \overline{x}$) and $\varphi_2(s_i, \Psi x_i) \to \Psi y$ for some increasing positive time sequence $s_i \to \infty$, with intermediate times $\sigma_i \to \infty$ at which $\varphi_2(\sigma_i, \Psi x_i)$ tends to infinity in M^n . Since \mathscr{S}_1 is completely unstable, each point of M^n is a wandering point of \mathscr{S}_1 and so it is easy to see that \overline{x} and y do not lie on the same solution curve of \mathscr{S}_1 . But then $\Psi \overline{x}$ and Ψy lie on distinct solutions of the topologically equivalent system \mathscr{S}_2 .

Also $\varphi_1(t_i, x_i) \to y$ for the times $t_i > 0$ corresponding to s_i . Clearly the sequence t_i must be unbounded, for otherwise \bar{x} and y would lie on the same solution curve of \mathscr{S}_1 . Now select subsequences, still denoted t_i and x_i , so that t_i is monotonic increasing to infinity. Let τ_i correspond to the intermediate instant σ_i ; that is, $\Psi \varphi_1(\tau_i, x_i) = \varphi_2(\sigma_i, \Psi x_i)$, and so $\varphi_1(\tau_i, x_i)$ diverges to infinity (eventually lies outside any prescribed compact subset of M^n). Thus τ_i are unbounded. This construction contradicts the assumption that \mathscr{S}_1 has no saddle at infinity. Therefore, \mathscr{S}_2 has no saddle at infinity. Q.E.D.

§2. ORBIT SPACES OF UNSTABLE FLOWS

Consider a dynamical system

$$\mathscr{S}$$
) $\dot{x} = f(x)$

in a differentiable manifold M^n ($n \ge 2$ always), with orbits or solutions given by the flow $\varphi(t, x_0)$ in C^{∞} in $R^1 \times M^n$. The orbit space M^n/\mathscr{S} is the quotient or identification space formed from M^n by the equivalence relation specified by the solution curves of \mathscr{S} . That is, two points x_1 and x_2 of M^n are related by \mathscr{S} in case they lie on the same solution curve of \mathscr{S} . The orbit space M^n/\mathscr{S} bears the usual quotient topology, defined as the strongest topology for which the projection map

$$p: M^n \to M^n / \mathscr{S}$$

is continuous. Since the orbit $\bigcup_{t \in \mathbb{R}^1} \varphi(t, U)$ of an open set $U \subset M^n$ is open in M^n , we note that the saturation set (sat U) of U by \mathscr{S} is open, and hence p is an open map onto M^n/\mathscr{S} .

The orbit space M^n/\mathscr{S} is connected and has a countable base. Yet M^n/\mathscr{S} may not be a Hausdorff separated (or T_2) space; as in the example of the non-parallel unstable flow in R^2 described in the first section of this paper. The separation properties of M^n/\mathscr{S} will be basic for our theory of parallel dynamical systems.

Definition. Consider the unstable dynamical system

 \mathscr{S}) $\dot{x} = f(x)$ in a differentiable manifold M^n .

Two solution curves S_1 and S_2 of \mathscr{S} are inseparable in case any two neighborhoods of S_1 and S_2 in M^n/\mathscr{S} meet; that is, S_1 and S_2 cannot be separated by open sets in M^n/\mathscr{S} . A solution curve S of \mathscr{S} is a separatrix in case S lies in the closure of the set of inseparable elements of M^n/\mathscr{S} .

Remark. Inseparable solutions of \mathscr{S} occur in pairs and each of them is a separatrix. Thus an element $S \in M^n/\mathscr{S}$ is a separatrix if and only if S is the limit of a sequence of solutions each of which is inseparable (from some other solution). This definition of separatrix solution reduces to that introduced earlier by Markus [5] for the special case $M^n = R^2$, and agrees with the vague usage customary in engineering oscillation analysis.

Theorem 2. Consider a completely unstable dynamical system in a differentiable manifold M^n

$$\mathscr{G}) \quad \dot{\mathbf{x}} = f(\mathbf{x}).$$

Then the orbit space $M^n | \mathscr{S}$ satisfies the separation axiom T_1 . Further, the following three assertions are equivalent:

1) S has no saddle at infinity.

- 2) $\mathcal S$ has no separatrices.
- 3) M^n/\mathcal{S} is a Hausdorff T_2 space.

Proof. Let S_1 and S_2 be two different elements of M^n/\mathscr{G} ; that is, S_1 and S_2 are two solution curves of \mathscr{G} . Take a small (n-1)-planar disc B_1 orthogonal (in some convenient Riemann metric on M^n) to S_1 at some point P_1 , so \mathscr{G} is transverse to B_1 . Since S_2 has empty α and ω limit sets, S_2 can meet B_1 at only a finite number of points. Then, upon further restricting the diameter of B_1 , we can assume that S_2 fails to meet B_1 . Take the neighborhood N_1 of S_1 to be the saturation of B_1 . Then S_2 does not lie in the projection $pN_1 \subset M^n/\mathscr{G}$. Hence M^n/\mathscr{G} is a T_1 space.

Assume that \mathscr{S} has no saddle at infinity and we show that \mathscr{S} has no separatrices. Suppose that there were two inseparable solutions S_1 and S_2 of \mathscr{S} . Take (n-1)-planar discs B_1 and B_2 , orthogonal to S_1 at $P_1 \in S_1$ and to S_2 at $P_2 \in S_2$ respectively, so that \mathscr{S} is transverse to both B_1 and B_2 . Also require that S_2 fails to meet $N_1 = \operatorname{sat} B_1$ and that S_1 fails to meet $N_2 = \operatorname{sat} B_2$. Since S_1 and S_2 are inseparable, there exists a solution $\varphi(t, x_1)$ on $-\infty < t < \infty$ that lies in $N_1 \cap N_2$.

Take an arc $\varphi(t, x_1)$ on $0 \le t \le t_1$ with $\varphi(0, x_1) \in B_1$ and $\varphi(t_1, x_1) \in B_2$ (or vice versa). Repeat the construction for smaller transversal discs at P_1 and P_2 to get a sequence of solution arcs

$$\varphi(t, x_k)$$
 on $0 \le t \le t_k$

with $\varphi(0, x_k) \in B_1$ and $\varphi(t_k, x_k) \in B_2$ (or vice versa) and with

$$\lim_{k \to \infty} \varphi(0, x_k) = P_1, \qquad \lim_{k \to \infty} \varphi(t_k, x_k) = P_2$$

If the sequence $\{t_k\}$ were bounded, then a subsequence (still denoted t_k) would converge to a finite limit $t_k \to \bar{t}$. But this would imply that P_2 lies on the solution curve S_1 , which is impossible since S_1 and S_2 are different solutions of \mathscr{S} . Hence we can assume that $\{t_k\}$ increases monotonically towards infinity.

Some subsequence of points $\varphi(\tau_{k_j}, x_{k_j})$, with $0 < \tau_{k_j} < t_{k_j}$ diverges to infinity in M^n since S_1 approaches infinity with both its ends. Thus the subsequence of arcs $\varphi(t, x_{k_j})$ on $0 \le t \le t_{k_j}$ defines a saddle at infinity for the dynamical system \mathscr{S} . This contradicts our assumption and so we conclude that \mathscr{S} has no separatrices.

On the other hand, assume that \mathscr{S} has no separatrices in M^n . Suppose there were a saddle at infinity; that is, a sequence of solution arcs]

$$\varphi(t, x_k)$$
 on $0 \le t \le t_k$

with $\varphi(0, x_k) \to P_1$, $\varphi(t_k, x_k) \to P_2$, $t_k \nearrow \infty$ and $\varphi(\tau_k, x_k)$ diverging to infinity in M^n for an increasing unbounded time sequence $\{\tau_k\}$. It is easy to see that the solution curve S_2 through P_2 must coincide with the solution curve S_1 through P_1 ; for otherwise S_1 and S_2 would be inseparable in the space M^n/\mathscr{S} .

If P_2 followed P_1 along the solution S_1 , then an easy continuity argument shows that P_2 is non-wandering. In the other case where P_2 precedes or equals P_1 , P_1 is seen to be non-wandering. But \mathscr{S} is completely unstable and every point of M^n is wandering. This contradiction proves that \mathscr{S} has no saddle at infinity.

The assertion that \mathscr{S} has no separatrices is equivalent to the condition that M^n/\mathscr{S} is a T_2 space. This equivalence is immediate if we note that the set of inseparable solutions of \mathscr{S} is empty if and only if its closure, the set of separatrices, is empty. Q.E.D.

COROLLARY. Consider a dynamical system in Mⁿ

 \mathscr{S}) $\dot{x} = f(x)$.

Then \mathscr{S} is completely unstable without separatrices if and only if: for each compact set $K \subset M^n$ there exists a time T such that the orbit $\varphi(t, K)$ fails to meet K for |t| > T.

Proof. (cf. [3]).

Assume that \mathscr{G} is completely unstable without separatrices in the differentiable manifold M^n . Let $K \subset M^n$ be a compact set. If $\varphi(t, K)$ meets K for arbitrarily large |t|, then there exists two convergent sequences of points $x_i \to P_1$ and $\varphi(t_i, x_i) \to P_2$ in K, for $|t_i|$ unbounded. By re-labeling a subsequence of the points, if necessary, we can assume that $t_i > 0$ are monotonically increasing to infinity. Since the orbit through P_1 tends to infinity in M^n , our construction yields a saddle at infinity for the dynamical system \mathscr{G} . This contradiction proves that $\varphi(t, K) \bigcap K = \emptyset$ for all sufficiently large |t|.

Conversely, assume that the dynamical system \mathscr{S} has the property that $\varphi(t, K) \bigcap K = \emptyset$ for each compact set $K \subset M^n$, and for |t| then suitably large. If we take K to be the compact closure of a ball neighborhood of a chosen point $P \in M^n$, then we see that P is wandering. Hence \mathscr{S} is completely unstable.

Now suppose that \mathscr{S} has a saddle at infinity in M^n . Then there exist unboundedly increasing sequences of times $0 < \tau_i < t_i$ such that $x_i \rightarrow P_1$ and $\varphi(t_i, x_i) \rightarrow P_2$, whereas $\varphi(\tau_i, x_i)$ diverges to infinity in M^n . In this case let K_1 be the union of two compact ball neighborhoods of P_1 and P_2 . Then, for all large integers *i*, both x_i and $\varphi(t_i, x_i)$ lie in K_1 . Therefore $\varphi(t_i, K_1)$ meets K_1 for all large $t_i \rightarrow \infty$. This contradicts the hypothesis and shows that \mathscr{S} has no saddle at infinity. Hence \mathscr{S} has no separatrices. Q.E.D.

For a completely unstable dynamical system \mathscr{S} in a differentiable manifold M^n we shall use local transversals for \mathscr{S} to define local coordinate charts in M^n/\mathscr{S} . A *transversal-section* Γ for \mathscr{S} in M^n is defined as a differentiable (n-1)- hypersurface in M^n that is transverse to \mathscr{S} (the normal component of the vector field \mathscr{S} on Γ nowhere vanishes), and no solution curve of \mathscr{S} meets Γ in more than one point. We also require that Γ is a topological embedding of an (n-1)-manifold in M^n , that is, Γ is a submanifold (without boundary) such that the induced topology coincides with the manifold topology on Γ . Of course, not every solution curve of \mathscr{S} need meet Γ .

We define an unseparated differentiable r-manifold to be a topological space (with no separation properties demanded) M with an atlas or covering by local coordinate charts (open sets of M with given homeomorphisms onto open sets of R^r) satisfying the usual requirement that any two overlapping local charts of M are C^{∞} differentiably inter-related. The atlas generates a maximal atlas that specifies the differentiable structure on M. The concepts of differentiable map, diffeomorphism, differentiable product manifold, and differentiable fiber bundle and fibration [10] are all defined for unseparated differentiable manifolds

in the obvious way. We note that a differentiable manifold (without the qualifier "unseparated") is an unseparated differentiable manifold that is also a connected paracompact Hausdorff space with a countable base.

THEOREM 3. Consider a completely unstable dynamical system in a differentiable manifold M^n

$$\mathscr{S}) \quad \dot{\mathbf{x}} = f(\mathbf{x}).$$

Then the orbit space $M^n | \mathscr{S}$ bears a unique unseparated differentiable structure fulfilling the condition:

for each transversal-section Γ of $\mathcal S$ the projection map p restricted to Γ

 $p|\Gamma:\Gamma\to p\Gamma\subset M^n/\mathscr{S}$

is a diffeomorphism.

Furthermore, $\{M^n, M^n | \mathcal{S}, R^1, p\}$ is an unseparated differentiable fiber bundle with total or bundle space M^n , base space $M^n | \mathcal{S}$, fiber R^1 , and projection map p.

Proof. Let S be a solution curve of \mathscr{S} and we shall proceed to define a local chart for a neighborhood U_1 of S in M^n/\mathscr{S} . Let B_1 be a transversal-section for \mathscr{S} consisting of a (relatively open) (n-1)-disc on a hyperplane orthogonal to S at a point P. Since S approaches infinity at both ends and since P is wandering, the existence of such a transversal-section B_1 is assured. Let $U_1 = pB_1 = p(\text{sat } B_1)$. Since B_1 is a transversal-section for \mathscr{S} , the map

 $p|B_1:B_1 \rightarrow U_1$

defines a homeomorphism of B_1 onto U_1 . We use the differentiable structure on B_1 (as a submanifold of M^n) to introduce local coordinates on U_1 so that $p|B_1$ is a diffeomorphism.

Let B_2 be another such transversal-section such that (sat B_2) meets (sat B_1). Then

$$B_1 \cap (\operatorname{sat} B_1) \cap (\operatorname{sat} B_2) = B_{12}$$

and

$$B_2 \bigcap (\operatorname{sat} B_1) \bigcap (\operatorname{sat} B_2) = B_{21}$$

are open submanifolds of B_1 and B_2 , respectively. Moreover, the differentiable curve family of solutions of \mathscr{S} defines a diffeomorphism of B_{12} onto B_{21} . Thus there exists a diffeomorphism of $pB_{12} = pB_1 \bigcap pB_2 = pB_{21}$ onto itself, corresponding to the inter-relation of the coordinatizations of pB_{12} within $U_1 = pB_1$ and within $U_2 = pB_2$. Therefore, the atlas of such local charts in such sets U = pB, for all transversal-section (n-1)-discs B, defines a differentiable structure on M^n/\mathscr{S} . This is the only differentiable structure on M^n/\mathscr{S} such that the maps

$$p|B:B \rightarrow pB$$

are diffeomorphisms.

Moreover, for each differentiable transversal-section $\Gamma \subset M^n$, the map

$$p|\Gamma:\Gamma \to p\Gamma$$

is a homeomorphism of $\Gamma \subset M^n$ onto $p\Gamma \subset M^n/\mathscr{S}$. But $p|\Gamma$ is also a diffeomorphism since Γ

can be coordinatized locally by means of appropriate tangential (n-1)-discs. Thus we have specified M^n/\mathscr{S} as an unseparated differentiable manifold, as required in the theorem.

The fiber bundle structure of $\{M^n, M^n/\mathscr{S}, R^1, p\}$ requires specific diffeomorphisms from $p^{-1}U_x$ onto $R^1 \times U_x$, where $\{U_x\}$ is some open covering of M^n/\mathscr{S} . For each element $S_x \in M^n/\mathscr{S}$ take an open neighborhood U_x obtained from a transversal-section disc B_x through S_x , that is,

Then

$$pB_x = p(\operatorname{sat} B_x) = U_x$$

 $p^{-1}U_x = \operatorname{sat} B_x \subset M$

and we define a diffeomorphism of $(\operatorname{sat} B_x)$ with $R^1 \times U_x$. Use the flow $\varphi(t, x_0)$ of \mathscr{S} in M^n and the disc B_x , which is diffeomorphic to U_x under the projection map, to coordinatize each point $Q \in \operatorname{sat} B_x$ by $(t_Q, x_Q) \in R^1 \times B_x$. That is, each point $Q \in \operatorname{sat} B_x$ has a unique representation as

$$Q = \varphi(t_Q, x_Q)$$

for $t_Q \in R^1$ and an initial point $x_Q \in B_x$.

The inverse image of each element of U_x in $p^{-1}U_x \approx R^1 \times U_\alpha$ is a single solution curve of \mathscr{S} in sat B_x , or a line (t, x_Q) in $R^1 \times B_\alpha$. Thus $\{M^n, M^n/\mathscr{S}, R^1, p\}$ is an unseparated differentiable fiber bundle, as required. Q.E.D.

Remark. The group of the bundle $\{M^n, M^n/\mathcal{S}, R^1, p\}$ is the group of all orientation preserving diffeomorphisms of R^1 onto itself. The infinite dimensionality of this group is of no particular significance, but the non-Hausdorff character of the base M^n/\mathcal{S} causes grave difficulties. In particular, the standard results on cross-sections and homotopy lifting are not valid in the generality arising here.

§3. UNSTABLE FLOWS WITHOUT SEPARATRICES

Consider a dynamical system in a differentiable manifold M^n

$$\mathscr{S}) \quad \dot{x} = f(x)$$

with orbits or solutions given by the flow $\varphi(t, x_0)$ in C^{∞} in $\mathbb{R}^1 \times M^n$. The orbit space M^n/\mathscr{S} is a connected topological space with a countable base. If \mathscr{S} is completely unstable, then $\{M^n, M^n/\mathscr{S}, \mathbb{R}^1, p\}$ is an unseparated differentiable fiber bundle, according to Theorem 3. Furthermore, if \mathscr{S} has no separatrices, then M^n/\mathscr{S} is a (paracompact, Hausdorff) differentiable manifold and $\{M^n, M^n/\mathscr{S}, \mathbb{R}^1, p\}$ is a differentiable fiber bundle in the usual sense, according to Theorem 2.

In the case where \mathcal{S} is completely unstable with no separatrices in M["], the projection map

$$p: M^n \to M^n / \mathscr{S}$$

defines a fibration (or Hurewicz fiber space) with the homotopy lifting property, see [10]. In this case the usual exact homotopy sequence applies

$$\cdots \to \pi_m(R^1) \to \pi_m(M^n) \to \pi_m(M^n/\mathscr{G}) \to \pi_{m-1}(R^1) \to \pi_{m-1}(M^n) \to \pi_{m-1}(M^n/\mathscr{G}) \to \cdots$$
$$\cdots \to \pi_0(R^1) \to \pi_0(M^n) \to \pi_0(M^n/\mathscr{G}),$$

where appropriate base points P_1 in a fiber S_1 , $P_1 \in M^n$, and $p(P_1) = S_1$ are fixed. Furthermore, the usual differential fiber bundle techniques are valid, as are indicated in the following remark concerning cross-sections.

Remark. If a dynamical system in \mathbb{R}^n , $n \neq 5$,

$$\mathscr{S}$$
) $\dot{x} = f(x)$

is topologically equivalent to a parallel system

$$\mathcal{P}$$
) $\dot{x}^1 = 1, \quad \dot{x}^2 = 0, \ldots, \qquad \dot{x}^n = 0,$

then \mathcal{S} is differentiably equivalent to \mathcal{P} .

To prove this assertion we note that \mathscr{P} is completely unstable without separatrices, and so \mathscr{S} is also. Then $\{R^n, R^n/\mathscr{S}, R^1, p\}$ is a differentiable fiber bundle with the differentiable manifold R^n/\mathscr{S} as base. The homotopy exact sequence, with $\pi_m(R^n) = 0$ and $\pi_m(R^1) = 0$, shows that $\pi_m(R^n/\mathscr{S}) = 0$ for m = 1, 2, 3, ... Hence R^n/\mathscr{S} is a contractible space. Therefore, there exists a differentiable cross-section

$$\Gamma: \mathbb{R}^n / \mathscr{S} \to \mathbb{R}^n$$

that assigns to each solution curve S of \mathscr{S} a point $P \in S$. In other words, Γ is a transversalsection for \mathscr{S} in \mathbb{R}^n such that every solution curve of \mathscr{S} meets Γ in just one point. Then, using the flow defined by \mathscr{S} and initiating at points on Γ (on the image of Γ in \mathbb{R}^n), we define a diffeomorphism of \mathbb{R}^n onto $\mathbb{R}^1 \times \Gamma$ with the solution curves of \mathscr{S} mapping onto the lines corresponding to the factor \mathbb{R}^1 .

But \mathscr{S} in \mathbb{R}^n is topologically equivalent to \mathscr{P} , and hence the fiber bundle $\{\mathbb{R}^n, \mathbb{R}^n | \mathscr{S}, \mathbb{R}^1, p\}$ is bundle-homeomorphic to the topological product $\mathbb{R}^1 \times \mathbb{R}^{n-1}$. Since any two crosssections of the fiber bundle $\{\mathbb{R}^n, \mathbb{R}^n | \mathscr{S}, \mathbb{R}^1, p\}$ are homeomorphic, we find that Γ is homeomorphic to \mathbb{R}^{n-1} . But then, at least for $n-1 \neq 4$, it is known [6, 11] that Γ is diffeomorphic to \mathbb{R}^{n-1} . In this case there is a diffeomorphism of \mathbb{R}^n onto $\mathbb{R}^1 \times \mathbb{R}^{n-1}$ carrying the solution curves of \mathscr{S} onto straight lines. Therefore \mathscr{S} is differentiably equivalent to \mathscr{P} .

The arguments used above also prove the next theorem, cf. [1].

THEOREM 4. Consider a completely unstable dynamical system in a contractible differentiable manifold M^n

$$\mathscr{G}) \quad \dot{x} = f(x).$$

If \mathscr{G} has no separatrices, then M^n/\mathscr{G} is a (paracompact, Hausdorff) differentiable (n-1)manifold that is a contractible space. Furthermore, \mathscr{G} in M^n is differentiably equivalent to the flow along the lines in the product manifold $R^1 \times M^n/\mathscr{G}$.

COROLLARY. Consider an unstable dynamical system in a contractible differentiable manifold M^n

$$\mathscr{S}) \quad \dot{\mathbf{x}} = f(\mathbf{x}).$$

If \mathscr{S} has no saddle at infinity, then M^n/\mathscr{S} is a contractible differentiable manifold, and \mathscr{S} is differentiably equivalent to the flow along the lines in the product manifold $R^1 \times M^n/\mathscr{S}$.

Proof. Since \mathscr{S} has no saddle at infinity, \mathscr{S} is completely unstable and \mathscr{S} has no separatrices, according to Theorem 2 and the remarks in Section 1. Hence the Theorem 4 applies. Q.E.D.

We now take the contractible manifold M^n to be the number space R^n to study the case when \mathcal{S} is parallel.

THEOREM 5. Consider a completely unstable dynamical system in \mathbb{R}^n for n = 2 or 3,

 $\mathscr{S}) \quad \dot{x} = f(x).$

Assume that \mathcal{S} has no separatrices. Then \mathcal{S} is differentiably equivalent to the flow \mathcal{P} along parallel straight lines.

Proof. The differentiable fiber bundle $\{R^n, R^n/\mathscr{S}, R^1, p\}$ has the contractible base space R^n/\mathscr{S} , and so it is differentiably bundle-isomorphic with the product $R^1 \times R^n/\mathscr{S}$. For n = 2 or 3 the contractible (n - 1)-manifold R^n/\mathscr{S} is diffeomorphic to R^1 or R^2 , by the known classification of 1 and 2 dimensional manifolds. Thus \mathscr{S} in R_2 or R_3 is differentiably equivalent to the flow along the lines in the product $R^1 \times R^1$ or $R^1 \times R^2$, and \mathscr{S} is parallel. Q.E.D.

If we further assume that \mathbb{R}^n/\mathscr{S} is simply-connected at infinity [6, 11] and $n \ge 6$, then we can assert that \mathbb{R}^n/\mathscr{S} admits a unique differentiable structure and is diffeomorphic with \mathbb{R}^{n-1} . In this case \mathscr{S} in \mathbb{R}^n is a parallel dynamical system. However, it does not seem easy to relate the usual theory of dynamical systems \mathscr{S} in \mathbb{R}^n to the hypothesis that \mathbb{R}^n/\mathscr{S} is simplyconnected at infinity (except in certain trivial cases).

We close by presenting an example of a completely unstable dynamical system \mathscr{S} in \mathbb{R}^4 without separatrices, and yet \mathscr{S} fails to be parallel.

Example. Let W^3 be the (open) differentiable 3-manifold of H. Whitehead [6, 13]. Here W^3 is contractible but W^3 is not homeomorphic to R^3 . Consider the product manifold $R^1 \times W^3$ that is known to be combinatorially and hence differentiably isomorphic to R^4 , see [2, 6]. The images of the lines $R^1 \times w_0$, for points $w_0 \in W^3$, define a differentiable regular curve family in $R^1 \times W^3 = R^4$. Upon sensing or orienting this regular curve family by unit tangent vectors, we obtain a completely unstable dynamical system \mathscr{S} in R^4 . Since R^4/\mathscr{S} is the Hausdorff manifold W^3 , \mathscr{S} has no separatrices. But \mathscr{S} is not topologically parallel in R^4 , since the parallel system \mathscr{P} yields an orbit space R^4/\mathscr{P} that is homeomorphic to R^4 rather than W^3 .

REFERENCES

- 1. A. ANTOSIEWICZ and J. DUGUNDJI: Parallelizable flows and Lyapounov's second method, Ann. Math. 73 (1961), 543-555.
- 2. J. GLIMM: Two Cartesian products which are Euclidean spaces, Bull. Soc. math. Fr. 88 (1960), 131-135.
- 3. F. HAHN: Recursion of set trajectories in a transformation group, *Proc. Am. math. Soc.* 11 (1960), 527-532.
- 4. W. KAPLAN: Regular curve families filling the plane I and II, Duke math. J. 7 (1940), 154–185; 8 (1941), 11–46.
- 5. L. MARKUS: Global structure of ordinary differential equations in the plane, Trans. Am. math. Soc. 76 (1954), 127-148.
- 6. J. MUNKRES: Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann. Math. 72 (1960), 521-554.

- 7. V. NEMITSKY: Uber vollständig unstabile dynamische Systeme, Annali Mat. pura appl. 14 (1936), 275-286.
- 8. V. NEMITSKY and V. STEPANOV: Qualitative Theory of Differential Equations, Princeton, 1961.
- 9. H. POINCARÉ: Sur les courbes definées par les équations différentielles, J. Math. pures appl. 4 (1886), 151-217.
- 10. E. SPANIER: Algebraic Topology, McGraw-Hill, 1966.
- 11. J. STALLINGS: The piecewise linear structure of Euclidean space, Proc. Camb. phil. Soc. math. phys. Sci. 58 (1962), 481-488.
- 12. H. TERASAKA: On quasi-translations in Eⁿ, Proc. Japan Acad. 30 (1954), 80-84.
- 13. J. H. C. WHITEHEAD: A certain open manifold whose group is unity, Q. Jl Math. 6 (1935), 268-279.
- 14. E. C. ZEEMAN: Polyhedral n-manifolds I and II, Topology of 3-manifolds and related Topics, Prentice-Hall (1962), 57-64 and 65-70.

University of Minnesota