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(Receiued 22 May 1968) 

SYSTEMS? 

$1. TOPOLOGICAL PROPERTIES OF UNSTABLE FLOWS 

A dynamical system 

9”) &‘/dt =f’(x’, . . ) 9) 

on a differentiable n-manifold k1” is a differentiable tangent or contravariant vector field for 

which the corresponding flow 

(t, x,,) --+ cp(t, x,):R’ x M” -+ M” 

is defined for all times PER’. Here M” is a differentiable (that is, of class Cm) manifold 

(connected separable metrizable space-without boundary) and cp(t, ,YJ is the orbit or 

solution initiating at _rO E A!” at t, = 0. Two dynamical systems in M” 

91) i =fl(X) and Y”z) i =j\(x) 

are defined to be topo/ogically (or d/j&-entiably) equicalent in case there exists a homeo- 

morphism (or diffeomorphism) Y of M” onto itself carrying each sensed (but not time- 

parametrized) solution curve of Y1 onto a sensed solution curve of YZ, and vice versa 

for Y-r. 

We shall be primarily concerned with dynamical systems in the real number space R”. 

A dynamical system Y in R” is called parallel in case Y is topologically equivalent to the 

flow along parallel straight lines, 

9) 1’= 1, i:” = 0 9 .‘., i” = 0. 

Note that B lies in the same n-dimensional space R” as does Y, and not in some higher 

dimensional space (or even Hilbert space) as in certain earlier studies [7]. 

For the 2-dimensional phase plane R’ PoincarC [9] showed that a dynamical system Y 

without critical (equilibrium) points has solution curves each of which is a line homeomorph 

tending towards infinity in R2 as It/-+ co. In particular, Y is then (Lagrange) unstable 

because each solution curve is unbounded in R’ as r -+ co and also as t --f - CD. Moreover, 

Y is completely unstable since each point x,, E R* is wandering (precise definitions below and 

in [S]). 
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Clearly a parallel differential system in R” is completely unstable, but the converse is 

false as is demonstrated by the elementary example in R’ 

iL = x*(x’ - 2), Ji-’ = x1 - 1, 

which has the two separatrices I’ = 0 and .x1 = 2. It has been established [j] that a completely 

unstable dynamical system 9’ in RZ is parallel if and only if 9 has no separatrices. In this 

paper we give a suitable definition of separatrices in higher dimensions and prove that the 

analogous assertion holds in R3 but is false for R’. We also obtain certain related results for 

dynamical systems without separatrices on other differentiable manifolds M”. 

We recall [S] that a dynamical system Y in a differentiable manifold M” is unstable 

in case no compact subset Kc ,Ci” contains an entire half-orbit {q(t, .-co) 1 for t 2 0 or for 

t I 01. Thus each solution curve of 9 is a one-to-one continuous image of R’ (although it 

need not be a topological line in &I”), and 9’ has no critical points or periodic orbits. If all 

r and w limit sets of 9’ are empty, that is, 

,?, Ig cp(t9 %I) = 0 and ,?, tyrcp(tY sO) = 0, 

then 9’ is unstable in ICI”. Of course, this implies that M” is non-compact. 

Also recall that a dynamical system Y in M” is completely unstable in case each point 

x,, E M” is w~andering; that is, there exists a neighborhood (I of _y,, whose orbit cp(t, U) fails 

to meet U for all sufficiently large ItI. A completely unstable flow 9’ has empty r and w 

limit sets; hence, each solution curve is a topological line tending to infinity (leaving any 

prescribed compact set Kc M”) as ItI -+ co, and so 9’ is unstable. 

Nemitsky [7] defined the dynamical system 9 in R” to have a saddle at infinity in case: 

there exists a convergent sequence of points xi in R”, and two unboundedly increasing 

sequences of times 0 < ~~ < ti such that cp(ti, xi) converges to some point of R” yet &t i, xi) 

diverges to infinity. We use the same condition to define a saddle at infinity for 9 in M”. 

Elementary continuity arguments show [8] that an unstable dynamical system or flow 9’ 

in M” with no saddle at infinity is completely unstable. 

Unstable flows are qualitatively simpler than flows with bounded orbits. In R3 there 

exist fantastically complicated differential systems without critical points, but with each 

solution curve bounded [12]. We reject these terrible complexities by considering only 

unstable flows in this paper. 

Nevertheless, even completely unstable flows can be very intricate. For instance, in the 

plane R2 there exist a noncountable number of different topological types of completely 

unstable flows [4 and 51. Since the definition of an unstable dynamical system Y involves the 

time parameter t, as well as the topology of M”, we first note the invariance of this property 

under topological equivalence. 

THEOREM 1. In a differentiable manifold M” let 

Y1) i =f1(x) and 92) *t =fz(x) 

be topo[ogicalIy equivalent dynamical systems. If 9, is unstable, or completely unstable, or 

unstable lc.ith no saddle at infinity, thenY, has the corresponding property. 
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Proof. Let Y be a homeomorphism of M” onto itself carrying the sensed solution curve 

family of 9, onto that of .4p2, that is, 

YV,(4 x0) = (P2(s, Y’x,), 

where ql(l, _rO) is the solution of Y, initiating at x,, when time t = 0, and ~~(3, Y’x,) is the 

solution of Y, initiating at Y’.\-, at time s = 0. 

Assume 9, is unstable so each solution curve cpr(t, x0) is a one-to-one continuous 

image of RI, and the same holds for the solution (p2(s, Yx,) of y2. Thus, for each fixed 

x0 E M”, there exists a function 

s(t, x,):R’ x M” --f R’ 

specified by the unique values determined in 

Since the time duration between the endpoints of a solution segment of a dynamical system 

varies continuously with the two endpoints, s(t, x0) is continuous on R’ x M”. Also, for 

each fixed ,yO, the map t -+ s(t, x0) is an orientation preserving homeomorphism of R’ onto 

itself. If a compact subset K c M” contained an entire half-solution of yspz, say cpz(s, Y.r,) for 

s 2 0, then this would imply that cpr(t, x,,) lies in Y -‘K for all sufficiently large t. Since 9, 

is unstable, cpl(t, x0) is not entirely in the compact set Y -r K for all large t, and hence the 

contradiction proves that yz is also unstable. 

Next assume that 9, is completely unstable, so that 9, and hence 9, are unstable. 

Take an initial point Yx, E M” and consider the flow of 9, initiating from a compact ball B, 

centered at _Y~. We take B, so small that there exists t, > 0 such that 

V71(f? B,) n B, = 0 for ItI > t,. 

Then B2 = YB, contains Yx, in its interior and has an orbit under Y2 such that 

(PZ(S, 4) n 4 = 0 for all 1.~1 > sr = max s(t,, x0). 
XOEBI 

Thus 9, is also completely unstable. 

Finally assume that 9, is unstable with no saddle at infinity. Then 9, and hence 9, 

are completely unstable flows. Suppose 9, has a saddle at infinity; that is, there exists con- 

vergent sequences in M”, Y.ri -+ YX (or xi + ,Z) and cpz(si, Yxi) --f Y’y for some increasing 

positive time sequence si -+ co, with intermediate times ~~ -+ co at which cp2(cri, Yxi) tends 

to infinity in M”. Since Y, is completely unstable, each point of M”is a wandering point of 9, 

and so it is easy to see that X and y do not lie on the same solution curve of 9,. But then 

Y.y and Y’y lie on distinct solutions of the topologically equivalent system 9,. 

Also q,(ti, xi) + y for the times ti > 0 corresponding to si. Clearly the sequence ti 

must be unbounded, for otherwise Z and y would lie on the same solution curve of 9,. 

Now select subsequences, still denoted ti and xi, so that ti is monotonic increasing to infinity. 

Let ri correspond to the intermediate instant oi; that is, Yq,(s,, xi) = qz(oi, Yx,), and so 

rp,(~~, xi) diverges to infinity (eventually lies outside any prescribed compact subset of M”). 
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Thus pi are unbounded. This construction contradicts the assumption that .sP, has no saddle 

at infinity. Therefore, Yz has no saddle at infinity. Q.E.D. 

St. ORBIT SP.iCES OF UNSTABLE FLOWS 

Consider a dynamical system 

in a differentiable manifold M” (n 2 2 always), with orbits or solutions given by the flow 

cp(t, .uO) in C” in R’ x W. The orbit space J4”/9 is the quotient or identification space 

formed from hi” by the equivalence relation specified by the solution curves of 9’. That is, 

two points X, and +y2 of W are related by 9’ in case they lie on the same solution curve of 9’. 

The orbit space W/9’ bears the usual quotient topology, defined as the strongest topology 

for which the projection map 

is continuous. Since the orbit u ~(t, U) of an open set CJ c W is open in M”, we note that 
CER' 

the saturation set (sat U) of U by 9’ is open, and hence p is an open map onto W’/.P’. 

The orbit space WI.9 is connected and has a countable base. Yet W/9’ may not be a 

Hausdorff separated (or r,) space; as in the example of the non-parallel unstable flow in R’ 

described in the first section of this paper. The separation properties of W/9 will be basic 

for our theory of parallel dynamical systems. 

Definitiofr. Consider the unstable dynamical system 

9’) i =f(x) in a differentiable manifold M”. 

Two solution curves S, and S1 of 9’ are inseparable in case any two neighborhoods of S, 

and S, in W/9 meet; that is, S, and S, cannot be separated by open sets in M”l9’. A solu- 

tion curve S of Y is a separatrix in case S lies in the closure of the set of inseparable elements 

of M”/Y. 

Remark. Inseparable solutions of 9’ occur in pairs and each of them is a separatrix. 

Thus an element SE M”/9’ is a separatrix if and only if S is the limit of a sequence of solutions 

each of which is inseparable (from some other solution). This definition of separatrix solution 

reduces to that introduced earlier by Markus [5] for the special case W = R2, and agrees 

with the vague usage customary in engineering oscillation analysis. 

THEOREM 2. Consider a completely utlstable dynamical system in a d@erentiable manifold 

M” 

9) i =f(x). 

Then the orbit space M”J9 satisfies the separatiorl axiom T,. Further, the following three 

assertions are equicalent: 

1) 9 has no saddle at injnity. 

2) 9’ has no separatrices. 

3) M”f9 is a Hausdorff Tz space. 
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Proof. Let S, and S2 be two different elements of W/Y; that is, S, and S2 are two 

solution curves of Y. Take a small (n - I)-planar disc B, orthogonal (in some convenient 

Riemann metric on ,\I”) to S, at some point P,, so Y is transverse to B,. Since S, has empty 

r and o limit sets, S, can meet B, at only a finite number of points. Then, upon further 

restricting the diameter of B,, we can assume that S2 fails to meet B,. Take the neighborhood 

N, of S, to be the saturation of B,. Then Sz does not lie in the projection pN, c W/Y. 

Hence W/Y is a r, space. 

Assume that Y has no saddle at infinity and we show that .Y has no separatrices. 

Suppose that there were two inseparable solutions S, and S2 of Y. Take (n - I)-planar discs 

B, and 8, , orthogonal to S, at P, ES, and to S2 at P, ES, respectively, so that Y is transverse 

to both B, and B2. Also require that Sz fails to meet Ni = sat B, and that S, fails to meet 

IV, = sat B, . Since S, and S, are inseparable, there exists a solution cp(t, x,) on - cc < t < co 

that lies in N, n N2. 

Take an arc cp(t, -ui) on 0 5 I I t, with cp(0, x,)EB~ and cp(ti, X,)E B2 (or vice versa). 

Repeat the construction for smaller transversal discs at P, and Pz to get a sequence of solution 

arcs 

cp(t, XJ on 0 < t 5 t, 

with ~(0, XJE B, and q(tk, XJE B2 (or vice versa) and with 

lim ~(0, XJ = Pi, lim cp(tk, q) = P, . 
k--a k-m 

If the sequence {tk) were bounded, then a subsequence (still denoted fk) would converge to a 

finite limit t, -+ i. But this would imply that P, lies on the solution curve S,, which is im- 

possible since S, and S2 are different solutions of 9’. Hence we can assume that {rk} increases 

monotonically towards infinity. 

Some subsequence of points ‘p(s,,, x,,), with 0 < TV, < tk, diverges to infinity in M” 

since S, approaches infinity with both its ends. Thus the subsequence of arcs cp(t, xk,) on 

0 I t 5 tkj defines a saddle at infinity for the dynamical system .Y. This contradicts our 

assumption and so we conclude that Y has no separatrices. 

On the other hand, assume that Y has no separatrices in M”. Suppose there were a 

saddle at infinity; that is, a sequence of solution arcs’ > 

q(t, &) on 0 5 t 2 tk 

with do, xk,> + PI7 dfk, xk) + pz, tk 7~0 and ‘p(r,, .u,,) diverging to infinity in M” for an 

increasing unbounded time sequence {sk}. It is easy to see that the solution curve S, through 

P2 must coincide with the solution curve S, through P,; for otherwise S, and S2 would be 

inseparable in the space M”f9’. 

If P, followed P, along the solution S,, then an easy continuity argument shows that P, 

is non-wandering. In the other case where P2 precedes or equals P,, P, is seen to be non- 

wandering. But 9’ is completely unstable and every point of M” is wandering. This contradic- 

tion proves that 9’ has no saddle at infinity. 
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The assertion that 9’ has no separatrices is equivalent to the condition that ICP/.SP is a 

T2 space. This equivalence is immediate if we note that the set of inseparable solutions of Y 

is empty if and only if its closure, the set of separatrices, is empty. Q.E.D. 

COROLLARY. Consider a dynamical system in &I” 

9) 1 =f(x). 

Then Y is completely unstable bvithout separatrices if and only if: for each compact set K c M” 

there exists a time T such that the orbit cp(t, K) fairs to meet Kfor 1 t[ > 7: 

Proof. (cf. [3]). 

Assume that Y is completely unstable without separatrices in the differentiable manifold 

M”. Let Kc M” be a compact set. If cp(t, K) meets K for arbitrarily large It(, then there 

exists two convergent sequences of points xi --f P, and q(ti, xi) -+ P, in K, for ltil unbounded. 

By re-labeling a subsequence of the points, if necessary, we can assume that ti > 0 are 

monotonically increasing to infinity. Since the orbit through P, tends to infinity in M”, 

our construction yields a saddle at infinity for the dynamical system Y. This contradiction 

proves that qo(t, K) n K = @ for all sufficiently large It]. 

Conversely, assume that the dynamical system9 has the property that cp(t, K) n K = 0 

for each compact set Kc kf”, and for ItI then suitably large. If we take K to be the compact 

closure of a ball neighborhood of a chosen point PE M”, then we see that P is wandering. 

Hence 9’ is completely unstable. 

Now suppose that Y has a saddle at infinity in M”. Then there exist unboundedly 

increasing sequences of times 0 < ri < ti such that -Ti + P, and p(ti, xi) -+ P, , whereas 

cp(zi, xi) diverges to infinity in M”. In this case let K, be the union of two compact ball 

neighborhoods of P, and P, . Then, for all large integers i, both Xi and cp(t,, xi) lie in K,. 

Therefore cp(t,, K,) meets K, for all large ti --f co. This contradicts the hypothesis and shows 

that Y has no saddle at infinity. Hence 9’ has no separatrices. Q.E.D. 

For a completely unstable dynamical system 9’ in a differentiable manifold M” we shall 

use local transversals for 9’ to define local coordinate charts in M”/Y. A transversal-section 

r for Y in M” is defined as a differentiable (n - l)- hypersurface in M” that is transverse to 

9’ (the normal component of the vector field Y on I- nowhere vanishes), and no solution 

curve of 9’ meets r in more than one point. We also require that r is a topological embedding 

of an (n - I)-manifold in M”, that is, r is a submanifold (without boundary) such that the 

induced topology coincides with the manifold topology on r. Of course, not every solution 

curve of Y need meet r. 

We define an unseparated dijkentiable r-manifold to be a topological space (with no 

separation properties demanded) &I with an atlas or covering by local coordinate charts 

(open sets of M with given homeomorphisms onto open sets of R’) satisfying the usual re- 

quirement that any two overlapping local charts of M are C” differentiably inter-related. 

The atlas generates a maxima1 atlas that specifies the differentiable structure on icf. The 

concepts of differentiable map, diffeomorphism, differentiable product manifold, and differ- 

entiablefiber bundle andjbration [IO] are all defined for unseparated differentiable manifolds 
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in the obvious way. We note that a differentiable manifold (without the qualifier “ un- 

separated”) is an unseparated differentiable manifold that is also a connected paracompact 

Hausdorff space with a countable base. 

THEOREMS 3. Consider a completely unstable dyutmical system in a dtzerentiable manifold 

At” 

Then the orbit space W/9’ bears a unique unseparated dtifferentiable structure fulfilling the 

condition: 

for each transt’ersal-section r of Y the projection map p restricted to r 

p/I-:r -+ pi- c M”[.Y 

is a diffeomorphism. 

Furthermore, (M”, M”lY, R L, p> is an unseparated diflerentiable fiber bundle with total or 

bundle space M”, base space M”/Y, fiber RI, and projection map p. 

Proof. Let S be a solution curve of 9’ and we shall proceed to define a local chart for a 

neighborhood U, of S in A4”/9’. Let B, be a transversal-section for 9’ consisting of a (rela- 

tively open) (n - I)-disc on a hyperplane orthogonal to S at a point P. Since S approaches 

infinity at both ends and since P is wandering, the existence of such a transversal-section B, 

is assured. Let U, = pB, = p(sat B,). Since B, is a transversal-section for Y, the map 

plB,:B, + UI 

defines a homeomorphism of B, onto U,. We use the differentiable structure on B, (as a 

submanifold of M”) to introduce local coordinates on U, so that plB, is a diffeomorphism. 

Let B2 be another such transversal-section such that (sat B2) meets (sat B,). Then 

B;n (sat B,)n (sat B2)= B,, 

and 

B, 0 (sat B,)n (sat B2) = Bzl 

are open submanifolds of B, and B, , respectively. Moreover, the differentiable curve family 

of solutions of 9’ defines a diffeomorphism of Bt2 onto B,,. Thus there exists a diffeo- 

morphism of pB,, = pB, n pBz = pB,, onto itself, corresponding to the inter-relation 

of the coordinatizations of pB 12 within U, = pB, and within U, = pB, . Therefore, the 

atlas of such local charts in such sets U = pB, for all transversal-section (n - I)-discs B, 

defines a differentiable structure on M”/Y. This is the only differentiable structure on M”/9’ 

such that the maps 

plB:B-+pB 

are diffeomorphisms. 

Moreover, for each differentiable transversal-section r c M”, the map 

pp-:r -+ pr 
is a homeomorphism of r c M” onto pT c M”/Y. But p/r is also a diffeomorphism since r 



54 LAWREFQCE MARKUS 

can be coordinatized locally by means of appropriate tangential (n - 1)-d&s. Thus we 

have specified M”/SP as an unseparated differentiable manifold, as required in the theorem. 

The fiber bundle structure of {M”, W/9, R’, p] requires specific diffeomorphisms 

from p- 1 U, onto R’ x U, , where {U,) is some open covering of M”/.Y. For each element 

S,E M”/Sp take an open neighborhood U, obtained from a transversal-section disc B, 

through S,, that is, 

pB, = p(sat B,) = LJi,. 
Then 

p-luz = sat B, c ‘R/I” 

and we define a diffeomorphism of (sat B,) with R’ x U,. Use the flow cp(t, x,,) of 9 in M” 

and the disc B,, which is diffeomorphic to 0: under the projection map, to coordinatize 

each point 0 E sat B, by (ta , xQ) E R’ x B, . That is, each point 6, E sat B, has a unique repre- 

sentation as 

Q = V(l, > “Q) 

for tg E RI and an initial point _yQ E B, 

The inverse image of each element of CJZ in p- ’ U, z RL x U, is a single solution curve 

of Y in sat B,, or a line (t, ,Y;) in R’ x B,. Thus (hi”, W/Y, R’, p) is an unseparated 

differentiable fiber bundle, as required. Q.E.D. 

Remark. The group of the bundle {M”, M”/Y, RI, p} is the group of all orientation 

preserving diffeomorphisms of R’ onto itself. The infinite dimensionality of this group is of 

no particular significance, but the non-Hausdorff character of the base ,W/Y causes grave 

difficulties. In particular, the standard results on cross-sections and homotopy lifting are 

not valid in the generality arising here. 

53. UNSTABLE FLOWS WITHOUT SEPARATRICES 

Consider a dynamical system in a differentiable manifold M” 

9) i =f(x) 

with orbits or solutions given by the flow cp(t, x0) in C” in R’ x M”. The orbit space M”/9’ 

is a connected topological space with a countable base. If 5’ is completely unstable, then 

{M”, M”/9’, R’, p} is an unseparated differentiable fiber bundle, according to Theorem 3. 

Furthermore, if 9’ has no separatrices, then M”/Y is a (paracompact, Hausdorff) differ- 

entiable manifold and {M”, M”/Y, R’, p> is a differentiable fiber bundle in the usual 

sense, according to Theorem 2. 

In the case where 9’ is completely unstable with no separatrices in M”, the projection 

map 
p : M” --f M”/Y 

defines a fibration (or Hurewicz fiber space) with the homotopy lifting property, see [lo]. 

In this case the usual exact homotopy sequence applies 

-** + q,,(R1) -+ n,,,(Mn) + x,(M”/Y) + q,,_ ,(R’) -+ li,_ ,(M”) -+ TL,_ I(Mn/9) + .a. 

..* + “JR’) + n,(W) --f q,(M”/Y), 
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where appropriate base points P, in a fiber S,, P, EM”, and p(Pi) = S, are fixed. Further- 

more, the usual differential fiber bundle techniques are valid, as are indicated in the following 

remark concerning cross-sections. 

Remark. If a dwamical system in R”, n # 5, 

is topologically eguiralent to a parallel system 

9) 1’ zz 1 ) f2 = 0, . ..) 1” = 0, 

then Y is dlrerentiably equivalent to 9’. 

To prove this assertion we note that 9 is completely unstable without separatrices, and 

so 9’ is also. Then (R”, R”i9, R’, p). is a differentiable fiber bundle with the differentiable 

manifold R”/.Y as base. The homotopy exact sequence, with n,(R”) = 0 and n,(R’) = 0, 

shows that TI,(R”/~‘) = 0 for m = 1, 2, 3, . . . Hence R”/Y is a contractible space. Therefore, 

there exists a differentiable cross-section 

that assigns to each solution curve S of 9’ a point PES. In other words, I.- is a transversal- 

section for 9’ in R” such that every solution curve of 9 meets I- in just one point. Then, 

using the flow defined by 9’ and initiating at points on r (on the image of r in R”), wedefine 

a diffeomorphism of R” onto R’ x II’ with the solution curves of 9’ mapping onto the lines 

corresponding to the factor RI. 

But 9 in R” is topologically equivalent to B,and hence the fiber bundle {R”, R”/Y, R’, p} 

is bundle-homeomorphic to the topological product R1 x R”-‘. Since any two cross- 

sections of the fiber bundle {R”, R”/Y, R’, p} are homeomorphic, we find that r is homeo- 

morphic to R”-‘. But then, at least for n - 1 # 4, it is known [6, 1 l] that I- is diffeomorphic 

to R”-‘. In this case there is a diffeomorphism of R” onto RL x R”-’ carrying the solution 

curves of Y onto straight lines. Therefore 9 is differentiably equivalent to 9. 

The arguments used above also prove the next theorem, cf. [I]. 

THEOREM 4. Consider a completely unstable dynamical system in a contractible differ- 

entiable manifold M” 

9) 1 =f(s). 

If 9’ has no separatrices, then M”/9’ is a (paracompact, Hausdor-) differentiable (n - l)- 

manifold that is a contractible space. Furthermore, .Y in M” is d$Eerentiahly equicalent to ‘the 

flow along the lines in the product maniJold R’ x IVY/Y. 

COROLLARY. Consider an unstable dynamical system in a contractible differentiable 

manifold M” 

9) 1 =f(x). 

If 9’ has no saddle at infinity, then W/Y is a contractible differentiable manifold, and 9 is 

differentiably equicalent to the flow along the lines in the product manifold R” x W/9’. 
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Proof. Since Y has no saddle at infinity, Y is completely unstable and Y has no separa- 

trices, according to Theorem 2 and the remarks in Section 1. Hence the Theorem 4 applies. 

Q.E.D. 

We now take the contractible manifold AI” to be the number space R” to study the 

case when Y is parallel. 

THEOREM 5. Consider a completely unstable dynamical system in R" for n = 2 or 3, 

Y) i =f(x)1 

Assume that Y has no separatrices. Then Y is differentiably equivalent to the flow 9 along 

parallel straight lines. 

Proof. The differentiable fiber bundle {R”, R”/Y, RI, p> has the contractible base space 

R”/Y, and so it is differentiably bundle-isomorphic with the product R’ x R”/Y. For n = 2 

or 3 the contractible (n - 1)-manifold R”/Y is diffeomorphic to R’ or R*, by the known 

classification of 1 and 2 dimensional manifolds. Thus Y in R, orR, isdifferentiablyequivalent 

to the flow along the lines in the product R’ x R’ or R’ x R2, and Y is parallel. Q.E.D. 

If we further assume that R”/Y is simply-connected at infinity [6, 111 and n 2 6, then 

we can assert that R”/Y admits a unique differentiable structure and is diffeomorphic with 

R”-‘. In this case Y in R” is a parallel dynamical system. However, it does not seemeasy to 

relate the usual theory of dynamical systems Y in R” to the hypothesis that R”/Y is simply- 

connected at infinity (except in certain trivial cases). 

We close by presenting an example of a completely unstable dynamical system Y in R4 

without separatrices, and yet Y fails to be parallel. 

Esampfe. Let W’ be the (open) differentiable 3-manifold of H. Whitehead [6, 131. 

Here W3 is contractible but W3 is not homeomorphic to R3. Consider the product manifold 

R’ x W3 that is known to be combinatorially and hence differentiably isomorphic to R4, 

see [2, 61. The images of the lines R’ x w,, , for points bvO E W3, define a differentiable regular 

curve family in R’ x W3 = R4. Upon sensing or orienting this regular curve family by unit 

tangent vectors, we obtain a completely unstable dynamical system Y in R4. Since R4/Y is 

the Hausdorff manifold W3, Y has no separatrices. But Y is not topologically parallel in 

R4, since the parallel system 9 yields an orbit space R4/9’ that is homeomorphic to R’ 

rather than W3. 

1. 

2. 

3. 

4. 

5. 

6. 
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