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Abstract

As the efficient calculation of eigenpairs of a matrix, especially, a general real matrix, is significant in engineering, and neural
networks run asynchronously and can achieve high performance in calculation, this paper introduces a recurrent neural network
(RNN) to extract some eigenpair. The RNN, whose connection weights are dependent upon the matrix, can be transformed into
a complex differential system whose variable z(t) is a complex vector. By the analytic expression of |z(t)|2, the convergence
properties of the RNN are analyzed in detail. With general nonzero initial complex vector, the RNN obtains the largest imaginary
part of all eigenvalues. By a rearrangement of connection matrix, the largest real part is obtained. A practice of a 7 × 7 matrix
indicates the validity of this method. Two matrices, whose dimensionalities are 50 and 100, respectively, are employed to test
the efficiency of this approach when dimension number becomes large. The results imply that the iteration number at which the
network enters into equilibrium state is not sensitive with dimensionality. This RNN can be used to estimate the largest modulus
of eigenvalues, etc. Compared with other neural networks designed for the similar aims, this RNN is applicable to general real
matrices.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Using neural networks to compute eigenpairs has parallel, and quickness, virtues. Quick extraction of eigenpairs
has many applications such as principal component analysis (PCA) [1] and real-time signal processing [2] etc. So,
a lot of literature on this field exist [3–20]. Recently, Yi et al. [3] proposed a neural network-based approach to
compute eigenvectors corresponding to the largest or smallest eigenvalue of any real symmetric matrix. Ref. [4]
generalized the well-known Oja network to include nonsymmetrical matrices. Liu [5] meliorated the model in Ref. [3]
and introduced a simpler model accomplishing analogous calculations. Ref. [6] introduced a RNN model computing
the largest modulus eigenvalues and their corresponding eigenvectors of an anti-symmetric matrix. So the known
results mainly focus on solving eigenpairs of real symmetric, or anti-symmetric, matrices. Although Ref. [4] involved
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nonsymmetrical matrices, its section “The nonlinear homogeneous case” has the assumption of α (w) ∈ R, which
requires the matrix to occupy real eigenvalues. Following a search of the relevant literature, we were unable to
locate a neural network-based method for calculating eigenvalues of a general real matrix, whether the eigenvalue
is a real or a general complex number. This paper is an exploration in this direction, and proposes a recurrent
neural network-based approach described by Eq. (1) to estimate the largest modulus of eigenvalues of a general real
matrix.

dv (t)
dt

= A′v(t) − |v(t)|2 v(t), (1)

where t ≥ 0, v(t) ∈ R2n, A′
=

(
0 A

−A 0

)
, A is the general real matrix requiring the calculation of eigenpairs. |v (t)|

denotes the modulus of v(t). When v(t) is seen as the states of neurons,
[
A′

− |v(t)|2 U
]

(U denotes a suitable
dimensional identity matrix) is looked at as synaptic connection weights, and the activation functions are assumed
to be pure linear functions, Eq. (1) describes a continuous-time recurrent neural network. Under the realization of
v̇(t) = A′v(t), using a calculation unit to obtain |v (t)|2 and subtracting it from all diagonal entries of A′, we can
realize the RNN.

Let v(t) =
(
xT(t), yT(t)

)T
, x(t) = (x1(t), x2(t), . . . , xn(t))T

∈ Rn and y(t) = (y1(t), y2(t), . . . , yn(t))T
∈ Rn .

From Eq. (1), it follows that
dx(t)

dt
= Ay (t) −

n∑
j=1

[
x2

j (t) + y2
j (t)

]
x(t)

dy(t)
dt

= −Ax(t) −

n∑
j=1

[
x2

j (t) + y2
j (t)

]
y(t).

(2)

Let

z(t) = x(t) + iy(t), (3)

where i denotes the imaginary unit, it easily follows from Eq. (2) that

dx(t)
dt

+ i
dy(t)

dt
= −Ai [x(t) + iy(t)] −

n∑
j=1

[
x2

j (t) + y2
j (t)

]
[x(t) + iy(t)] ,

i.e.

dz(t)
dt

= −Az(t)i − zT (t) z̄(t)z(t) (4)

where z̄(t) denotes the complex conjugate vector of z(t). Obviously, Eq. (4) is a complex differential system. A set
of ordinary differential equations is just a model which may or may not approximate the real behavior of some neural
network, although there are differences between them. In the following sections, we will discuss the convergence
properties of Eq. (4) instead of RNN (1).

2. Analytic expression of |z(t)|2

All eigenvalues of A are denoted as λR
1 +λI

1i, λR
2 +λI

2i, . . . , λR
n +λI

n i (λR
k , λI

k ∈ R, k = 1, 2, . . . , n), corresponding
complex eigenvectors are denoted as µ1, . . . , µn .

With any general real matrix A, there are two cases for µ1, . . . , µn : (1) when rank of A is deficient, some of
λR

1 +λI
1i, λR

2 +λI
2i, . . . , λR

n +λI
n i may be zeros. When λR

j +λI
j i = 0, u j can be randomly chosen ensuring µ1, . . . , µn

construct a basis in Cn×n ; (2) A is full rank, µ1, . . . , µn are decided by A. Although they may not be orthogonal to
each other, they can still construct a basis in Cn×n .

Let Sk = µk/ |µk |, obviously S1, . . . , Sn construct a normalized basis in Cn×n .
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Theorem 1. Let zk(t) = xk(t)+ iyk(t) denote the projection value of z (t) onto Sk . The analytic expression of |z(t)|2

is

|z(t)|2 =

n∑
k=1

exp
(
2λI

k t
)
|zk (0)|2

1 + 2
n∑

j=1

∣∣z j (0)
∣∣2 ∫ t

0 exp
(

2λI
jτ

)
dτ

(5)

for t ≥ 0.

Proof. From the denotations of zk , it follows that

z(t) =

n∑
k=1

[xk (t) + iyk(t)] Sk . (6)

As Sk is a normalized complex eigenvector and λR
k + λI

k i is the associated eigenvalue, substituting Eq. (6) into
Eq. (4) gives that

n∑
k=1

[
d
dt

xk(t) + i
d
dt

yk(t)
]

Sk = −

n∑
k=1

A [xk(t) + iyk (t)] Sk i −

n∑
j=1

∣∣z j (t)
∣∣2

n∑
k=1

[xk(t) + iyk(t)] Sk

= −

n∑
k=1

(
λR

k + λI
k i

)
Sk [xk(t) + iyk (t)] i −

n∑
j=1

∣∣z j (t)
∣∣2

n∑
k=1

[xk(t) + iyk(t)] Sk

=

n∑
k=1

{[
λI

k xk (t) + λR
k yk(t)

]
−

[
xk(t)λR

k − yk(t)λI
k

]
i
}

Sk

−

n∑
j=1

∣∣z j (t)
∣∣2

n∑
k=1

[xk(t) + iyk (t)] Sk,

in each direction Sk , there exist

d
dt

xk(t) = λI
k xk (t) + λR

k yk(t) −

n∑
j=1

∣∣z j (t)
∣∣2 xk(t), (7)

d
dt

yk(t) = −xk(t)λR
k + yk(t)λI

k −

n∑
j=1

∣∣z j (t)
∣∣2 yk(t). (8)

From Eqs. (7) and (8), it follows that

d
dt

|zk(t)|2 = 2λI
k |zk(t)|2 − 2

n∑
j=1

∣∣z j (t)
∣∣2

|zk(t)|2 . (9)

For |zk(t)|2 6= 0, |zr (t)|2 6= 0 (k 6= r ), we have

1

|zk(t)|2
d
dt

|zk(t)|2 −
1

|zr (t)|2
d
dt

|zr (t)|2 = 2λI
k − 2λI

r ,

so

d
dt

{
ln

|zk(t)|2

|zr (t)|2

}
= 2λI

k − 2λI
r ,

i.e.

|zk(t)|2

|zr (t)|2
=

|zk (0)|2

|zr (0)|2
exp

[
2

(
λI

k − λI
r

)
t
]
. (10)
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Consider the relation between |zk(t)|2 (t > 0) and |zk(0)|2, there are four cases: (1) using Eq. (9) gives that the
following case is sound.

|zk(0)|2 = 0 and |zk(t)|2 = 0. (11)

(2) |zk(0)|2 = 0 and |zk(t)|2 6= 0; (3) |zk(0)|2 6= 0 and |zk(t)|2 = 0. As |zk(t)|2 is continuously dependent upon
t , for case (2), using Eq. (9) gives |zk (t)|2 = |zk (0)|2 exp(2λI

k − 2
∑n

j=1
∣∣z j (t)

∣∣2
), it is a contradiction to this case.

Similarly we can prove that case (3) is not compatible with Eq. (9). (4) |zk(0)|2 6= 0 and zk(t) 6= 0. For this case we
have

1

|zk(t)|2
d
dt

|zk(t)|2 − 2λI
k

1

|zk(t)|2
= −2

n∑
j=1

∣∣z j (t)
∣∣2

|zk(t)|2
,

i.e.

d
dt

1
|zk (t)|2

+ 2λI
k

1

|zk(t)|2
= 2

n∑
j=1

∣∣z j (t)
∣∣2

|zk(t)|2
. (12)

By case (1), we know
∣∣z j (t)

∣∣2
= 0 when

∣∣z j (0)
∣∣2

= 0. So whether
∣∣z j (t)

∣∣2
= 0 or

∣∣z j (t)
∣∣2

6= 0, Eq. (10) always
holds. Substituting Eq. (10) into Eq. (12) gives that

d
dt

exp
(
2λI

k t
)

|zk(t)|2
= 2

n∑
j=1

∣∣z j (0)
∣∣2

|zk (0)|2
exp

(
2λI

j t
)

. (13)

Integrating two sides of Eq. (13) with respect to t gives that

exp
(
2λI

k t
)

|zk (t)|2
−

1

|zk (0)|2
= 2

n∑
j=1

∣∣z j (0)
∣∣2

|zk (0)|2

∫ t

0
exp

(
2λI

jτ
)

dτ,

so

|zk(t)|2 =
exp

(
2λI

k t
)
|zk (0)|2

1 + 2
n∑

j=1

∣∣z j (0)
∣∣2 ∫ t

0 exp
(

2λI
jτ

)
dτ

(14)

for t > 0. Apparently, Eq. (14) involves Eq. (11). Thus they both can be uniformly expressed by Eq. (14). Under
Eq. (14), Eq. (5) is easily followed. This theorem is proved. �

3. Convergence analysis

If an equilibrium vector of RNN (1) exists, let ξ denote it, and there exists

ξ = lim
t→∞

z(t). (15)

Theorem 2. If each eigenvalue is a real number, then |ξ | = 0.

Proof. From Theorem 1, we know

|z| =

√√√√√√√√
n∑

k=1
exp

(
2λI

k t
)
|zk (0)|2

1 + 2
n∑

j=1

∣∣z j (0)
∣∣2 ∫ t

0 exp
(

2λI
jτ

)
dτ

. (16)
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So

|ξ | = lim
t→∞

|z(t)| = lim
t→∞

√√√√√√√√
n∑

k=1
exp

(
2λI

k t
)
|zk (0)|2

1 + 2
n∑

j=1

∣∣z j (0)
∣∣2 ∫ t

0 exp
(

2λI
jτ

)
dτ

. (17)

Since each eigenvalue is real,

λI
1 = λI

2 = · · · = λI
n = 0. (18)

From Eqs. (17) and (18), it follows that

|ξ | = lim
t→∞

√√√√√√√√
n∑

k=1
|zk (0)|2

1 + 2
n∑

j=1

∣∣z j (0)
∣∣2 t

= 0.

This theorem is proved. This theorem implies that if a matrix only has real eigenvalues, RNN (1) will converge to
zero point, which is independent upon initial complex vector. �

Theorem 3. Denote λI
m = max1≤k≤n λI

k . If λI
m > 0, then ξTξ̄ = λI

m .

Proof. Using Eq. (15) and Theorem 1 gives that

ξTξ̄ = lim
t→∞

|z(t)|2 = lim
t→∞

n∑
k=1

exp
(
2λI

k t
)
|zk (0)|2

1 + 2
n∑

j=1

∣∣z j (0)
∣∣2 ∫ t

0 exp
(

2λI
jτ

)
dτ

,

i.e.

ξTξ̄ = lim
t→∞

exp
(
2λI

m t
)
|zm (0)|2 +

n∑
k=1,k 6=m

exp
(
2λI

k t
)
|zk (0)|2

1 + 2 |zm (0)|2
∫ t

0 exp
(
2λI

mτ
)

dτ + 2
n∑

j=1, j 6=m

∣∣z j (0)
∣∣2 ∫ t

0 exp
(

2λI
jτ

)
dτ

= lim
t→∞

|zm (0)|2 +

n∑
k=1,k 6=m

exp
[
2

(
λI

k − λI
m
)

t
]
|zk (0)|2

exp
(
−2λI

m t
) [

1 + 2
n∑

j=1, j 6=m

∣∣z j (0)
∣∣2 ∫ t

0 exp
(

2λI
jτ

)
dτ

]
+

1
λI

m
|zm (0)|2

[
1 − exp

(
−2λI

m t
)]

= λI
m .

This theorem is proved. From this theorem, we know that when the maximal imaginary part of eigenvalues is
positive, RNN (1) will converge to a nonzero equilibrium vector, in addition, the square modulus of the vector is equal
to the largest imaginary part of all eigenvalues. �

Theorem 4. If A′ is replaced by
(

A 0
0 A

)
, then

|z(t)|2 =

n∑
k=1

exp
(
2λR

k t
)
|zk (0)|2

1 + 2
n∑

j=1

∣∣z j (0)
∣∣2 ∫ t

0 exp
(

2λR
j τ

)
dτ

.
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Proof. When A′
=

(
A 0
0 A

)
, by a similar way of obtaining Eq. (4), RNN (1) is transformed into

dz(t)
dt

= Az(t) − zT(t)z̄(t)z(t). (19)

Using the denotations of xk(t) and yk(t), we have

d
dt

xk(t) = λR
k xk (t) − λI

k yk(t) −

n∑
j=1

[
x2

j (t) + y2
j (t)

]
xk(t), (20)

d
dt

yk(t) = λI
k xk (t) + λR

k yk(t) −

n∑
j=1

[
x2

j (t) + y2
j (t)

]
yk(t). (21)

From Eqs. (20) and (21), it follows that

d
dt

|zk (t)|2 = 2λR
k |zk(t)|2 − 2

n∑
j=1

∣∣z j (t)
∣∣2

|zk(t)|2 . (22)

Comparing Eq. (22) with Eq. (9), we find that replacing λI
k in Eq. (9) by λR

k , Eq. (22) is obtained. So, like the
derivation from Eq. (10) to Eq. (14), it follows that

|z(t)|2 =

n∑
k=1

exp
(
2λR

k t
)
|zk (0)|2

1 + 2
n∑

j=1

∣∣z j (0)
∣∣2 ∫ t

0 exp
(

2λR
j τ

)
dτ

.

This theorem is proved. This theorem provides a path to extract the maximal real part of all eigenvalues through
rearranging the connection weights. �

Theorem 5. Let λR
m = max1≤k≤n λR

k . When A′ is replaced by
(

A 0
0 A

)
, if λR

m ≤ 0, then ξTξ̄ = 0. If λR
m > 0, then

ξTξ̄ = λR
m .

Proof. Using Eq. (15) and Theorem 4 gives that

ξTξ̄ = lim
t→∞

|z(t)|2 = lim
t→∞

n∑
k=1

exp
(
2λR

k t
)
|zk (0)|2

1 + 2
n∑

j=1

∣∣z j (0)
∣∣2 ∫ t

0 exp
(

2λR
j τ

)
dτ

. (23)

From Eq. (23), if λR
m < 0, it easily follows that

ξTξ̄ = 0, (24)

if λR
m = 0, it follows that

ξTξ̄ = lim
t→∞

exp
(
2λR

m t
)
|zm (0)|2 +

n∑
k=1,k 6=m

exp
(
2λR

k t
)
|zk (0)|2

1 + 2 |zm (0)|2
∫ t

0 exp
(
2λR

mτ
)

dτ + 2
n∑

j=1, j 6=m

∣∣z j (0)
∣∣2 ∫ t

0 exp
(

2λR
j τ

)
dτ

= lim
t→∞

|zm (0)|2 +

n∑
k=1,k 6=m

exp
(
2λR

k t
)
|zk (0)|2

1 + 2 |zm (0)|2 t + 2
n∑

j=1, j 6=m

∣∣z j (0)
∣∣2 ∫ t

0 exp
(

2λR
j τ

)
dτ

= 0 (25)
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Fig. 1. The trajectories of |zk (t)| in searching λI
m when n = 7.

and if λR
m > 0, like the deductive procedures of Theorem 3, it follows that

ξTξ̄ = λR
m . (26)

From Eqs. (24)–(26), we know that the theorem is proved. This theorem indicates that when the largest real part
of all eigenvalues is positive, the slightly changed RNN (1) converges to a nonzero equilibrium vector, and the square
modulus of it is equal to the maximal real part. �

4. Simulations and discussions

To illustrate the method, two examples are given. Example 1 uses a 7 × 7 matrix to show the validity. A 50 × 50,
and a 100 × 100 matrices are employed to test the method when dimensionality increases in Example 2.

Example 1. Evaluate A with randomly generated values like

A =



0.1347 0.0324 0.8660 0.8636 0.6390 0.1760 0.4075
0.0225 0.7339 0.2542 0.5676 0.6690 0.0020 0.4078
0.2622 0.5365 0.5695 0.9805 0.7721 0.7902 0.0527
0.1165 0.2760 0.1593 0.7918 0.3798 0.5136 0.9418
0.0693 0.3685 0.5944 0.1526 0.4416 0.2132 0.1500
0.8529 0.0129 0.3311 0.8330 0.4831 0.1034 0.3844
0.1803 0.8892 0.6586 0.1919 0.6081 0.1573 0.3111


.

Eigenvalues directly computed are λ1 = 2.9506, λ2 = 0.7105, λ3 = −0.3799 + 0.4808i, λ4 = λ̄3, λ5 =

0.0286 + 0.5397i, λ6 = λ̄5 and λ7 = 0.1274, so λI
m = 0.5397 and λR

m = 2.9506.
When the initial vector is z (0) = [0.0506+0.0508i, 0.2690+0.1574i, 0.0968+0.1924i, 0.2202+0.0049i, 0.1233+

0.2511i, 0.1199 + 0.2410i, 0.1517 + 0.2093i]T, we get the equilibrium vector ξ = [0.1335 − 0.1489i, 0.0204 +

0.1250i, 0.3471 + 0.0709i, −0.1727 + 0.3771i, −0.0531 − 0.2687i, −0.0719 − 0.0317i, −0.0970 − 0.3091i]T. So
the computed maximum imaginary part is λI

m = ξTξ̄ = 0.5397.
Comparing λI

m with λI
m , it can be easily seen that they are very close. The trajectories of |zk(t)| (k = 1, 2, . . . , 7)

and zT (t) z̄(t) which will approach λI
m are shown in Figs. 1 and 2.

When A′
=

(
A 0
0 A

)
, the computed maximum real part is
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Fig. 2. The trajectory of |z(t)|2 in searching λI
m when n = 7.

Fig. 3. The trajectories of |zk (t)| in searching λR
m when n = 7.

λR
m = |(0.4981 + 0.4949i 0.3701 + 0.3678i 0.6003 + 0.5965i 0.4773 + 0.4742i 0.3059

+ 0.3039i 0.4719 + 0.4689i 0.4418 + 0.4390i)T
|
2

= 2.9504.

Comparing λR
m with λR

m , the absolute difference value is 1λR
m =

∣∣λR
m − λR

m
∣∣ = |2.9506 − 2.9504| = 0.0002, so,

λR
m is very close to λR

m . The trajectories of |zk(t)| (k = 1, 2, . . . , 7) and zT (t) z̄(t) are shown in Figs. 3 and 4. With the
variation of z (0), the trajectories of |zk(t)| (k = 1, 2, . . . , 7) and zT (t) z̄(t) will vary. But λI

m and λR
m do insistently

approach the corresponding true values.

Example 2. How does the approach behave when the dimensionality increases, if a 50 × 50 matrix is randomly
produced, the expression may be too long for presentation, thus a 50 × 50 matrix is specially given as

ai j =

{
(−1)i (50 − i)/100, i = j
(1 − i/50)i

− ( j/50) j , i 6= j.
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Fig. 4. The trajectory of |z(t)|2 in searching λR
m when n = 7.

Fig. 5. The trajectories of |zk (t)| in searching λI
m when n = 50.

The calculated results are λI
m = 0.3244 and λR

m = 4.6944. Convergence behaviors of |zk(t)| and zT (t) z̄(t) in
searching λI

m and λR
m are shown in Figs. 5–8. Comparing λI

m and λR
m with corresponding true ones λI

m = 0.3246 and
λR

m = 4.7000, we find that each comparing pair is very close. From Figs. 5–8, we also can see that the system gets to
equilibrium state soon though the dimensionality has reached 50.

To ulteriorly show the validity of this approach when dimensionality becomes large, let n = 100. The
corresponding convergence behaviors are shown in Figs. 9–12. λR

m = 7.3220 keeps very close to λR
m = 7.3224,

and λI
m = 0.2541 is very close to λI

m = 0.2540. From Figs. 5–12, we can see that the iteration number at which the
system enters into equilibrium state is not sensitive with dimensionality.

In realization, since
(

A 0
0 A

)
=

(
0 A
−A 0

) (
0 −U
U 0

)
and

(
0 A
−A 0

)
= −

(
A 0
0 A

) (
0 −U
U 0

)
, the two RNNs easily

switch. The former relation is used to transform RNN (1) into the RNN introduced in Theorem 4, and the latter for
the reverse.
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Fig. 6. Trajectories of |z(t)|2 in searching λI
m when n = 50.

Fig. 7. The trajectories of |zk (t)| in searching λR
m when n = 50.

Since the simulation platform only occupies one CPU, the merit of quickness is not fully exhibited as the simulating
operation runs sequentially in nature. Roughly speaking, only when neural network is implemented by electronic
circuit, the concurrent, and quickness, virtues can be wholly acquired since in such an instance all calculational nodes
can run synchronously. This paper only provides a potential approach for large-scale eigenvalue module estimation,
which can be used for spectral radius estimation for real-time signal processing, etc. Compared with traditional
numerical methods such as power method, QR algorithm and all kinds of recursive methods [8,15], which have
sequential processing nature, this algorithm is expected to achieve higher computational performance for large-scale
problems.
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Fig. 8. Trajectories of |z(t)|2 in searching λR
m when n = 50.

Fig. 9. The trajectories of |zk (t)| in searching λI
m when n = 100.

5. Conclusions

The quick computation of eigenvalues of a general real matrix is very important for some special applications
such as real-time principal component analysis, etc. This paper is an exploration in this field. Because neural network
runs in a concurrent manner, using it to perform the computation can achieve high speed. Although lots of research
focuses on using neural network to compute eigenpairs of a real symmetric, or anti-symmetric, matrix, the works
about accomplishing similar computations for a general real matrix are scarce in the relevant literature. Therefore,
this paper proposes a recurrent neural network model calculating the largest imaginary, or real, part, of a general real
matrix’s eigenvalues. The network is described by a set of differential equations, which is transformed into a complex
differential system. After obtaining the square module of the system variable, the convergence behavior of the network
is discussed in detail. The simulation results of a test on a 7 × 7 general real matrix indicate that the computed values
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Fig. 10. Trajectories of |z(t)|2 in searching λI
m when n = 100.

Fig. 11. The trajectories of |zk (t)| in searching λR
m when n = 100.

are very close to the corresponding true ones. For showing the approach’s performance when dimensionality increases,
a 50 × 50, and a 100 × 100, matrices are used for testing. The simulation results accord with corresponding true ones
nicely. It can also be seen from the results that the iteration number at which the network enters into equilibrium state
is not sensitive with the dimension number. This approach can be potentially used to estimate the largest modulus of
a general real matrix’s eigenvalues.
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