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1. INTRODUCTION

Let n be an arbitrary positive integer and let G and H be groups of the
same order n. Given a function f from G into H and a nontrivial element
ue G* =G — {1}, we define a mapping f, from G into H as

Sur x> flux) flx)

fis said to be a planar function of degree n if f, is bijective for all ue G*.
P. Dembowski and T.G. Ostrom studied such functions [2, Sect. 5; 3,
p. 2277 and showed that every planar function from G into H gives rise to
an affine plane S(G, H, f) of order »n, which is defined in the following way
(cf. [3, 5.1.127).

Points: the elements of the direct product G x H.

Lines: L(a, b) = {(x, f(xa™")b)|xe G}, ac G, be H,
L(c)={(¢, y)Iye H}, ceG. {*}

Incidence: set theoretic inclusion.

It is an open problem to decide the possible degrees of planar functions.
For example, every degree must be odd by Lemma9 of [2] (cf
Remark 2.3). Furthermore, in all the known examples both G and H are
elementary abelian p-groups for some odd prime p and the resulting planes
are all the semifield planes of odd order coordinatized by commutative
semificlds (Remark 3.2). In particular the known examples of planar
functions have prime power degrees.

The purpose of this paper is to study planar functions. In Section 2 we
will show that each planar function f from G into H corresponds to a parti-
tion of Gx G (Lemma 2.1). From this we have a system of diophantine
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equations that has at least one solution (Lemma 2.2). As an application, we
will give a result that rules out some possibilities for the degrees of planar
functions (Section 4). The terminology we use is standard and can be found
in [4] or [6].

2. SOME PARTITION GIVEN BY A PLANAR FuNcTION

Let G and H be groups of the same order n. Throughout the section
elements of G will be denoted by small Roman letters and elements of H
by small Greek letters: G={a, b, ¢, ..}, H={o, B, 7, ... }.

Let f be a function from G into H and set S,={xe G| f(x)=a}, € H.
Further set T(a,n)=S,xS,,—T,, where T, ={(x, x)|xeG}. Clearly
T, U, eu Ta, 1) is a partition of Gx G. Let T, =, T(a, 1), ne H.

An action of G on G x G is defined by (a, b)c = (ac, bc) for (a, b)e GXx G
and c e G. Every planar function can be interpreted in the following way.

LemMa 2.1.  The following three conditions are equivalent.

(i) fis planar.
(i) T(a, M) T(B,n)u# implies u=1 (a, B, ne H, ueG).
(ili) G*= {ab*1|(a,b)eT,7} for every we H. (If this is the case,
|T,|=n—1.)

Proof. Assume that f is planar. Let (q, b)e T(a, ), (¢, d)e T(B, n) and
assume that (a, b) = (¢, d)u for some ueG. Then, as f(a)=«a, f(b)=na,
flc)=P, and f(d)=np, we have f(a)f(b)"'=f(c)f(d)"'. From this
Sfap-1(B)=f.y-1(d). On the other hand, 1#ab ‘= (cu)(du) '=cd ' By
the definition of a planar function, 5=d. Hence u=d ~'b=1. Thus (i)
implies (ii).

Assume (ii) and deny (iii). Since (J,.4 T,={(x, })eGxG|x# y}
and T,nT,= (& for any distinct t and p in H, there exists an 5 € H such
that |T,| > (n’—n)/n=n—1. Hence ab~'=cd~" for some distinct (a, b),
(c,d)eT,. Set u=c~'a (=d~'b) and a=f(a), f=f(c). Then (a, b)=
(¢, d)u and (a,b)eT(x, 1), (c,d)eT(B,n). By (il), u=1, contrary to
{(a, b) # (¢, d). Thus (ii) implies (iii).

Assume (iii). If f, (a)=f/b) for some a, b, ueG, u#1, we have
fua)a="'=f(ub)p~'=yn for some neH, where a=f(a) and f=f(b).
Then, as u#1, (a,ua)e T(a,n) and (b, ub)e T(PB, n). Hence (a,ua),
(b, ub)e T,. Since a(ua)~'=b(ub)~!, we have a=5 by (iii). Thus (iii)
implies (i).

In the rest of the paper we assume that fis planar. Let x, be the number
of elements of S,. Clearly x, is a nonnegative integer.
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Lemma 2.2, The following hold.

“) ZxEHXaL: 1.
(i) Yiepxi=2n—1

(i) IfneHandn#1. then 3, .y x,x,, =n— 1

Proof. Since G=J .y S, and S, N S;= J for any distinct o, S H,
(i) holds.

By Lemma 2.1, |T,|=n—1 Put y=1. Then T,={,cy (a1} and
| T, 1) =185,xS,— T, |=x>—x,. Hence ¥, ,(x—x =T |=n—1
It follows from (i) that ¥, gx2=3,cpx,+n—1=2n—1 Thus {:i}
hoids.

If n#1, then §,x8,,nT,=¢ and so {T{a, 1)| =[5, xS,,|=x,x,,.
Hence 3,y x,%,,=|T,|=n—1. Thus (iii} holds.

Remark 2.3. By the above lemma, >, _, v, (x,—1)=#—1 and so =
must be odd (cf. Lemma 9 of [27).

DeriNTiON 24, Let o, o5, .., o, be a labelling of the clements of #.
A matrix M={(m,,,) relative to f is defined to be an nx»n matrix of
nonnegative integers such that m

Lty xxflx

LemMa 2.5. Let M be a matrix relative 10 f. Then M -M'=M' - M=

(n— 1YJ 4+ nd, where J is the nx n matrix with ¢ 1 in every position and I is
then identity matrix. (M" is the transposed matrix of M.)

Proof. Let M-M'=(a,z). Thena, ;=3 o, Mg, =2 cpuXy-1,Xp 1
= e g Xa- 1, Xty = X se X5 Xp-15. 5. HeEDCE, by Lemma 2.2, M M‘
(n—1)J+#al In particular |M-M'|=n""" and so M is a nonsingular
matrix.

Since MJ=JM (=nJ) by Lemma 2.2(i), (M- MOGYM={(n— 1} +rnl)M
=M{{n—1)J+nl). Thus M" - M=(n—1)J+ul

LEMMA 2.6, There exists an nx n unitary mairix U such that

I, 0
U'MU= , where z, = n and z,Z,=n for j> 1.
1] z

“n

Proof. By Lemma 2.5, there exists a unitary matrix U such that
U~!'MU is a diagonal matrix. Set

U ‘MU= N E
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By Lemma 2.2(i),

Hence we may assume z, =n. Since U is a unitary matrix,

~
P

Ny

141 0

(U-'MUYU " TMU)'=U "'"MM'U=

0 Z" Z"

By Lemma 2.5, the eigenvalues of M - M" are n* (with multiplicity 1) and
n (with multiplicity n —1). Thus z,z;=n for every j> 1.

Since n is odd, G and H are solvable groups by' the Feit-Thompson

theorem. In particular H/[ H, H] # 1 and so there exists a nontrivial linear
character of H.

LemMa 2.7. Let X be a nontrivial linear character of H. Set z=
Y weu XoAla). Then zZ=n.

Proof. Since
Zj xotl_lcxll(aj)
Zj xtxn_lac/l(aj)

(Zj xaf‘zjfl((xrlaj) Alaty)

Z] x:x,:llel(a; laj) }'(an)

Alory) t

for any teC, zz=n by Lemma 2.6.
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3. PLANAR FUNCTIONS CORRESPONDING TC SEMIFIELD PLANES

All the known planar functions are constructed from semifield planes. in
this section we will determine their general form.

Let g be a power of an odd prime and D a semifield of order 4. The
semifield plane n(D) is defined as follows [6].

Points: the elements of the direct product & x D.

Lines: (v=mx+b)={(x, y)ly=mx+b xeD}, m beD,
(x=k)={(k, })I)ED‘ keD.

Incidence: set theoretic inclusion.

Given a semifield D, a p-group P=DxDx D of order ¢° (g=1D|} is
defined by the rule

(X1, Vi 20 X0, ¥, o) = (X + Xa, 3+ 1o 5y 5+ 1)

for ali {x,.y,, z,), (x5, V5, Z72)€ P. Then P acts on n{D} as a collineation
group in such a way that

(a. DY '=(a+x, b+ ya+:z)

for a point (a, b)e Dx D and an element (x, v, z)e P {cf. [5, Sect. 2]).

Set A= {(\ 0, z)|x, ze D} and B={(0, 3, z)| », ze D}. Then A is the
group of (/. , /.. )-elations and B is the group of (=, = -elations. Moreover
4 and B are elementary abelian normal subgroups of P of order ¢°. Set

=ANB Then P=AB, and Z is the group of ali {oc./ )-elations of
order g.

Assume n(D)~ S(G. H, [) for suitable collineation groups & ané H of
n{D) and a planar function f from G into H. Here H is the group of
(0, ! -elations for some point @€/, and G x H acts transitively on the
affine points and also on /. — {Q}. (See [2, Sect. 5].) If O # (oc}, then the
dual plane of z(D) must be desarguesian by Theorem 6.18 of [6]. TueLe-
fore, without loss of generality we may assume that Q= (c0}. Therefo
H=7 and G normalizes P. Clearly Z is in the center of GP. Let / be an
affine line through (oc) and ¥V an affine point on it. Let L be the stabilizer
of V in the group GP. Since Z centralizes L and Z acts transitively on the
the set of affine points on /, L must be a group of {0, /}-elations. Hence
|LI<gand so |GP|=|GP:L|x|L|<g’q=g’=|P|. Thus G P.

Lemua 3.1. GH is isomorphic to an elementary abelian group of order q-
and GH+# A4, B.
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Proof. Since H=Z, G acts transitively on /. —{(w)}}. Hence
GrnA=1 and so P=GA. From this G ~GA/A = P/A. Thus the lemma
holds.

Remark 3.2. By Proposition 4.3 of [5] and the lemma above, D is
isotopic to a commutative semifield.

LEMMA 3.3. There exists an element O0#aeD such that GH=
{(x, ax, z)|x, ze D} and (ax) y =(ay)x for all x, ye D.

Proof. Since GHnB=H, (1,a,a’)e GH for some elements g, a’e D.
Then GH<{(x,y,z)eP|(x,y,z)(L,a,a')=(1,a,a')(x, y,z)} ={(x,ax,z)€
P|x, ze D). Hence GH = {(x, ax, z)e P|x, ze D}.

Let x and y be any two elements of D. Then (x, ax, 0), (y, ay, 0)e GH
as GH>z H=Z. Therefore (x, ax, 0)(y, ay,0)=(y, ay, 0)(x, ax,0) and so
(ay)x = (ax) y.

LEMMA 3.4. There exists a mapping g from D into D such that
(i) G={(x, ax, g(x))|xe D} and
(ii) glx+y)y=g(x)+ g(¥)+ (ay)x for all x, ye D.

Proof. Since GNZ=Gn H=1, G can be represented in the form
stated In (i). Since (x, ax, g(x))(y, ay, g(¥))=(x+ y, a(x+ y), g(x) +
g(¥)+ (ay)x), we have (ii).

LEMMA 3.5. Put F(x)= g(x)—3(ax)x. Then F(x+ y)= F(x)+ F(y) for
x, veD.

Proof. Since (ax) y=(ay)x, we can verify the lemma by direct calcula-
tion.

LEMMA 3.6. Let (c, d) be an affine point of n(D), ¢, de D, and (x, ax, z
an element of GH. If we identify each affine point (¢, d)**"*" with (x, ax, z),
the set 2 of affine points on a line (y=mx+b) is

P = {(x, ax, mx — (ax)c+s)|xe D}, where s=mc+b—d

Proof. Since (¢, d)™*?) = (c+x, d+ (ax)c+z), each point (1, mt+ b)
corresponds to (x,ax,z), where ¢+x=1 and d+ (ax)c+z=mt+b.
Hence 2= {(t—c,a(t—c),mt+b—d—(a(t —c))e)lteD} = {(x, ax,
mx —(ax)c+s)|xe D}, where s=mc+b—d.
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ProposiTioN 3.7. Ler D, G, H, and f be as stated above. If we identify
G and H with the additive group D™, the planar function [ corresponding to
the group GH has the form

Slr)= (3" + (mx”) x4 )

Here se D, 0, 1, ue Hom(D ™, D7), and 9 and u are nonsingular. Moreover
O0#reD and (rx) y=(ry)x for all x, ye D.

Proof. By Lemma 3.6, Z = {wp|w=(x, ax, g{x)

)e G, p=1{0, 0, N{xj}j,
xe D}, where N(x)=mx— (ax)c+s— g{x). Hence, by {

=) in Section |

Sf(x) = (mx® — (ax®)c + s — g(x"))*

\

for some nonsingular 6, pe Hom(D ", D " ). Set x"=mx? — {ax® ¢ — F{x")
and r= —1a. Then re Hom(D*, D) and so we have the proposition.

4. A NONEXISTENCE THEGREM

In this section we present a theorem on planar functions as an applica-
rion of the results obtained in Section 2. Throughout the section let 1 ( > 3}
be an odd integer and f a planar function of degree # from G into AH. Given
two primes p and g, ord,(q) denotes the order of ¢ in the multipiicative
group of Z/pZ.

THEOREM 4.1.  Let [ be a planar function of degree n from G into H and
p and q prime divisors of n such that ord,(q) is even. If p divides
|HITH, H1|, then the square free part of n is not divisible by q.

Proof. Since p divides |H/[H, H]|, there exisis a nontrivial linear
character 2 of H such that A? is the trivial character. Hence A{x) is an
algebraic integer of the p-cyclotomic field Q({,) for each ae H. It follows
that z=3", .y x,A(x)e@Q({,) and that z is an algebraic integer, where
x,=1|S,| (see Section 2). By Lemma 2.7, zZ=n.

Set r=ord,(q), g=(p—1)/r and let G be the Galois group of Q({,} over
Q. By a theorem of number theory (cf. Theorem 5.2.2 cf [1]), ¢ has the
factorization

qz’@lgl""gg {;
in Q(¢,), where 2,, 2,, .. and 2, are distinct prime ideals. Moreover G is
isomorphic to a cyclic group of order p— 1 and acts transitively on 4 =
{2, 2, .., 2,}. Hence, the unique subgroup G, of G of order r fixes 4
clementwise. By assumption, r is even. Therefore 47 = 2 (1 <i< g), whers
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|

T is the unique element of G, of order 2. Since {},={ 1=

, &= ¢ for any
P
¢eQ({,). Thus

Uy

P

fo
Ii
S

=92, 1<i<g (i1)
Set n=¢g‘m, where ¢ and m are some positive integers such that
(g¢, m)=1. Then, by (i), » has the following factorization in Q((,):

n=2525..- 25 (iii)

Here 2, and o are relatively prime for each ie {1, 2, .., g}.

Set z= 20129 ..-2% %, where 2, and # are relatively prime for each ie
{1,2, ... g}. Then Z=(2,)* ()% ---(Z,)® B. However, it follows from (ii)
that 7=2§2%-.-2% 3. Therefore n=:z=27"257... 22 #3. Since 2,
and A7 are relatively prime, we have e =2e, for each ie {1, 2, .., g}. Thus
e is even and the theorem holds.

COROLLARY 4.2. Let f be a planar function of degree n from a group G
into an abelian group H. Let p and q be primes such that pq divides n. If
ord,(q) is even, then the square free part of n is not divisible by q.

COROLLARY 4.3. Let p and q be primes such that p<q and p divides
q" + 1 for some positive integer m. Then there exists no planar function of

degree pq.
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