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a b s t r a c t

Indentation tests have long been a standard method for material characterization due to the fact that they
provide an easy, inexpensive, non-destructive and objective method of evaluating basic properties from
small volumes of materials. As the contact scales in such experiments reduce progressively (micro to
nano-scales) the internal material lengths become important and their effect upon the macroscopic
response cannot be ignored. In the present study, we derive general solutions for three basic two-dimen-
sional (2D) plane-strain contact problems within the framework of the generalized continuum theory of
couple-stress elasticity. This theory introduces characteristic material lengths in order to describe the
pertinent scale effects that emerge from the underlying microstructure and has proved to be very effec-
tive for modeling microstructured materials. By using this theory, we initially study the problem of the
indentation of a deformable elastic half-plane by a flat punch, then by a cylindrical indentor, and finally
by a shallow wedge indentor. Our approach is based on singular integral equations which have resulted
from a treatment of the mixed boundary value problems via integral transforms and generalized func-
tions. The results show significant departure from the predictions of classical elasticity revealing that
it is inadequate to analyze indentation problems in microstructured materials employing only classical
contact mechanics.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Indentation tests have long been a standard method for mate-
rial characterization due to the fact that they provide an easy, inex-
pensive, non-destructive and objective method of evaluating basic
properties from small volumes of materials and thin films. A range
of three-dimensional head-shapes are used including the sphere
(Brinell test), the circular cone (Rockwell C), the three-sided pyra-
mid (Berkovich) and the four-sided pyramid (Vickers), as well as a
range of essentially two-dimensional indentors such as the wedge
and the cylindrical (Fischer-Cripps, 2004; Johnson, 1985).

Studies have shown that there is a strong size effect on hardness
in polycrystalline, cellular and polymer materials especially when
the indent size is in the sub-micrometer depth regime. For exam-
ple, the measured indentation hardness of metals and ceramics in-
creases by a factor of two as the width of the indent is decreased
from 10 to 1 lm (Ma and Clarke, 1995; Poole et al., 1996;
Stelmashenko et al., 1993). In addition, indentation of thin films
showed an increase in the yield stress with decreasing film
thickness (Huber et al., 2002). Fleck et al. (1994) suggested that
the size effect on hardness is related to the high stress/strain gra-
dients present in shallow indentations. This dependence on
stress/strain gradients can also be concluded from dislocation the-
ory (Fleck et al., 1994). Moreover, Ma and Clarke (1995) observed
that the variation of hardness with indentation size is consistent
with a strain gradient plasticity model. In general, hardening of
materials is due to the combined presence of geometrically neces-
sary dislocations associated with plastic strain gradients and statis-
tically stored dislocations associated with plastic strains. However,
although strain gradients are extensively used to interpret the size
effects in plastic deformation, they are also important for materials
that deform elastically when the representative length of the
deformation field becomes comparable to the lengths of the mate-
rial microstructure. In fact, Maranganti and Sharma (2007) showed
that gradient effects play a significant role in complex materials
with coarse-grain structure. Indeed, Chen et al. (1998) developed
a continuum model for cellular materials and concluded that the
continuum description of these materials obeys a gradient elastic-
ity theory of the couple-stress type. In the latter study, the intrinsic
material length was naturally identified with the cell size. More-
over, gradient theories were successfully utilized in the past to
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model materials with microstructure like foams (Lakes, 1983) and
porous solids (Lakes, 1993). Fleck and Shu (1995) showed the sig-
nificance of strain gradient effects in the buckling of elastic fibers
in composite materials. Size effects were also observed experimen-
tally in post-buckling behavior of thin films (Fang and Wickert,
1994).

On the other hand, in indentation experiments at very small
indentation depths, plastic flow does not occur until the equivalent
strain reaches a critical yield value. In addition, the displacement
recovered during unloading is largely elastic and for this reason
the elastic contact theory is generally used in order to determine
the elastic modulus from a simple analysis of the indentation
load–displacement data (Pharr et al., 1992). Under these circum-
stances, the observed response of the material may be interpreted
only through elasticity considerations. However, the classical elas-
ticity theory includes no internal length scales and therefore is un-
able to predict the experimentally observed size effects. In fact, as
the contact scales reduce progressively (micro to nano-scales) the
internal material lengths become important and their effect upon
the macroscopic response cannot be ignored. For this reason, gen-
eralized continuum theories, such as the micropolar theory, the
couple stress theory, and the more general strain-gradient theory,
may be employed to interpret the microstructure-dependent size
effects on the elastic properties of the material. These theories cap-
ture the effects of microstructure by enriching the classical contin-
uum with additional material characteristic length scales, and,
thus, extending the range of applicability of the ’continuum’ con-
cept in an effort to bridge the gap between classical continuum
theories and atomic-lattice theories. A recent review of generalized
continuum theories can be found in Maugin (2010).

One of the most effective generalized continuum theories has
proved to be that of couple-stress elasticity, also known as Cosserat
theory with constrained rotations (Mindlin and Tiersten, 1962;
Koiter, 1964). This theory is the simplest gradient theory in which
couple-stresses make their appearance. The couple stress theory
may be viewed as a generalization of classical elasticity theory
and departs from the classical theory in several significant re-
spects. In particular, the modified strain-energy density and the
resulting constitutive relations involve besides the usual infinites-
imal strains, certain strain gradients known as the rotation gradi-
ents. Also, the generalized stress–strain relations for the isotropic
case include, in addition to the conventional pair of elastic con-
stants, two new elastic constants, one of which is expressible in
terms of a material parameter ‘ that has dimension of [length].
The presence of this length parameter, in turn, implies that the
modified theory encompasses the analytical possibility of size ef-
fects, which are absent in the classical theory. A recent study by
Bigoni and Drugan (2007) provides an interesting account of the
determination of the couple-stress moduli via homogenization of
heterogeneous materials. In addition, Beveridge et al. (2013) per-
formed experiments and numerical simulations in heterogeneous
materials loaded in bending and directly related the characteristic
material lengths in couple-stress elasticity with the intrinsic geo-
metrical structure of the samples. Experiments with phonon dis-
persion curves indicate that for most metals, the characteristic
internal length is of the order of the lattice parameter, about
0.25 nm (Zhang and Sharma, 2005a). However, other small-mole-
cule materials have larger internal characteristic lengths. For
example, for the semiconductor gallium arsenide (GaAs), Zhang
and Sharma (2005b) estimated a characteristic length of about
0.82 nm, while Reid and Gooding (1992) estimated a microstruc-
tural length for graphite of the order of 3.3 nm.

Couple-stress elasticity had already in the 60’s and 70’s some
successful application on stress concentration problems concern-
ing holes and inclusions. In recent years, there is a renewed
interest in couple-stress theory dealing with problems of micro-
structured materials. This is due to the inability of the classical the-
ory to predict experimental observed size effects and also due to
the increased demands for manufacturing devices at very small
scales. For instance, a multitude of problems concerning fracture,
plasticity, dislocations, and wave propagation have been analyzed
within the framework of couple stress and related gradient
theories. Recent applications include work by, among others,
Vardoulakis and Sulem (1995), Huang et al. (1999), Lubarda and
Markenscoff (2000), Fleck and Hutchinson (2001), Georgiadis and
Velgaki (2003), Grammenoudis and Tsakmakis (2005), Grentzelou
and Georgiadis (2005), Radi (2007), Gourgiotis and Georgiadis
(2008), Piccolroaz et al. (2012).

Regarding size effects in contact problems, we note that
through the years various models have emerged in the literature
to quantify the observed size effect in indentation. Most of these
models are phenomenological in nature based on gradient plastic-
ity ideas or on discrete dislocation concepts (see e.g. Poole et al.,
1996; Begley and Hutchinson, 1998; Nix and Gao, 1998; Shu and
Fleck, 1998; Wei and Hutchinson, 2003; Danas et al., 2012). An-
other approach in the context of classical plasticity theories con-
siders the effect of several micromechanical lengths upon the
macroscopic indentation response by directly incorporating the
microstructural characteristics of the indented half-space through
purely geometrical considerations (see e.g. Chen et al., 2004;
Stupkiewicz, 2007; Fleck and Zisis, 2010; Zisis and Fleck, 2010).

On the other hand purely elastic indentation of materials is hard
to achieve in practice (Larsson et al., 1996). Nonetheless, elasticity
can be of interest in particular cases. In fact, there are materials
such as polymers that exhibit significant size effects also in the
elastic regime (Han and Nikolov, 2007; Nikolov et al., 2007). In
general, as was pointed out by Maranganti and Sharma (2007),
materials with explicit microstructure such as cellular materials,
composites, ceramics, glassy and semi-crystalline polymers can
be fruitfully modeled by using gradient type elasticity theories.

In the present paper, we deal with three basic plane-strain con-
tact problems in couple-stress elasticity. It is remarked that Muki
and Sternberg (1965) were the first to study the effects of cou-
ple-stresses upon the flat-punch indentation response employing
the elaborate method of dual integral equations. In our work, we
extend their study by considering different types of indentors
and utilizing a more direct approach based on singular integral
equations. It is worth noting that this is the first analytical ap-
proach in the literature examining the response of various types
of indentors in 2D contact problems within the context of gradient
type elasticity theories. The paper is organized as follows: Initially,
we summarize the fundamental equations of couple-stress elastic-
ity under plane-strain conditions. Then, we formulate the three
plane-strain contact problems concerning the indentation of an
elastic half-space by (i) a flat punch, (ii) a cylindrical indentor,
and (iii) a wedge indentor. To obtain full field solutions the method
of singular integral equations is utilized. More specifically, the
integral equations have resulted from a treatment of the mixed
boundary value problems via Fourier transforms and generalized
functions. The integral equations are then solved by employing
analytical and numerical considerations. In the final part, the re-
sults for the three different indentation methods are presented
and the influence of microstructure upon the solution is discussed
in detail.

We note that our analysis may have some genuine practical
application in qualitatively identifying the influence of length scale
effects in real materials and possibly even quantifying the length
scale parameter itself. The requirement to identify such effects,
at least qualitatively, by simple procedures is of real practical
importance (Lakes et al., 1985).
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2. Basic equations in plane-strain

We recall here briefly the main features of the equilibrium the-
ory of plane strain within the linearized couple-stress theory of
homogeneous and isotropic elastic solids. Detailed presentations
of the couple-stress theory can be found in the fundamental papers
of Mindlin and Tiersten (1962), and Koiter (1964). An interesting
exposition of the theory under plane-strain conditions was given
in the work by Muki and Sternberg (1965), and more recently by
Gourgiotis and Georgiadis (2011).

For a body that occupies a domain in the ðx; yÞ-plane under con-
ditions of plane strain, the displacement field takes the general
form:

ux � uxðx; yÞ– 0; uy � uyðx; yÞ– 0; uz � 0: ð1Þ

Further, for the kinematical description, the following quanti-
ties are defined in the framework of the geometrically linear theory

exx ¼
@ux

@x
; eyy ¼

@uy

@y
; exy ¼ eyx ¼

1
2

@uy

@x
þ @ux

@y

� �
; ð2Þ

x ¼ 1
2

@uy

@x
� @ux

@y

� �
; jxz ¼

@x
@x

; jyz ¼
@x
@y

; ð3Þ

where e is the usual strain tensor, x is the rotation, and ðjxz;jyzÞ are
the non-vanishing components of the curvature tensor (i.e. the gra-
dient of rotation) expressed in dimensions of [length]�1.

Accordingly, assuming vanishing body forces and body couples,
the equations of equilibrium in the present circumstances reduce
to

@rxx

@x
þ @ryx

@y
¼ 0;

@rxy

@x
þ @ryy

@y
¼ 0; rxy � ryx þ

@mxz

@x
þ @myz

@y
¼ 0;

ð4Þ

where (rxx;ryy;ryx;rxy) and (mxz; myz) are the non-vanishing com-
ponents of the (asymmetric) stress and couple-stress tensors,
respectively. Moreover, the constitutive equations furnish

exx ¼ ð2lÞ�1½rxx � mðrxx þ ryyÞ�;
eyy ¼ ð2lÞ�1½ryy � mðrxx þ ryyÞ�; exy ¼ ð4lÞ�1ðrxy þ ryxÞ; ð5Þ

and

jxz ¼ ð4l‘2Þ�1
mxz; jyz ¼ ð4l‘2Þ�1

myz: ð6Þ

where l, m and ‘, in this order, stand for the shear modulus, Pois-
son’s ratio, and the characteristic material length of couple-stress
theory (Mindlin, 1963).

Combing the previous equations, we obtain the following stress
and couple-stress equations of compatibility

@2rxx

@y2 �
@2

@x@y
ðrxy þ ryxÞ þ

@2ryy

@x2 ¼ mr2ðrxx þ ryyÞ; ð7Þ

@mxz

@y
¼ @myz

@x
; ð8Þ

mxz ¼ �2‘2 @

@y
½rxx � mðrxx þ ryyÞ� þ ‘2 @

@x
ðrxy þ ryxÞ; ð9Þ

myz ¼ 2‘2 @

@x
½ryy � mðrxx þ ryyÞ� � ‘2 @

@y
ðrxy þ ryxÞ: ð10Þ

Note that only three of the four equations of compatibility are
independent. Indeed, Eqs. (8)–(10) imply (7), while Eqs. (7), (9),
and (10) yield (8) (Mindlin, 1963; Muki and Sternberg, 1965).

Finally, Mindlin (1963) introduced pertinent stress functions
(generalizing the Airy stress function of classical elasticity) by
showing that the complete solution of Eq. (4) admits the following
representation

rxx ¼
@2U
@y2 �

@2W
@x@y

; ryy ¼
@2U
@x2 þ

@2W
@x@y

; rxy ¼ �
@2U
@x@y

� @
2W
@y2 ;

ryx ¼ �
@2U
@x@y

þ @
2W
@x2 ; ð11Þ

and

mxz ¼
@W
@x

; myz ¼
@W
@y

; ð12Þ

where U � Uðx; yÞ and W � Wðx; yÞ are two arbitrary but sufficiently
smooth functions. Further, substitution of (11) and (12) into (9) and
(10) results in the following pair of differential equations for the
stress functions

@

@x
ðW� ‘2r2WÞ ¼ �2ð1� mÞ‘2r2 @U

@y

� �
; ð13Þ

@

@y
ðW� ‘2r2WÞ ¼ 2ð1� mÞ‘2r2 @U

@x

� �
; ð14Þ

which then lead to the uncoupled PDEs

r4U ¼ 0; ð15Þ

r2W� ‘2r4W ¼ 0: ð16Þ

Note that as the quantities ‘, @W=@x and @W=@y tend to zero, the
above representation passes over into the classical Airy’s represen-
tation. In addition, from (2), (3), (5) and (11), (12), one can obtain
the following relations expressing the displacement field in terms
of Mindlin’s stress functions
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¼ 1

2l
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@x@y
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 !
; ð17Þ
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¼ 1
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2
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 !
: ð19Þ
3. Formulation of the contact problems and boundary
conditions

We now examine the stresses produced in an elastic half-plane
by the action of a rigid indentor pressed into the surface as shown
in Fig. 1. The body is governed by the equations of couple-stress
elasticity and a Cartesian coordinate system Oxyz is attached at
the center line of the indentor’s geometry (Fig. 1). A load P is ap-
plied at the center line of the indentor which, in our plane strain
case, has dimensions of [force][length]�1.

Three basic indentor profiles are considered. Firstly, we study
the flat punch indentation problem (Fig. 1a). We assume that the
punch has a flat base of width 2b with sharp square corners; it is
sufficiently long in the z-direction so that plane strain conditions
prevail. Since the punch is rigid, the surface of the elastic solid re-
mains flat in the contact area. In addition, we restrict our study to
indentations in which the punch does not tilt, so that the interface
remains parallel to the undeformed surface of the solid – the re-
sponse upon tilting is examined in a subsequent paper. Next, we
examine a rigid cylindrical indentor of radius R with its axis lying
parallel to the z-axis and pressed in contact with a half-plane under
the action of the force P. The two bodies are making contact over a



(a)

(b)

(c)

Fig. 1. Indentation of an elastic traction-free half-space by a rigid: (a) flat punch (b)
cylindrical indentor (c) wedge indentor.
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long strip of width 2b lying parallel to the z-axis (Fig. 1b). In clas-
sical elasticity Hertz considered this case as the limit of an elliptical
contact when one axis of the ellipse becomes considerably larger
than the other axis (see e.g. Hills and Nowell, 1994). Finally, we
consider a shallow wedge indentor pressed in contact with a
half-plane under the action of the force P. In order for the deforma-
tions to be sufficiently small, within the frame of the geometrically
linear theory, the semi-angle a of the wedge must be close to 90

�

(in our case we assume that a ¼ 88
�
; see also Johnson, 1985).

For the points lying within the contact area (�b < x < b) after
loading, we have the following general geometrical boundary
condition:

uy ¼ kðxÞ; ð20Þ

which, depending on the type of the profile, takes three alternative
forms:

(i) k(x) = d, for the case of the flat punch,
(ii) kðxÞ ¼ d� 1

2R x2; for the case of the cylindrical indentor,
(iii) k(x) = d � |x|cota, for the case of the wedge indentor.

where d is a positive constant.
Regarding the traction boundary conditions of the contact prob-

lem, we note first that no restriction is imposed on the tangential
displacement ux and its normal derivative dux=dy under the inden-
tor. Consequently, the rotation x is arbitrary at the contact area.
Thus, by enforcing the principle of virtual power (Koiter, 1964),
we may approximate zero shear and couple tractions under the
indentor. In view of the above, the following traction boundary
conditions hold for a frictionless and smooth contact (see also
Shu and Fleck, 1998):

ryyðx;0Þ ¼ 0 for jxj > b; ð21Þ

ryxðx;0Þ ¼ 0 for �1 < x <1; ð22Þ

myzðx;0Þ ¼ 0 for �1 < x <1; ð23Þ

which are accompanied by the complementary conditionZ b

�b
ryyðx;0Þdx ¼ �

Z b

�b
pðxÞdx ¼ �P; ð24Þ

where P is the applied line load, and ryyðx;0Þ ¼ �pðxÞ is the pres-
sure below the indentor with the following properties:

pðxÞ ¼ 0 ðjxj > bÞ and pðxÞ ¼ pð�xÞ ðjxj < bÞ: ð25Þ

Moreover, since the indented surface is an unbounded region,
the above boundary conditions must be supplemented by the reg-
ularity conditions at infinity

rij ! 0 as q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
!1: ð26Þ

As a final comment, before proceeding, we should note that in
2D contact problems a difficulty arises regarding the evaluation
of the displacements, which is absent in the 3D cases. Indeed, as
discussed in Johnson (1985), the value of the displacement of a
point in an elastic half-space loaded two dimensionally cannot
be expressed relative to a datum located at infinity, due to the fact
that the displacements become unbounded as Oðln qÞ, with q being
the distance from the loaded zone. Thus, the normal displacement
uy can only be defined relative to an arbitrary chosen datum. In
physical terms this means that the distance d cannot be evaluated
by consideration of the local contact stresses alone; it is also nec-
essary to consider the stress distribution within the bulk of the
body (see also Bower, 2009).

4. Fourier transform analysis

The three plane-strain contact problems are attacked with the
aid of the Fourier transform on the basis of the stress function for-
mulation summarized earlier. The direct Fourier transform and its
inverse are defined as follows

f̂ ðnÞ ¼
Z 1

�1
f ðxÞeinxdx; ð27Þ

f ðxÞ ¼ 1
2p

Z 1

�1
f̂ ðnÞe�inxdn; ð28Þ

where i � ð�1Þ1=2 .
Transforming now (15) and (16) with (27) provides the follow-

ing ODEs for the transformed stress functions

d4Û

dy4 � 2n2 d2Û

dy2 þ n4Û ¼ 0; ð29Þ

‘2 d4Ŵ

dy4 � ð1þ 2‘2n2Þd
2Ŵ

dy2 þ n2ð1þ ‘2n2ÞŴ ¼ 0: ð30Þ

Similarly, the following results are obtained for the Fourier
transforms of the stresses, couple-stresses and displacements

r̂xx ¼
d2Û

dy2 þ in
dŴ
dy

; r̂yy ¼ �n2Û� in
dŴ
dy

; r̂yx ¼ in
dÛ
dy
� n2Ŵ;

r̂xy ¼ in
dÛ
dy
� d2Ŵ

dy2 ; ð31Þ
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m̂xz ¼ �inŴ; m̂yz ¼
dŴ
dy

: ð32Þ

ûx ¼
1

2ln
ið1� mÞd

2Û

dy2 � n
dŴ
dy
þ imn2Û

 !
;

ûy ¼
1

2ln2 ð1� mÞ d
3Û

dy3 � ð2� mÞn2 dÛ
dy
� in3Ŵ

 !
:

ð33Þ

The governing equations (29) and (30) have the following
general solution that is required to be bounded as y! þ1

Ûðn; yÞ ¼ ½C1ðnÞ þ yC2ðnÞ�e�jnjy; ð34Þ

Ŵðn; yÞ ¼ C3ðnÞe�jnjy þ C4ðnÞe�cy; ð35Þ

where c � cðnÞ ¼ ð1=‘2 þ n2Þ1=2
.

Enforcing now the boundary conditions (22) and (23) results in
the following equations for the unknown functions CiðnÞ
(i ¼ 1; . . . ;4)

C2ðnÞ ¼ jnjC1ðnÞ � inð1� jnj�1cÞC4ðnÞ; ð36Þ

C3ðnÞ ¼ �cjnj�1C4ðnÞ; ð37Þ

where the functions C2ðnÞ and C3ðnÞ are related through the
compatibility equations (13) and (14) as follows

C3ðnÞ ¼ �4i‘2ð1� mÞnC2ðnÞ: ð38Þ

Further, according to (21), (24), and (27), we obtain

r̂yyðn;0Þ ¼
Z 1

�1
ryyðx;0Þeinxdx ¼ �

Z b

�b
pðxÞeinxdx ¼ �p̂ðnÞ; ð39Þ

where p̂ðnÞ is the transformed pressure distribution below the
indentor, which, taking into account the second of (31) can be
written as

p̂ðnÞ ¼ n2Ûþ in
dŴ
dy

: ð40Þ

Moreover, upon substituting (34) and (35) into (40) for y ¼ 0,
and taking also into account (36)–(38), we obtain the relation

C1ðnÞ ¼
p̂ðnÞ
n2 : ð41Þ

Finally, in view of (36)–(41), the transformed stress functions
become now

Ûðn; yÞ ¼ 1þ jnjcy

c� 4ð1� mÞ‘2n2ðjnj � cÞ

" #
e�jnjy

n2 p̂ðnÞ; ð42Þ

Ŵðn; yÞ ¼ �4i‘2ð1� mÞ½jnjce�by � n2e�cy�
½c� 4ð1� mÞ‘2n2ðjnj � cÞ�n

p̂ðnÞ: ð43Þ
5. Singular integral equation approach

Our objective now is the determination of the contact-stress
distribution pðxÞ under the indentor and the determination of the
pertinent contact length b when appropriate. For the solution of
the mixed boundary value problems, we employ the method of sin-
gular integral equations. In classical elasticity, the general proce-
dure of reducing mixed boundary value problems to singular
integral equations is given, e.g. by Erdogan (1978). An application
of the technique within the context of couple-stress elasticity for
plane-strain crack problems can be found in Gourgiotis and
Georgiadis (2007, 2008), and in the context of strain-gradient elas-
ticity in Paulino et al. (2003) and Gourgiotis and Georgiadis (2009).

The definition of the inverse Fourier transform in (28) together
with the second of (33), lead to the following equation

duy

dx
¼ 1

2p

�
Z 1

�1

�i
2ln

ð1� mÞd
3Û

dy3 � ð2� mÞn2 dÛ
dy
� in3Ŵ

 ! !
e�ixndn:

ð44Þ

By substituting in the above equation the expressions for the
stress functions (42) and (43) at y ¼ 0, and by taking into account
(39), we obtain

duy

dx
¼ 1

2p

Z 1

�1

ið1� mÞjnjc
ln½4‘2ð1� mÞn2ðjnj � cÞ � c�

�
Z b

�b
pðsÞeinsds

" #
e�ixndn: ð45Þ

Then, using the displacement boundary condition in (20) and
reversing the order of integration in (45), the problem is reduced
to the following integral equation

1
2p

Z b

�b
pðsÞ

Z 1

�1

ið1� mÞjnjc
ln½4‘2ð1� mÞn2ðjnj � cÞ � c�

" #
e�iðx�sÞndnds

¼ dkðxÞ
dx

; jxj 6 b; ð46Þ

which, bearing in mind that the quantity inside the bracket is an
odd function with respect to n, can be finally written as

1
lp

Z b

�b
Kðx� sÞpðsÞds ¼ dkðxÞ

dx
; ð47Þ

where the kernel Kðx� sÞ is defined as

Kðx� sÞ ¼
Z 1

0
gðnÞ sinðnðx� sÞÞdn; ð48Þ

with

gðnÞ ¼ ð1� mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘2n2

p
ð4ð1� mÞ‘3n3 � 4ð1� mÞ‘2n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘2n2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘2n2

p
Þ
: ð49Þ

In Eq. (47), passing to the limit as ‘! 0, one recovers the
classical integral equation for each of the three characteristic 2D
problems discussed in the present work.

Now, in order to make the kernel in (48) explicit and separate
its singular and regular parts, it is necessary to examine the asymp-
totic behavior of the function gðnÞ as n!1. Indeed, by using the-
orems of the Abel-Tauber type (Roos, 1969) and noting that
lim
n!1

gðnÞ ¼ g1ðnÞ ¼ � 1�m
3�2m, we decompose gðnÞ as

gðnÞ ¼ g1ðnÞ þ ½gðnÞ � g1ðnÞ�: ð50Þ

Accordingly, utilizing certain results of the theory of the gener-
alized functions and singular distributions (Roos, 1969; Erdogan,
1978) the kernel Kðx� sÞ becomes

Kðx� sÞ ¼
Z 1

0
g1ðnÞ sinðnðx� sÞÞdn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

singular part

þ
Z 1

0
½gðnÞ � g1ðnÞ� sinðnðx� sÞÞdn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

regular part

¼ � 1� m
ð3� 2mÞ

1
x� s

þNðx� sÞ; ð51Þ
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where

Nðx� sÞ ¼
Z 1

0
½gðnÞ � g1ðnÞ� sinðnðx� sÞÞdn; ð52Þ

is now a regular kernel for x! s.
In view of the above and after the appropriate normalization,

the governing singular integral equation takes its final form

� 1� m
3� 2m

Z 1

�1

pð~sÞ
~x� ~s

d~sþ
Z 1

�1

~Nð~x� ~sÞpð~sÞd~s ¼ lp
b

dkð~xÞ
d~x

; j~xj < 1;

ð53Þ

with ~x ¼ x=b, ~s ¼ s=b. In addition, the complementary condition
in (24) becomesZ 1

�1
pð~sÞd~s ¼ Pb�1

: ð54Þ

It should be noted that the first integral in the integral equation
(53) is interpreted in the Cauchy principal value sense (CPV). In
addition, the regular kernel is defined as

~Nð~x� ~sÞ

¼

Z 1

0

2ð1� mÞ2 2q2f2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ q2f2
q

� qf

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2f2

q� �
ð3� 2mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2f2

q
þ 4q2ð1� mÞf2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2f2

q
� qf

�� �
2
664

3
775

� sinðfð~x� ~sÞÞdf; ð55Þ

with f ¼ nb and q ¼ ‘=b. The above convergent integral is a Fourier
sine transform and can be efficiently evaluated numerically
employing MATHEMATICA™ algorithms that take into account its
oscillatory character.
Table 1
Flat punch. Normalized pressure pð~xÞ=pclasð~xÞ below the indentor at x=b ¼ 1 for a
material with Poisson’s ratio m ¼ 0.

N q = 10 q = 1.0 q = 0.1 q = 0.01

20 1.007603 1.215746 1.654364 1.58892
40 1.007603 1.215746 1.654364 1.72365
60 1.72391
80 1.72391
6. Numerical solution

The numerical solution of the singular integral equation (53) is
accomplished utilizing the collocation method with respect to each
indentor profile.

6.1. Flat punch

The problem of the flat punch indenting a half-space in the con-
text of couple-tress theory was initially treated by Muki and Stern-
berg (1965). The latter employed the elaborate method of dual
integral equations. Based on their asymptotic analysis, we assume
a pressure distribution of the form:

pð~sÞ ¼
X1
n¼0

an
Tnð~sÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~s2
p ; j~sj 6 1; ð56Þ

where Tnð~sÞ are the Chebyshev polynomials of the first kind (see e.g.
Abramowitz and Stegun, 1972). We note that by assuming the
above pressure representation, the classical square-root stress sin-
gularity at the corners of the punch is retained also in the couple
stress theory. Now, substituting (56) into the integral equation
(53) one arrives at

X1
n¼0

an �
1� m

3� 2m

Z 1

�1

Tnð~sÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~s2
p

ð~x� ~sÞ
d~sþ

Z 1

�1

Tnð~sÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~s2
p ~Nð~x� ~sÞd~s

( )

¼ 0; j~xj 6 1:

ð57Þ

Further, by using Eqs. (54), (56) and employing the orthogonal-
ity properties of the Chebyshev polynomials of the first kind, we
derive that: a0 ¼ PðpbÞ�1, where 2b is the contact length which
in the present case is constant. It is noted that the first integral
in (57) is evaluated as a CPV integral by using the following prop-
erties of Chebyshev polynomials (Erdogan and Gupta, 1972)Z 1

�1

Tnð~sÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~s2
p

ð~x� ~sÞ
d~s ¼

0 if n ¼ 0
�pUn�1ð~xÞ; if n P 1

�
; j~xj 6 1; ð58Þ

where Unð~xÞ are Chebyshev polynomials of the second kind. The
second integral in (57) is regular and can be readily obtained by
the Gauss–Chebyshev quadrature method. Consequently, the singu-
lar integral equation (57) takes the following functional formX1
n¼0

an
ð1� mÞp
3� 2m

Un�1ð~xÞ þ Q nð~xÞ
� �

¼ 0; j~xj 6 1; ð59Þ

with Qnð~xÞ ¼
R 1
�1 Tnð~sÞð1� ~s2Þ�1=2 ~Nð~x� ~sÞd~s.

Now, Eq. (59) is solved by truncating the series at n ¼ N and
using an appropriate collocation technique with collocation points
chosen as the roots of UNð~xÞ, viz. ~xj ¼ cosðjp=ðN þ 1ÞÞ with
j ¼ 1;2; . . . ;N. In this way, a system of linear algebraic equations
is formed which supplemented by the complementary condition
(54) enables us to evaluate the N þ 1 coefficients an and, conse-
quently, the desired pressure distribution. In Table 1, the conver-
gence of the normalized pressure pð~xÞ=pclasð~xÞ below the indentor
at the vicinity of the contact is presented. Note that for decreasing
values of q, a larger number of collocation points is needed.

6.2. Cylindrical indentor

Next, we consider the problem of the cylindrical indentor. In
classical elasticity the contact tractions are not singular at x ¼ �b
(Johnson, 1985). Accordingly, guided by the results concerning
the modification of stress singularities in the presence of couple
stresses (Sternberg and Muki, 1967; Gourgiotis and Georgiadis,
2008), and also bearing in mind that the governing singular inte-
gral equation (53) has qualitatively the same general form with
the respective one in the classical theory (with the addition of
the regular kernel), we assume the following pressure distribution
under the indentor

pð~sÞ ¼
X1
n¼0

anUnð~sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~s2
p

: ð60Þ

In this case, the integral equation in (53) becomes

X1
n¼0

an �
1� m

3� 2m

Z 1

�1

Unð~sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~s2
p

ð~x� ~sÞ d~sþ
Z 1

�1
Unð~sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~s2
p

~Nð~x� ~sÞd~s

( )

¼ �lpb
R

~x; j~xj 6 1:

ð61Þ

It is remarked that the contact area b is not known a priori and
will be determined from the solution of the boundary value
problem. Moreover, in (61), the first integral is evaluated as a
CPV integral by using the following relation (Chan et al., 2003):Z 1

�1

Unð~sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~s2
p

ð~x� ~sÞ d~s ¼ pTnþ1ð~xÞ for n P 0; j~xj 6 1: ð62Þ
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Consequently, one reaches the following functional equation
that can be used in the numerical discretization

X1
n¼0

an �
ð1� mÞp
3� 2m

Tnþ1ð~xÞ þWnð~xÞ
� �

¼ �lpb
R

~x; ð63Þ

where Wnð~xÞ ¼
R 1
�1 Unð~sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~s2
p

~Nð~x� ~sÞd~s is a regular integral,
which can be evaluated by the standard Gauss–Chebyshev quadra-
ture method. Now, Eq. (63) is solved by truncating the series at
n ¼ N and using an appropriate collocation technique with
collocation points chosen as the roots of TNþ1ð~xÞ, viz.
~xj ¼ cosðð2j� 1Þp=ð2ðN þ 1ÞÞÞ with j ¼ 1;2; . . . ;N þ 1. In this way,
a system of N þ 1 linear algebraic equations is formed for the
N þ 1 coefficients an. It is noted that since the index of the pertinent
singular integral equation (61) is k ¼ �1, the complementary condi-
tion (54) is not necessary for the computation of the system coeffi-
cients but is essential for the evaluation of the unknown contact
area b. In general, in such cases where both ends of the contact area
are smooth, a consistency condition should be also considered (see
e.g. Gakhov, 1966). However, it can be readily shown that in our
case this condition is identically satisfied. Now, for a given ratio q,
all the coefficients an are evaluated from the solution of (63) as lin-
ear functions of the unknown contact area b. In particular, we derive
a relation of the form: a0 ¼ cb, where c is a constant depending
upon the values of c � cðl; m; q; P;RÞ. On the other hand, utilizing
the complementary condition (54) in conjunction with the repre-
sentation (60) for the pressure distribution, and taking into account
the orthogonality properties of the second kind Chebyshev polyno-
mials Un, we obtain that: a0 ¼ 2PðpbÞ�1. Combining the above
results regarding the coefficient a0, a quadratic equation for b is
obtained, the solution of which yields numerically the unknown
contact length as: b ¼ ð2P=pcÞ1=2.

In Table 2, the convergence of the normalized half contact width
b=bclas is shown.

6.3. Wedge indentor

Finally, we consider the problem of the sharp wedge indentor.
As in the classical theory (Hills and Nowell, 1994), we assume that
the pressure is non-singular at the end points of the contact area.
In this case, the singular integral equation (53) takes the following
form

� 1� m
3� 2m

Z 1

�1

pð~sÞ
~x� ~s

d~sþ
Z 1

�1

~Nð~x� ~sÞpð~sÞd~s

¼ �lp sgn ð~xÞ cot a; j~xj 6 1; ð64Þ

where sgn ðÞ is the signum function, and a is the half-angle of the
indentor (Fig. 1c). It is noted that the presence of the signum func-
tion on the RHS of (64) induces a discontinuity of the solution at
~x ¼ 0. Therefore, the methodology employed in the previous sec-
tions, although in general converging, yet is not optimally efficient
for the numerical solution of (64) and should be accordingly modi-
fied. For this reason, we follow the approach proposed by Ioakimidis
(1980) for the solution of crack problems where the loading func-
tion presents jump discontinuities. An interesting application of this
methodology in 2D contact problems for functionally graded mate-
rials in the context of classical elasticity can be found in Ke and
Wang (2006).
Table 2
Cylindrical indentor. Normalized half contact width b=bclas for a material with
Poisson’s ratio m ¼ 0.

N q = 10 q = 1.0 q = 0.1 q = 0.01

20 0.57972 0.65245 0.91512 0.99156
40 0.57972 0.65245 0.91512 0.99063
60 0.99063
To this end, we set

pð~xÞ ¼ wð~xÞ þ hð~xÞ; ð65Þ

where wð~xÞ is a new function to be determined and hð~xÞ satisfies the
singular integral equation

� 1� m
3� 2m

Z 1

�1

hð~sÞ
~x� ~s

d~s ¼ �lp sgn ð~xÞ cot a; j~xj 6 1: ð66Þ

Now, (66) has the same general form as the integral equation
that describes the shallow wedge problem in the classical theory
(Johnson, 1985; see also Section 7). A closed-form solution is then
given by

hð~xÞ ¼ lð3� 2mÞ cota
pð1� mÞ ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~x2
p

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~x2
p : ð67Þ

Upon substitution from (65) into (64) and by using (66), one
arrives at

� 1� m
3� 2m

Z 1

�1

wð~sÞ
~x� ~s

d~sþ
Z 1

�1

~Nð~x� ~sÞwð~sÞd~s ¼ f ð~xÞ; j~xj 6 1; ð68Þ

where

f ð~xÞ ¼ �
Z 1

�1

~Nð~x� ~sÞhð~sÞd~s: ð69Þ

Moreover, the complementary condition in (54) yieldsZ 1

�1
wð~xÞd~x ¼ P

b
� 2lð3� 2mÞ cot a

pð1� mÞ : ð70Þ

It can be readily shown that the function f ð~xÞ is continuous in
the range ~x 2 ½�1;1�, and thus, the standard methodology de-
scribed in the previous section can be directly applied for the solu-
tion of (68). As in the cylindrical indentor case, we assume that wð~sÞ
has the following form

wð~sÞ ¼
X1
n¼0

anUnð~sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~s2
p

: ð71Þ

Then, omitting the details of the analysis, the final functional
form of the integral equation becomes

XN

n¼0

an �
ð1� mÞp
3� 2m

Tnþ1ð~xÞ þWnð~xÞ
� �

¼ f ð~xÞ: ð72Þ

Again, the unknown contact length b will be determined from
the solution of (72) together with the complementary condition
(70). The functional equation is solved by employing the same col-
location scheme as in Section 6.2. In this case, the solution pre-
sented a slower convergence, when compared to the previous
cases. Indeed, as it is shown in Table 3, for small values of the ratio
q, a significant increase in the number of collocation points is
needed for the convergence of the solution. This can be attributed
to the fact that as q! 0 the continuous function f ð~xÞ approaches
the discontinuous signum function. In particular, taking into ac-
count (55), (66), and (69), we readily obtain that:
lim
q!0

f ð~xÞ ¼ �2lpð1� mÞ sgn ð~xÞ cot a.

7. Results and discussion

We now proceed to the discussion of the results obtained for
the three indentation problems. In what follows, we investigate
the effect of the ratio ‘=b (normalized characteristic length) and
the Poisson’s ratio m upon the contact pressure distribution, the
contact width, and the average pressure. For the sake of complete-
ness, we cite in Table 4 the respective solutions for the three inden-
tation problems in the context of classical elasticity (Johnson,
1985).



Table 3
Wedge indentor. Normalized half contact width b=bclas for a material with Poisson’s
ratio m ¼ 0.

N q = 10 q = 1.0 q = 0.1 q = 0.01

20 0.33614 0.43278 0.89726 0.99694
40 0.33614 0.43278 0.89532 0.99216
60 0.89519 0.99123
80 0.89517 0.99084

100 0.89516 0.99066
120 0.89516 0.99056
140 0.99046
160 0.99046

Th. Zisis et al. / International Journal of Solids and Structures 51 (2014) 2084–2095 2091
7.1. Effect of normalized characteristic length ‘=b upon the contact
pressure distributions

Fig. 2a and b depict the variation of the ratio of the couple-stress
to the conventional pressure p=pclas for the flat punch problem as a
function of the ratio ‘=b at various fixed normalized distances x=b.
Results are shown for Poisson’s ratios (a) m ¼ 0 and (b) m ¼ 0:5. The
classical elasticity solution is represented by a single point at
‘=b ¼ 0. As ‘=b increases from zero, the results regarding the pres-
sure below the indentor depart from those predicted by classical
elasticity. In fact, it is observed that at small values of the ratio
‘=b the couple-stress effects are more pronounced and the devia-
tion from the classical elasticity solution is increased. The bound-
ary layer effect near the corners of the punch is more apparent in
the present representation from the curves that correspond to
x=b ¼ 0:9 and x=b ¼ 0:99. In particular, the curve x=b ¼ 0:9 reveals
the effect in greater detail: following an initial steep descent below
the classical pressure-ratio of unity, it rises to a maximum above
unity before it steadily approaches the asymptotic value of unity
common to all curves as ‘=b!1.

Moreover, we note that the pressure below the flat punch at a
fixed location and away from its corners (jxj < 0:8b) is always re-
duced compared to its classical value. This reduction is more evi-
dent in the range 0:2 < ‘=b < 0:4. On the other hand, as x=b! 1,
the pressure for both classical elasticity and couple stress elasticity
becomes infinite, however, since both solutions exhibit the same
asymptotic behavior, their ratio remains bounded as x=b! 1. In
this case, as Muki and Sternberg (1965) pointed out, the pressure
concentration is significantly amplified, for fixed, however small,
values of ‘ in a sufficiently small neighborhood of the corners of
the punch. In fact, as x=b! 1�, the pressure ratio rises abruptly
from unity reaching the maximum value

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2m
p

as ‘=b! 0 and
then decreases to unity as ‘=b!1. Finally, regarding the effect
of the Poisson’s ratio upon p=pclas, we note that for small values
of m the couple-stress effects become more significant.

Next, we proceed with the results for the cylindrical indentation
problem presented in Fig. 3a and b for various normalized dis-
tances x=b. It is observed that contrary to the flat punch case, the
pressure ratio p=pclas is in general above unity for all values of
‘=b. As ‘=b increases, the material microstructure becomes more
pronounced and the pressure ratio increases significantly and
tends to the limit

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2m
p

. A similar behavior is noted for the shal-
low wedge indentation problem (Fig. 4). In this case, the effect of
the ratio ‘=b over the pressure ratio becomes more significant as
Table 4
Solutions for the three indentation problems in the context of classical elasticity
(Johnson, 1985).

Flat punch Cylindrical indentor Wedge indentor

b const:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2PRð1� mÞ

pl

s
Pð1� mÞ
2l cot a

pðxÞ P

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x2

p 2P

pb2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x2

q
l cot a
ð1� mÞp ln

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x2

p
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x2

p

we approach the sharp tip of the indentor (x=b! 0) where both
the classical and the couple-stress solutions exhibit logarithmic
type singularities. In fact, it can be shown that as ‘ departs from
zero, the strength of the pressure singularity becomes:
lim
x!0

p=pclas ¼ 3� 2m, for every ratio ‘=b. Finally, regarding the effect
of the Poisson’s ratio, we note that for increasing m the pressure ra-
tio decreases.

The distribution of the contact pressure under the flat punch is
shown in Fig. 5. The pressure is now normalized with respect to
the corresponding average pressure defined as pav ¼ P=2b. Note that
the average pressure is always constant for the case of the flat punch
and does not depend upon the ratio ‘=b. Pressure distributions for
‘=b ¼ 0 (classical elasticity), 0:2, 0:4, 4 and1 are presented. It is ob-
served that as ‘=b increases from zero, the curves depart from and
then again approach the classical elasticity result. A marked devia-
tion from the classical pressure distribution is found in a relative
narrow band near the corners of the punch, revealing, thus, a bound-
ary-layer effect. It is worth noting that the curves ‘=b ¼ 0 (dashed
line) and ‘=b ¼ 1 coincide. Finally, the effect of the Poisson’s ratio
m is more important for intermediate ratios of ‘=b, while is almost
insignificant for very small or large ratios.

Accordingly, Fig. 6 presents details of the normalized pressure
distribution characteristics below the cylindrical indentor. It is ob-
served that the pressure distribution depends monotonically upon
the ratio ‘=b; note that such a response was not observed for the
flat punch case. Moreover, for increasing ratios ‘=b, the pressure
below the indentor increases significantly. On the other hand, as
‘=b! 0, we recover the classical elliptical pressure distribution.
Finally, Fig. 7 depicts the normalized pressure distributions below
the wedge indentor. As in the cylindrical indentor case, the pres-
sure increases with increasing ratio ‘=b and Poisson’s ratio m. As
we approach the apex of the wedge indentor (x=b! 0), the pres-
sure in couple-stress elasticity becomes unbounded exhibiting a
logarithmic singularity as in the classical theory.

7.2. Effect of normalized characteristic length ‘=b upon the contact
width and the average pressure

The most important information that one can obtain from
indentation experiments is the contact area (that essentially re-
duces to a contact width in the two-dimensional case presented
here) and the average pressure, which in our case are functions
of the indent size ‘=b. To this purpose, the (half) contact width b
is normalized with the corresponding (half) contact width bclas in
classical elasticity. In the same spirit, the average pressure pav is
normalized with the corresponding pav;clas. Results are shown for
the three cases studied previously, i.e. the flat punch, the cylindri-
cal and the wedge indentors.

In Fig. 8, the dependence of the normalized contact width b=bclas

is shown as a function of the ratio ‘=b, for different values of the
Poisson’s ratio m. In the flat punch case, the contact width is con-
stant due to its distinct geometrical characteristics. On the other
hand, the contact width for both cylindrical and wedge indentors
depends strongly upon the ratio ‘=b. It is observed that for increas-
ing ‘=b (or for increasing material length ‘) the measured contact
width b decreases. Interestingly, the qualitative dependence of
the contact width upon ‘=b is the same for both the cylindrical
and wedge indentors. The observed response may, accordingly,
be separated in three distinct regions with respect to the ratio
‘=b. The first region extends up to ‘=b 6 0:02, where the couple-
stress effects are of minor importance to the contact width. The
second region covers the range 0:02 6 ‘=b 6 2, where the effect
of the material microstructure upon the contact width becomes
significant. Finally, for ‘=b > 2, a plateau is attained and no effect
of the ratio ‘=b upon the contact width or the average pressure is
further observed.



(a) (b)

Fig. 2. Indentation of a half-plane by a rigid flat punch. Variation of the ratio of the pressure distributions in couple-stress elasticity and classical elasticity at fixed normalized
distances with respect to the ratio ‘=b. Results are shown for Poisson’s ratios (a) m ¼ 0 and (b) m ¼ 0:5.

(a) (b)

Fig. 3. Indentation of a half-plane by a rigid cylindrical indentor. Variation of the ratio of the pressure distributions in couple-stress elasticity and classical elasticity at fixed
normalized distances with respect to the ratio ‘=b. Results are shown for Poisson’s ratios (a) m ¼ 0 and (b) m ¼ 0:5.

(a) (b)

Fig. 4. Indentation of a half-plane by a rigid wedge indentor. Variation of the ratio of the pressure distributions in couple-stress elasticity and classical elasticity at fixed
normalized distances with respect to the ratio ‘=b. Results are shown for Poisson’s ratios (a) m ¼ 0 and (b) m ¼ 0:5.

2092 Th. Zisis et al. / International Journal of Solids and Structures 51 (2014) 2084–2095
On the other hand, Fig. 9 illustrates the effect of the ratio b=‘ on
the normalized average pressure (hardness) pav=pav ;clas. It is ob-
served that when couple-stress effects are taken into account
(‘ – 0), the hardness increases significantly compared to the classi-
cal prediction. For instance, in the case of a wedge indentor and for
a material with m ¼ 0:3 and b=‘ ¼ 2, a 57% increase is noted in the



(a) (b)

Fig. 5. Distribution of the pressure below the flat punch with respect to the normalized distance x=b for various ratios ‘=b. Results are shown for Poisson’s ratios (a) m ¼ 0 and
(b) m ¼ 0:5.

(a) (b)

Fig. 6. Distribution of the pressure below the cylindrical indentor with respect to the normalized distance x=b for various ratios ‘=b. Results are shown for Poisson’s ratios (a)
m ¼ 0 and (b) m ¼ 0:5.

(a) (b)

Fig. 7. Distribution of the pressure below the wedge indentor with respect to the normalized distance x=b for different ratios ‘=b. Results are shown for Poisson’s ratios (a)
m ¼ 0 and (b) m ¼ 0:5.
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average contact pressure. As b=‘ increases the hardness decreases
monotonically reaching the limit value of unity. Such indentation
size effects have been reported in the experiments performed by
Han and Nikolov (2007) during the elastic deformation of polymers
and particularly of silicone. In their work they showed that the
indentation size effects are strongly related to the elastic and not
merely to the plastic deformation as it is reported for the size-
depended deformation of metallic materials. In fact, indentation
experiments with a Berkovich indentor carried out on heterochain
polymers such as polycarbonate (PC), epoxy, polyethylene



Fig. 8. Dependence of the dimensionless contact width b=bclas upon the ratio ‘=b
and the Poisson’s ratio m.
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terephthalate (PET) and polyamide 66 or nylon66 (PP66), showed
an increased hardness with decreasing indentation depths, an
experimental result which is qualitatively very similar to our pav
versus b relation presented in Fig. 9. Furthermore, Han and Nikolov
(2007) reported that the depth at which the hardness starts to in-
crease depends strongly, in the elastic deformation regime, upon
the type of the polymer under consideration. In particular, they re-
ported that the hardness at small indentation depths (or small con-
tact areas) can increase from 0% to as much as 300%. In accord, our
analysis showed that, depending on the Poisson ratio, a maximum
increase of about 30–55% for the cylindrical and an increase of
about 65–130% for the wedge indentor is attained for a contact
area (lengths) twice the characteristic material length (b=‘ ¼ 1)
(see Fig. 9).

As a final comment, we note that despite the qualitative simi-
larities of the wedge and the cylindrical indentors, the former is
distinctively more sensitive to the ratio ‘=b as compared to the lat-
ter. For experimental purposes, both cylindrical and wedge inden-
tors may be used in order to extract the characteristic material
length ‘ of the indented material (Figs. 8 and 9) but realistically
and from a practical perspective, in the case of the wedge indentor,
the use of a large wedge angle and material failure in the highly
stressed region immediately below the wedge tip may limit the
applicability of the present analysis. On the other hand, the cylin-
drical indentor, though less sensitive to the effect of length scale, is
Fig. 9. Dependence of the dimensionless average pressure pav=pav;clas upon the ratio
‘=b and the Poisson’s ratio m.
not subject to these drawbacks and may in reality be the best
geometry to investigate the effect of material length scale on the
behavior of a microstructured elastic material. In any case, it
should be emphasized that due to the characteristic dependence
of the contact width or the average pressure upon the ratio ‘=b
(or b=‘), in practice, experimental results regarding the internal
material length may be attained in the region 0:1 < ‘=b < 1, where
this dependence is more pronounced.
8. Conclusions

In the present study, we derived general solutions for three ba-
sic two-dimensional plane strain contact problems within the
framework of the generalized continuum theory of couple-stress
elasticity. This theory introduces a characteristic material length
in order to describe the pertinent scale effects that emerge from
the underlying microstructure and has proved to be very effective
for modeling complex microstructured materials. By using this
theory, we initially studied the problem of the indentation of a
deformable half-plane by a flat punch, then by a cylindrical inden-
tor and finally by a sharp wedge indentor. Our approach is based
on singular integral equations which have resulted from a treat-
ment of the mixed boundary value problems via integral trans-
forms and generalized functions.

The present results exhibit significant departure from the pre-
dictions of classical elasticity. In particular, for the cylindrical and
wedge indentation problems, it was shown that for increasing ratio
‘=b the pressure below the indentor increases significantly com-
pared to the classical elasticity predictions. On the other hand,
for the flat punch case the corresponding results showed that as
‘=b increases from zero, the pressure departs from and then again
approaches the classical solution. Moreover, the qualitative depen-
dence of the contact width or the average pressure upon ‘=b is the
same for both cylindrical and wedge indentors and the general re-
sponse may be separated in three distinct regions with respect to
‘=b. It was further observed that as the characteristic material
length ‘ increases the contact width b decreases. In light of the
above, we conclude that it is inadequate to analyze indentation
problems in microstructured complex materials employing only
classical contact mechanics. In a future work, we intend to extend
the present analysis to the case of three-dimensional axisymmetric
indentors.
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