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Acid fracturing treatment is the key technique for stimulation and stable production in carbonate
reservoirs. In order to improve the carbonate reservoirs acid fracturing effect, in this paper, with a
large number of experiments as the main research methods, study on influencing factors of acid-
fracturing effect for carbonate reservoirs from increase the effective distance of living acid, increase
acid corrosion eched fracture conductivity, reduce the acid fluid loss, etc. The effective distances of
live acid calculated with reacted acid limitations measured in different acid systems are quite
different from those calculated according to previous standard. Fracture conductivity is one of the
key parameters that affects acid fracturing effects, but it's difficult to be predicted accurately due to
the strong randomness of acid-rock reaction as well as various influence factors. Analyses of the
impacts on fracture conductivity resulted from the rock embedment intensity, closure stress, acid
dosage, rock-acid contact time, acid fluid loss, acid pumping rate through self-developed small-core
fracture capacity test instrument. Fluid loss during acid fracture can be well controlled by thickened
liquid as well as solid particles, but formation damage occurs inevitably. Foamed acid is a specific
fluid with high viscosity, low fluid loss, small friction resistance, good retarding property, strong
fracture making ability, easy flowback and low damage, which is an ideal acid system for low
pressure and low permeability carbonate reservoirs. In this paper, the theoretical study on
percolation mechanism and fluid-loss control mechanism of foam (acid) in porous medium are
presented with the help of visual microscopic model fluid drive unit.

Copyright © 2015, Southwest Petroleum University. Production and hosting by Elsevier B.V. on
behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Presently, the developed low permeability reservoirs is over
1/3 of total producing reserves in china, while the undeveloped
ones share a greater proportion of unutilized geological reserves.
However, the developed ones are mostly in low-production and
low-efficiency state. How to improve the effects of developed
reservoirs? How to make use of the undeveloped ones quickly
and efficiently? Fracturing and acidizing technology plays an
irreplaceable role.
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Carbonate reservoirs are widely distributed in China,
including Sichuan Basin, Tarim Basin, Bohai Bay Basin, Buried Hill
Ordos Basin Palaeozoic sector, etc [1]. Compared with sandstone
reservoirs, the lithology of carbonate reservoirs is relatively
simple, but cracks and caves are well developed. when fracturing
the carbonate reservoirs, those features may make the sand
packed fracture short and narrow due to filtration, and the
fracturing fluids seeping into the layer may damage reservoir,
and even improper operation cause sand bridge, which bring no
effect to stimulation. However, acid fracturing of carbonate res-
ervoirs has a strong advantage.
2. Reservoir characteristics of high bridge lower Palaeozoic
reservoir and the necessity of acid fracturing

According to the production test of layers, the stable pro-
ductivity of single well is required to be improved by stimulation
to achieve the whole development of gas reservoir. The reservoir
ing by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open
y-nc-nd/4.0/).
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geological assessment analysis and test data demonstrate there
is a certain degree reservoir damage, and acid fracturing is
needed to eliminate the damage caused during drilling or
completion. Some well layers in the gas reservoir have low
effective permeability and remarkable dual-medium characters.
In this case, nature fractures will significantly affect reservoir
production. Thus, stimulation is needed to form long effective
acid-etched cracks and improve reservoir seepage area thereby
enhancing single well productivity. Small gas layers are serious
heterogeneity, which need acid fracturing to improve the
average contribution ability. Therefore, large acid fracturing
technique is an important mean to increase the production.
3. Analysis of acid fracturing influencing factors

The two most important factors that affect the acid fracturing
effects are acid effective distance and acid-etched fracture con-
ductivity. Effective fracture length is influenced by acid filtration
property, acid-rock reaction speed, acid flow velocity in the
cracks as well as acid type. Acid-etched fracture conductivity is
affected by closure stress, acid dissolving power, acid-etched
shape of acid-rock reaction, absolute dissolved rock volume and
so on. Therefore, longer acid-etched crack length and higher
conductivity are needed to improve the acid fracturing effect of
carbonate formation. Fig.1 depicts themain factors to control the
acid fracturing effect.
4. Testing reacted acid limit and calculating acid effective
distance

During acid fracturing, acid flows into the deep formation
along cracks with concentration decreasing gradually. When the
acid concentration decreases to a certain value that has no
corrosion capability, it becomes reacted acid, and generally,
reacted acid limit is considered 10% of the live acid concentra-
tion. Before active acid becomes reacted one, the distance live
acid flows is called effective distance. But indoor experiments
find the reacted acid limit of retarded acid system is much higher
than previous opinion about the conventional acid. The test re-
sults are shown in Table 1.

Table 1 shows the different reacted acid limit values of
different acid types, among them: reacted acid limit of self-
diverting acid is the maximum (5.87%); Crosslinked acid takes
the second place (4.82%); Gelling acid is minimal (2.73%), closing
Fig. 1. Main influence influe
to that of conventional acid (conventional hydrochloric acid is
2%). The final dissolution rates of crosslinked acid and self-
diverting acid is found lower than that of conventional acid.

Therefore, corresponding iterative termination conditions are
needed to be set according to different acid systems to get acid
effective distance, instead of using 10% live acid concentration as
iterative termination conditions. Author has published a paper to
discuss the calculation methods of acid effective distance, but
these methods all use 10% concentration of fresh acid as judge
condition, therefore, for retarded acid, thosemethods couldn't be
used to calculate the effective distance. Effective distances of
different acids are simulated and calculated based on the above
research and the test results of high temperature dynamics re-
action, and Fig. 2 shows the calculated acid con-centration dis-
tribution along fracture.

According to previous reacted acid standard (10% of fresh acid
concentration), the effective distance of Crosslinked acid, Gelling
acid and Self-Diverting acid respectively are 108 m, 84 m and
90 m. But according to their own reacted acid concentration
limits, the calculation results of effective distance are: Cross-
linked acid is maximum (96 m); Gelling acid is the second
(81 m); Self-Diverting acid is minimum (77 m). Obviously,
reacted acid limit greatly affects acid-reaction distance.

Therefore, during actual acid fracturing, the acid-rock reac-
tion rate of Crosslinked acid and Self-Diverting acid is seemed
low, but when comprehensively considering reacted acid limit
and the decrease of fracture conductivity caused by acid corro-
sion, the increasing effective distance may make no contribution
to improving acidification effects, thus, various acid systems
combination optimization is recommended to get longer effec-
tive distance and higher conductivity acid-etched cracks.
5. Effect factors of acid-etched fracture capacity and
improving methods

Acid-etched fracture conductivity is one of the key parame-
ters that affects the acid fracturing result, but it is difficult to be
predicted accurately due to the high randomness of acid-rock
reaction.
5.1. Effect factors of acid-etched fracture capacity

Many factors affect the acid-etched fracture conductivity, and
self-developed FCD test instrumentdDP-1 is used to research
nces of acid fracturing.



Table 1
The result of the residual acid limit.

Acid Amount of
reacted acid (ml)

Concentration of
NaOH (mol/l)

Volume of
NaOH (ml)

Concentration of
reacted acid (mol/l)

The reacted acid
concentration limit (%)

The average reacted acid
concentration limit (%)

Crosslinked acid 1 0.297 4.4 1.3068 4.77 4.82
1 0.297 4.5 1.3365 4.88
1 0.297 4.45 1.3217 4.82

Gelling acid 1 0.297 2.5 0.7425 2.71 2.73
1 0.297 2.55 0.7574 2.76
1 0.297 2.5 0.7425 2.71

Self-Diverting acid 1 0.297 5.4 1.6038 5.85 5.87
1 0.297 5.45 1.6187 5.91
1 0.297 5.4 1.6038 5.85
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the impacts on fracture conductivity resulted from the rock
embedment intensity, closure stress, acid dosage, acid contact
time, acid filtration and acid pumping rate affect fracture ca-
pacity [2].

(1) Influence of rock embedment intensity on fracture
capacity

Rock embedment intensity is one of the important factors
that affects the fracture capacity. Fig. 3 shows the relationship
between fracture conductivity and rock embedment intensity
under different closure stresses. When the rock embedment in-
tensity value is low, crack support point will collapse, and the
fracture conductivity value will be very low. Conversely, when
the rock embedment intensity value is high, crack support point
can withstand enough formation pressure, and the fracture ca-
pacity value is much higher.
Fig. 2. Acid concentration distribution along fracture.

Fig. 3. The influence of rock embedment intensity on flow conductivity.
(2) Influence of acid system on fracture capacity

Fig. 4 shows the fracture conductivity of different acid sys-
tems under different closure stresses. When using single acid
system, flow conductivity decreases quickly along with the in-
crease of closure stress. However, when using combinatory acid
system, the viscosity difference between different acids can
realize heterogeneous etching, and the flow conductivity can still
maintain a higher lever under high closure stress.

With the increase of closure stress, flow conductivity de-
creases, which re-quires to protect bottom pressure from greatly
waving, so as not to decrease much fracture capacity due to the
crack net pressure changeswhen injecting acid, flowback reacted
acid and later production control [3,4].

(3) The influence of acid dosage on fracture capacity

Fig. 5 shows: the longer acid-rock contact time, the more rock
corrosion will be. If acid is not enough or contact time is short,
the corroded rock will be less, and the acid-etched fracture ca-
pacity will be lower. If acid is too much or contact time is too
long, the corroded rock will be much more, and the acid-washed
aisle in crack faces will be bigger, but the support areas will be
lesser, and the rock structure on the fracture surface will be
weaken (shown as Fig. 6), which makes rock more sensitive to
closure stress. Obviously, there exists an optimal acid volume or
optimal contact time, and the principle is the rock with the most
corroded volume but still can maintain support effect [5].

(4) The influence of acid filtration on fracture capacity

Fig. 7 shows flow conductivity contrast curve of filtration and
non-filtration. In experiments considering filtration, the fluid
Fig. 4. The influence of different acid systems on flow conductivity.



Fig. 5. The influence of acid-rock contact time on flow conductivity.

Fig. 7. The influence of acid fluid loss on flow conductivity.

Fig. 8. The influence of acid dosage on fracture conductivity.
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loss is 15% of the acid dosage, while in experiments without
thinking filtration, the filtration line is closed, and there is no acid
fluid loss. When under low closure stress, two experimental re-
sults are similar, but when closure stress is more than 18 MPa,
the fracture capacity with filtration is much higher than that
without filtration.

(5) The influence of acid pumping rate on fracture capacity

Fig. 8 shows the fracture conductivities of different acid
pumping rates. When in low closure stress, acid-etched fracture
conductivity increases as pumping rate increases. This is because
the increasing pumping rate increases acid-rock reaction rate
and rock corrosion. But in high closure stress, when pumping
rate is less than 15 ml/s, acid-etched fracture conductivity de-
creases slightly along with the increase of pumping rate. Because
the nonhomogeneous mineral differences reduces reaction rate;
while when pumping rate is over 15 ml/s, flow conductivity in-
creases. Thus, properly improving pumping rate is conductive to
increasing acid-etched fracture conductivity.

5.2. Measures to improve acid-etched fracture conductivity

(1) Optimize acid system, acid dosage and acid
concentration

The size and distribution of acid-etched fracture conductivity
are closely related to acid systems, the acid system with a low
Fig. 6. Different dynamic acid-etched fracture
fluid loss and a better retarding property should be chosen to
improve the flow conductivity in the entire effective acid-etched
crack range. Moreover, experts at home and abroad have putted
forward preflush acid fracturing or multistage alternating in-
jection acid fracturing technology to ensure higher acid-etched
fracture conductivity under high closure stress conditions,
relying on viscosity differences between ahead fluid and acid, as
well as viscous fingering during liquid injection process to realize
heterogeneous etching [6,7]. In addition, the author prefers to
use alternating injection of acid with different viscosity and
reactivity to achieve heterogeneous, so that formation damage
morphology under different etching time.



Fig. 9. The fluid-loss curve of Gelling acid.
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caused by ahead fluid loss can be reduced, and at the same time,
a lot of liquid waste caused by the non-compatibility between
ahead fluid and acid can be also avoided.

For higher closure stress layer, the acid dosage and acid
concentration should be appropriately increased to deeply
corrode to keep higher fracture conductivity after fracture close.
The principle of ideal acid dosage and reaction time is the rock
with the most corroded volume but still can maintain support
effect. While for looser and lower rock strength layer, the acid
dosage and acid contact time should be appropriately reduced to
avoid excessive corrosion, because excessive corrosion will weak
the rock structure in cracks faces, whichwill shorten useful life of
acid-etched fracture conductivity [8].

(2) Optimize acid fracturing technology

i. Multistage alternating injection acid fracturing technology
Multistage alternating injection acid fracturing tech-

nology can effectively reduce acid fluid loss [11]. As the
result of viscosity differences, viscous fingering forms
heterogeneous acid-etched patterns in cracks surface,
which increases the fracture conductivity. Furthermore,
using acid systemwith different viscosity can also achieve
better non-uniform etching, relying on the viscosity dif-
ference and reactivity difference.

ii. Closed fracture acidizing technology
Injecting acid into the closed or half-closed fractures

that exist in reservoir with natural fracture or reservoir
experienced acid fracturing to continue deepening the
previous groove, and to further aggravate the irregularities
of fracture faces. Laboratory tests and field applications
shows the technology is extremely effective to improve
the near-wellbore fracture conductivity.

iii. Equilibrium acid fracturing technology
Equilibrium acid fracturing is a technology for low

temperature, soft and high non-heterogeneous reservoir.
It utilizes the difference between fracturing prolongation
pressure (extension pressure) and minimum crustal stress
(the pressure when fracture open or close) to control
construction pumping rate after fracturing dynamic
cracks, and then make injection speed equal to acid
filtration speed. When the two reach balance, pressure in
fracture will lower than fracturing prolongation pressure,
and the fracture will keep open without extension, then,
acid-rock reaction time will be longer, resulting in optimal
fracture conductivity.

iv. Sand-propped acid fracturing technology
Hydraulic fracturing and acid fracturing are combined to

penetrate deeply into fractures, improve flow capacity,
lengthen effective time, stimulate and keep stable pro-
duction. Therefore, Sand-propped acid fracturing tech-
nique is suitable for porosity reservoir or the reservoir
needs deep penetration, instead of the large fractured-
vuggy reservoir.

(3) Optimize construction parameters, and choose the best
acid pumping rate

Acid-etched fracture conductivity increased with
increasing pumping rate when under low closure stress;
conversely, it decrease slightly when under high closure stress,
but when pumping rate further increases, it increases too.
Therefore, in the construction process, an appropriate increase of
pumping rate under the safe range of pump pressure is beneficial
for the increase of acid-etched fracture conductivity.
6. Fluid-loss control technology of acid-fracturing in
fractured reservoirs

Generally, according to the three fluid-loss control mecha-
nisms, the whole process of fracturing fluid is divided into three
parts: filter cake area, filtrate invasion area and compression
area. For fracturing fluid, the filtration is influenced primarily by
wall building properties and secondarily by viscosity, and higher
fracturing fluid viscosity results in lower filtration. Obviously,
this theory is not appropriate for acid.

Acid is a reactive fluid. The fluid loss starts when it flows, and
it will form more filtration area, which is different from frac-
turing fluid loss that just form effective filtration cake on fracture
face [9,10].

Usually carbonate rock has more natural cracks than sand-
stone. Acid constantly etches fracture faces, selectively expands
not only pores but also developing cracks, forms “wormhole” and
passage perpendicular to crack face, resulting in new filtration
area. Once forming these “wormhole”, a large number of acid
will loss along the filtration channel therebymaking the effective
distance short, increasing production limited and period of val-
idity [12]. At present, the fluid-loss control technologies during
acid fracturing mainly include: thickened liquid fluid-loss con-
trol technology, solid particle fluid-loss control technology, foam
acid fluid-loss control technology.

6.1. Thickened liquid fluid-loss control technology

Using high-viscous acid (Gelling acid, Crosslinked acid, Self-
Diverting acid, etc.), on one hand, can prevent acid from flowing
in the acid-etched channel; on the other hand, can help to reduce
acid-rock reaction rate and slow acid-etched pours growth. The
fluid-loss curve of Gelling acid and Self-diverting acid respec-
tively shown in Figs. 9 and 10 indicate: the two acids increase the
fracture percolation resistance and reduce the flow from core
holder outlet because of their high-viscous, showing obvious
filtration reduction. Compared the base fluid discharge before
and after acid injection, the permeability recovery amplitude is
found much bigger when injecting gelling acid instead of self-
diverting acid, showing that self-diverting acid has relative bet-
ter fluid-loss control and retarded performance (see Fig. 11).

6.2. Solid fluid-loss control technology

The technology is that using the working liquid with solid
particles (powder pottery, removable chemical particles and
solid acid) to seal and fill fracture hole, so as to prevent acid
invasion. After injecting acid, most of the solid particles will be
removed or flowback with the work fluid.



Fig. 10. The fluid-loss curve of Self-diverting acid. Fig. 12. The relation curve of K/Ko and Cumulative injection volume (1/3 matching
relation).

Fig. 13. The relation curve of K/Ko and Cumulative injection volume (1/2 matching
relation).
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(1) Matching test of particle size and crack effective width

Diagram 11 indicates: fracture permeability decreased to
almost 40% of its initial value after injecting carrying fluids. This
shows no mater what the crack initial permeability value (Ko) is,
the bridge plug will formed when bridging particle size is 1/4 of
crack effective flow width. K/Ko gradually decreases along with
the increase of injection volume. When accumulative injection
volume reaches a certain value, K/Ko obviously rebounds, and
solids are found flowed out of core holder outlet during test,
which shows that solid particles migrate in crack. So 1/4
matching relation can't stabilize bridge.

Compared with 1/4 matching relation, the bridge plug effect
of 1/3 matching relation is significantly increased (shown in
Fig. 12), and the fracture permeability has dropped by 70%e80%
of its initial value. Fracture permeability obviously reduces
accompanying slightly waving along with the increase of the
injection volume, indicating the decrease of particle migration
phenomenon and the increase of bridge plug stability (see
Fig. 13).

Compared with 1/4 and 1/3 matching relation, 1/2 matching
relation has best bridge plug effect, and fracture permeability in
it drops by 90% of its initial value, or even higher. Along with the
increase of injected fluid volume, core permeability K changes
extremely small, which shows the disappear of particle migra-
tion phenomenon and the stronger bridge plug stability.

(2) The influence of particle concentration on fluid-loss

Along with the increase of bridging particle concentration, K/
Ko decreases with a gradually reducing decrease rate in Fig. 14.
When bridging particle concentration is over 6%, K/Ko basically
Fig. 11. The relation curve of K/Ko and Cumulative injection amount (1/4 matching
relation).
tends to a certain value. Because there is no enough bridging
particles to form bridge plug when the concentration is less than
6%. While when concentration is over 6%, there is enough
bridging particle to obtain better bridge plug, but if particle
concentration is further increased, it has little influence on
fracture permeability.
6.3. Foamed acid/foamed slug fluid loss technology

Thickened liquid and solid particles can effectively reduce
fluid loss, but also inevitably cause formation damage. Foamed
acid is a special fluid with good reducing-filtration function. It's
filtration coefficient is lower two quantity degree than conven-
tional liquid during indoor test in low permeability reservoir
[13]. Compared with conventional acid, foamed acid has higher
Fig. 14. The relation curve of K/Ko and particle concentration in different fracture
width.



Fig. 15. Visual microscopic model fluid drive unit.
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viscosity, lower fluid-loss, lower friction, better retarded effect,
stronger fracture making ability, easier flowback and smaller
damage, which is a ideal acid system to stimulate for low pres-
sure, low permeability carbonate reservoir.

(1) The advantage of foamed acid/foamed slug fluid-loss
control acid fracturing

i. Compared with other fluid-loss control technology,
stable solid fluid loss additive (powder sand, etc.) is
hard to be dissolved once added into acid, and the oil-
dissolved or water-dissolved fluid loss additive can
well control acid fluid loss, but unfit for gas well. High-
viscous ahead fluid or high-viscous acid can also
reduce fluid loss, but cause formation damage, too.

ii. The foam has selectivity for oil/water layer e plugging
water instead of oil. Form vanishes when meeting oil,
but keep stability whenmeetingwater, which give acid
privileged access to the oil-layer, improves oil-layer
acidification effect, and prevents water cut from rising
due to excessive water-layer acidification.

iii. Foamed acid has selectivity for the formation perme-
ability, the greater permeability and lager fracture
channel cause the greater foam resistance and lower
fluid loss.

iv. Foam has high apparent viscosity and good carrying
ability. When flowback, it carries out released particles
and insolubles. Gas expansion in foam provides energy
for reacted acid flowback, and makes it more thor-
oughly. At the same time the formation damage will be
reduced, which is especially important for low pres-
sure formation.
Fig. 16. Foam flows in porous
v. Foamed acid can reduce 40%e60% of water friction,
and it makes up for the shortage of low hydrostatic
head and high well head pressure to some extent.

vi. Foamed acid is a retarded acid, which can reduce acid-
rock reaction speed and increase acid effective
distance.
(2) The percolation mechanism of foam (acid) in porous
medium

The foamed acid flow behaviour in porous medium is simu-
lated under formation condition in visual microscopic model
fluid drive unit (Fig. 15), and foam formation and foam decay are
intuitively reflected by using image acquisition system.

i Foam continuously breaks and reforms when it flows
The phenomenon is clearly observed in transparent

model that the foam moves forward with continuously
breaking and re-forming, instead of in continuous shape
when flowing in porous medium. While, liquid flows
through porous medium along the air bubble fluid film
network. Liquid is continuous phase, and gas is not.

ii Foam stability gets worse in oiliness porous medium
Foam stability in porous medium with different oil sat-

urations can be compared and analysed by the formation
of foam zonal, foam travelling speed and distance, foam
breaking and reforming, and pressure, etc [14]. Fig. 16 in-
dicates: foam stability obviously decreases and foam
travelling distance relevantly shorten along with the in-
crease of oil saturation.

iii. Foam in pore has high apparent viscosity, and it raises with
increasing porosity
Foam is pseudoplastic fluid. When it flows in porous

medium, apparent viscosity is much higher than that of
active water and gas, and it raises with increasing porosity
(or permeability), but decreases with increasing shear
stress. This property is disadvantageous for foam flowing
in big passage, because big passage makes low flow speed
and low shear stress, resulting in high apparent viscosity.

(3) Fluid-loss control mechanism of foamed acid

Low foam filtration coefficient is determined by its own
particular composition. The foam shape changes continuously
after entering reservoir because of the surface tension exists
between gas phase and liquid phase. When foam enters tiny
pore, more energy is needed to overcome Jamin action and foam
deformation. But after foam enter tiny pore, the foam with tiny
composition will form double membrane, which will cause high
differential pressure to further prevent liquid entering into
formation.
medium.
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(4) Major factors that affect foamed acid fluid loss

i. Core permeability affects foamed acid fluid loss greatly,
when it broaden two quantity degrees, the filtration
coefficient of foamed acid will increase one quantity
degree.

ii. Liquid phase viscosity has a key influence on foamed
acid filtration coefficient, and it decreases obviously
with the increasing viscosity.

iii. Temperature directly influences the foamed acid
filtration coefficient, and fluid loss increases slowly
with increasing temperature, because the high tem-
perature makes liquid phase viscosity decrease.
7. Conclusions

(1) Acid effective distance and acid-etched fracture conduc-
tivity are two key factors that influence the acid fracturing
effect.

(2) Different acid systems have different reacted acid limits.
The effective distances calculated by their own reacted
acid limits are different from the ones calculated with the
previous reacted acid calculate standard.

(3) Due to high randomness of acid-rock reaction as well as
various influence factors, alternating injection of acid with
different viscosity and reactive to can achieve heteroge-
neous etching and improve acid-etched fracture
conductivity.

(4) Thickened liquid and solid-phase particles play important
roles in reducing filtration during acid fracturing, but
formation damage occurs inevitably. The foamed acid is a
fluid with high viscosity, low fluid loss, small friction
resistance, good retarding property, strong fracture mak-
ing ability, easy flowback and low damage, which has a
better adaptability to reduce filtration during acid frac-
turing for low pressure and low permeability carbonate
reservoir.
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