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Abstract

We study the unwheeled rational Kontsevich integral of torus knots. We give a precise formula for
these invariants up to loop degree 3 and show that they appear as colorings of simple diagrams.
We show that they behave under cyclic branched coverings in a very simple way. Our proof is
combinatorial: it uses the results of Wheels and Wheelings and new decorations of diagrams.
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1. Introduction and notations

This article is divided in 4 parts: the first one explains the notations used in the sequel
and some facts known about rationality, tleeesnd part is a computation of the unwheeled
Kontsevich integral of torus knots up to loop degree 3 using formal series which encode
series of diagrams. Then, in the third pave compute a rational form of the preceding
expression and show that it appears as a coloring of chain diagrams as it is suggested
by Fig. 1. As a consequence of this computation, we show that the operatowhitth
corresponds to cyclic branched coverings®flong the knot simply acts on a diagrabn
of loop degree lower than 3 by multiplying it by *(?) wherey is the Euler characteristic.

The computation of the 2-loop part of torus knots has been done independently by
Tomotada Ohtsuki in [8]. We would like to thank Marcos Marino for pointing out a mistake
in the last formula of this article.
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Fig. 1. Diagrams appearing in the unwrezkKontsevich integral of torus knots.

1.1. Normalizations of the Kontsevich integral

Let K be a knotins® and suppose th& has a banded structure with self-linking 0. We
will note Z(K) the Kontsevich integral oK in the algebrad of trivalent diagrams lying
on acircle.

Let B be the algebra of uni-trivalent diagrams. It is well known that the Poincaré—
Birkhoff—-Witt map x : B — A is an isomorphism but not an algebra isomorphism. We will
noteo its inverse.

If U is the trivial knot, we defin&2 = o Z(U). The mapY” = x o9, : B — A defined by
instance in [11] is known to be an algebra isomorphism. The quantitk ) = Y12 (K)
will be called unwheeled Kontsevich integral and behaves better &afk) under
connected sum and cyclic branched coverings.

For each knoK , the quantitie<Z (K), o Z(K) andZ(K) are group-like, which means
that they are exponentials of a series of connected diagrams. We will note with agzsmall
the logarithm of these quantities.

1.2. Loop degree and rationality

If D is a connected diagram d, its first Betti number defines a degree called loop
degree. The loop degree 1 partof(K) or Z°(K) is well known: it only depends on
the Alexander polynomial oK. For the higher degrees, very few is known. There are
formulas for the 2-loop part of small knots in Rozansky’s table (see [10]), and we can find
in [2] a formula for the 2-loop part of untwisted whitehead doubles. In the sequel, we give
a formula for the 2-loop and 3-loop parts of the Kontsevich integral of torus knots.

In order to make precise computations, we will need the following formalisni leé
a cocommutative Hopf algebra (or a Hopf algebra up to completion)\drak an algebra
overH. We consider a space of diagrams nofed+, M) which was defined in [12]. It
is roughly obtained by decorating the edges of a diagram by elements arfid allowing
elements of to slide through vertices thanks to the coproduct law.

We know that the spac# is isomorphic toD(Q[[x]], Q[[A]]). In particular, the
diagrams of loop degree 1 appear as colorings of the circle by an even power series without
constant term. In the following, we will call wheels such diagrams and identify a power
series with the wheel series it represents. _

Let f(x) be the power series defined Byog S”lh"z/z. The famous wheel formula (see
[11]) states thatrz(U) = f(x). Further, it was shown in [5] that the loop degree 1 part
of 0z(K) is f(x) + Whg (x) where Whg (x) = —% logA(e®) and A is the Alexander
polynomial ofK .
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As we are interested in the higher loop degree part, we need to recall the rationality
theorem which was proved in [4]:

Let A = Q[r, r~1] and Ajoc the localization ofA with respect to elementg satisfying
f (1) = 1. The substitution = exp(h) gives a morphism between couples, Ajoc) and
(Q[[A11, Q[[A1]), hence a morphism betwe@&h A, Ajoc) andB.

We call Hair this application: the rationality theorem tells us that the serig& )
minus the loop degree 1 part lies in the image of the Hair map. More precisely, there is an
elementZ™(K) € D(A, Ajoc) Whose denominators on each edge is at most) such
thato Z(K) = exp( f (x) + Whg (x)) Hair Z@(K ). Respectively, there is such an element
for the unwheeled invariant but we will give the formula later.

A construction, developed in [4] giveZ™@{(K) as an invariant ofK which is not
automatic because the Hair miamot injective, although it is in small degrees (see [9]).

2. Computation of thetorusknot integral up to loop degree 3

Let p andq be two coprime integers such that- 0. We notek, , the torus banded
knot with parameterg andq and self-linking 0, and_,, , the torus banded knot with
banding parallel to the torus on which it lies. This knot has self-linking and his
Kontsevich integral is a bit easier to compute.

The method of computation is inspired from [6]: we first compute the Kontsevich
integral of the following braid.

Let p points be lying on the vertices of a regulargone. We notey be the braid
obtained by rotating the whole picture by an angtef2

Let associate to any one-dimensional manifblthe spaced (") of trivalent diagrams
lying on I". It defines a contravariant functor with respect to continuous maps relative to
boundaries. Ledb;; be the map induced by the trivial projecti¢® 1] — [0, 1] and= be
the only degree 1 diagram i4([0, 1]). Then a direct computation of monodromy of the
K—Z connection shows that has a Kontsevich integral equal@(exp#(z"—pa)).

The banded knotL,, is obtained by closing the previous braid: this translates
diagrammatically to the following: let, be the map froms? to itself defined by
Yp(z)=zP. Then,Z(L, ,) = w;(v#equ&(%a)), wherev = Z(U).

By Lemma 4.10 of [11], the map, viewed inB has the following form: ifD € B has
k legs (i.e., univalent vertices) theny x D = p¥D. We will note more simplyD,, the
result of this operation which looks like a change of variable.

Then, to computeZ (K, ;) from Z(L, ,), we only need to change the framing, that
IS Z(Kp,q) = exp —%a)#Z(L,,,,,). We will transform this product in the usual one by
applying the unwheeling map—1. As a result, we will have a formulaf(ZD(Kp,q).

We now sum up the steps of the computation:

(1) Computation ofr(v#equf(z?—pa));
(2) Change of variables+— px;
(3) Unwheeling.
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2.1. Step 1

From this point, we will be interested only in diagrams with loop degree 1, 2 or 3 as we
were not able till now to perform a computation for general loop degree.

Itis clear that all the operations considered below & #fc., ..., canot decrease the
loop degree. Then it is licit to quotient thpaces of diagrams by all diagrams with loop
degree greater than 3.

There is a less licit simplification we make: we also quotient by all diagrams without
legs or not lying on a one-dimensional manifold. Indeed, the unwheeled invariants may
have such elements and we will justify this choice in the Section 3.3.

We recall thatY = x o dp is an algebra isomorphism and that1v = 2 and
T ~1= =~ (modulo closed diagrams).

Then, what we have to compute is

o(vexn(Lo-)) <o (@exe £-) ).

As this expression is group-like, we just have to find all connected diagrams appearing
in it. To do so, we choose a system of notations to name these diagrams (or combinations
of them) has it is shown in Fig. 2.

e We recall thatt” is a wheel withn legs @ is even).

e Letx"y™ represent two wheels glued on one edge, witlemaining legs on the left
andn remaining legs on the right. In particularandm are odd and”y™ = x y".

e The expression1™1x"z2™2 represents the coloring of a diagram with three wheels
joined by two edges, with legs on the central wheel ang; andm legs on the other
wheels. By convention, we put the varialdssociated to the middle wheel between
the two others.

e Finally, we note[x", x™] the sum of all diagrams obtained by gluing two wheels of
sizen andm in two points.

In the computation obg (£2 exp(zi/\)), we will concentrate on the wheels of the
derived term and make the following observation: such a wheel can only be glued to
another wheel, and each gluing increaselttug degree by one. Hence, there can be at
most two gluings. We want to separate thagtams obtained by gluing these wheels in
two points. To compute these contributions, we state the following very useful lemma.

4 2 —
X = zZ,X z, = —
3 — 4 6 N _
s OCr e OOk

Fig. 2. Examples of diagrams.
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Lemma 1.

e Let f(x) andg(y) be two power series of wheels. The series obtained by gluing them
in one pointisf’(x)g’(y).

e Let f(x) andg(y)h(z) be two series of diagrams. The series obtained by gluing them
in one pointisf’(x)g’' (y)h(z) + f'(x)h'(2)g(y).

The proof is straightforward and has a first application in the following lemma:

Lemma 2. The expression obtained by gluing the derived wheels in two points is

2 1
L [f(ZX), f(X)] + —f/(zm) f”(x)f’(zzz)
q p 2 \p p
Proof. Recall that2 = exp(f(x)). The first term comes from the gluing of a right wheel
to the same left wheel. We have to fill the remaining left legs with—}ﬁstruts in the only

way such that it does not increase the loop degree. Finally, we just multipﬁlﬂuythe
power the number of remaining legs. There are as many legs as the left wheel, minus two,
which justifies the first part of the formula.

For the second term, we just apply twice the Lemma .

We can suppose now that each wheel can be glued in at most one leg. Let us examine
precisely the following expression:

q q
o)) [ el )

We can replace exp.,) by the series exj, + &,). The seriesv, is obtained by
replacing a wheel by the sum of the coloring of its legs by .eifand the other onesg).
We use a famous trick concerning the doubling of the strut part to get:

oo )

N q q q
=(2 , eX —_— — —_—
< * p(wy+wx+2px x+px y+2py y>>x

q q
= (s e 20 5 ) (o0 5 ) )
X X

q q
S e

But asw, 1 = @y + @y, the operatobeyy ;) cOmmutes with exponentials and then
1
Bexpiérn) 2x = EXPAexp,)@x) = eXp(f(x) + O f )+ Ef’(m)f”(x)f’(zz))-

The final connected contribution %A +F(x)+ f(%x) + f’(y)f’(%x) + %f’(zl) X
f(&x) f'(z2).
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Putting all terms together, we find the following expressiornofe(s2 exp(zq—pﬁ)):
1
exp(iA +F00)+ f(ix) + f’(y)f’(2x> + —f’(m)f”(gx> f'(z2)
2p p p 2 p
1 2
+ Ef/<121)f”(X)f’<zz2> + %[f(zx), f(X)D-
p p q p
2.2. Step 2

This step is very simple. In order to comput& (L, ,), we just have to multiply each
term by as many factorg as legs.

020y = o Bt £ o)+ F@0)+ 1 o) )
1 1
+ Ef’(pm)f”(qX)f’(pzz) + Ef’(qm)f”(px)(qzz)
1
+ W[f(qx), f(PX)])-

2.3. Step 3

In this section, we want to correct the framing defect. The only way we know is to
unwheel the preceding expression. Let us nate) = f(px) + f(gx) — f(pgx) and
factorize it. We then compute

28K p.q) = g1 eXP(%A +f(pgx) +c(x) + R) exp(—%/\).

Here,
R=f"(py)f'(gx)+ f'(pz1) f"(gx) f'(pz2)
1 1
+ Ef’(qm)f”(pﬂf’(qzz) + W[f(cm, f(px)]

is a series of loop degree 2 and 3.
As before, we first compute the contribution coming from the gluing ioftwo points
of the same wheel. Lemma 2 give us the following expression, ndted

1 1
U =~ =3[ (). e)] + 5 gz )1 (022

If we suppose that can be glued to only one leg, we see that the following diagram is
commutative:

X exp(—c)

B————B
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Where2 = dexpye) 2 = eXpf (x) + ¢/ (x) £ () + 3¢ (1) f(x)¢’ (z2).

But
pq rq ~ pq
05 exp<7 A> = <aexp@x)szx, exp<7x+y Ax+y>> =2pq exp<? A>.

If we factorize this element in the expression#ft(K , ,) we get:

X

1
951 [85 eXp(% A) eXp(R =) f'(pqy) — Ec/(m)f”(pq)C)C’(zz))]

X exp(—%/\ +c+ U).

Now, we just have to take care of the action by derivatio®of! on the 2-loop part of
the right member, that is:

—f(paz)[pf"(px) f'(qz2) + af " (qx) f'(pz2) — paf" (pgz2)c’ (x)].

Finally, we collect all terms in increasing loop-degree order and conclude the
computation.

Proposition 1. Up to loop degree3, the unwheeled Kontsevich integral of torus knot can
be expressed by the following power series

c¢(x) 1-loop part
' (py) f'(gx) — ' (x) f'(pqy) 2-loop part

1 1
Ef/(le)f”(qx)f/(PZZ) + Ef/(qu)f//(Px)f/(qZZ) ()

1 1
+§f’(qu1)c”(x)f’(pqzz) - Ec’(Zl)fH(P‘]X)C/(Zz)
—f'(pazo)[pf"(px) f'(qz2) + af" (qx) f'(pz2) — paf" (pgza)c'(x)]

1 1
W[f(qx), f(px)] - W[f(pqx), c()]-

3. Rationality

In this part, we will express the diagrams of formga in a rational form and show the
following proposition:

Proposition 2. Let X,, be the connected diagram consistingiafheels connected lay— 1
edges. Then for < 3, the unwheeled rational invariant &, , of loop degree: appear
as a coloring ofX,,.

3.1. Loop degree 1 and 2

It is easy to check that the 1-loop part is as expected:
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c(x) = fx) = f(px)+ flgx) — f(pgx) — f(x)

sinh(px/2) 1  sinh(gx/2)
px/2 + EIOg qx/2

lI sinh(pgx/2) 1IO sinh(x/2)

2 pgx/2 2 x/2

1 sinh(px/2)sinhgx/2)

1 X
-2 log sinh(pgx/2) sinh(x/2) ~ —ElogD,,,q(e )

Here,D, , (1) :.t‘%(”‘l)(‘?‘l)% is the Alexander polynomial of ;. |
In the following, we will need a small extsion of the spaces of diagrams, because it
happens that we need to use rational expressions with poles at the unity. Let u§ note
the field of fractions ofA = Q[¢, #~1]. This is an algebra ovet and we have an injective
A-morphism fromAjgc to A'.
Then we have a map frof(A, Ajgc) — D(A, A’). There is a corresponding Hair map

which fits in the following diagram:
D(A, Aloc)

—1Io

D(A, A)
Hair iHair

D(QI[A11, QLA —D(QI[A1], QL[ATIA1])

Although none of the previous maps is injective, we will identify all diagrams with their
image in the latter space (these maps happen to be injective in low degrees).

We can now compute the 2-loop term which we call using the formulaf’(x) =
1 coth(x/2) — 2, all terms containing simplify after symmetrization. If we note= ¢*
andr =e”, then

1 P12 41 P4 1P 41 P4 15741

T3 Pra —1sra 1 P 1 —1 Yra 150 —1
sP941tP +1 sP44+1t94+1 P4+1s94+1 t941sP+1
sPd— 1P —1 dspa 1791 1P —1s0 -1 1d—1sp 1]

This formula appears as a coloring of the dumb-bell graph with denominators dividing
tP4 — 1. If we want to write it with denominators dividin@,, ,, we are forced to write;
as a coloring oB. We can show that there is such a factorization but we were not able to
find a close formula for the numerators.

22

—-p

3.2. Loop degree 3

Let us study the 3-loop term, notegl. We decompose it in two parté andzg. Thez%
part is just the part of3 expressed with brackets (the last line of the formlg.
; 1 : _ 1 1 1
In the expression aofs, if we write f”(x) = 8 a2 T 2z and develop, we get a
sum of two terms. The first does not contain any fractional term and is obtained%rbm
forgetting all of them (and hence is rational). Concerning the second term, a computation

with MAPLE shows that it reduces to:
/ 1 / / 1 /
f (py);f (gz) —c (y);f (pq2) |-

.1
BT " 20q
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() - 28 - 5 . 2g(x)
1/x 1/x 1/x

Fig. 3. Diagram containing % term.

g™ Q

rg(x)
1/x

Fig. 4. Gluing a leg and a wheel.

Proposition 3. The serieg’3 and z% cancels.

Proof. Letus compute the tenzg:
We recall that3 = 3511 (qx). f(px)] = 25 1f (pgx). c(x)]. It s obtained frome,

by summing all gluings of a left leg on a right leg. There is a normalization fa[;éqtcand

% which counterbalance the order given to the two gluings.
We will need the following two lemma which interpret some diagrams with inverse legs.

Lemma 3. Let D be a diagram consisting of a circle glued on a segment by an edge.
Imagine that the circle is colored by a serigéx), and the segment b&. Using IHX
relations we can make the moves suggested by3Filglaking the series sliding, we can
cancel the% term except for one term which is just the opposite of the initial term.

This shows that the initial diagram can be expressed by a coloring of another diagram
without inverse legs.

Lemma4. Letg be a series coloring a circle attached to an edge.
Consider the sum of the diagrams obtained by gluing the end of a free edge to the legs
defined byg. Then this series is obtained by the diagram of Big.

Proof. We just have to check it fog(x) = x". In the left-hand side figure, notea leg
lying on the right part of the circle anda leg on the vertical segment£ x — y).

The left-hand side figure is just obtained by the colo@gﬂ.:n_lxiyf. Concerning
the right part, as in Lemma 3, we mak@slide to get(z + y)", eliminate the termy”, and
divide byz. We computd(z + y)" — y"l/z=(x" = y")/(x —=y) =i j_y_1 x'y/. This
proves the lemma. O
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If we apply Lemma 4 to both sides of the 2-loop past we show thatz§ and zj
cancel. O

We saw in this computation that both 2-loop terms and 3-loop terms appear as colorings
of very special diagrams. The following question is quite natural:

Question 1. Which kind of diagram are needed in higher loop degrees to express the
rational Kontsevich invariant of torus knglt is unlikely that the degree part is a coloring
of X,,, but we can certainly reduce the number of diagrams needed.

3.3. The case of closed diagrams

We recall that in all these computations weglected closed dgrams, although they
exist in the expression CZD(K,,,q). We propose to show that we do not need to add any
closed diagram to the expressiongf@(K , ,) = exp(c + z2 + z3).

First, there are no closed diagram in the 1-loop or 2-loop terms. The only one comes
from z3, and precisely from the diagram colored byxl—zzg. A direct computation show

that this term is%eg. In the sequels, is the graphe with the middle edge
replaced by: parallel copies.
Following [3], the invarianz ™ is normalized such that for loop degree greater than 1,

1
Hairea za gy = 79(K).

As o Z(K, ,) does not contain any closed diagram, we know R (K), 2)=1. We
must then show thaHair 223K, ), 2) = (2, 22).

But in the left-hand side, the only possible gluing comes from the l-Ioop;S@E\pl2 +
g% — p%q®%)-~ of c and 4—180 of £2. Summed with the closed diagram coming fregpwe
get 762 = (2, 2).

4. Branched coverings
4.1. Main formula

A great interest for rational expression of Kontsevich integral comes from its relation
with branched coverings. More preciselyAf, , is the torus knot of parametepsandg,
andr is an integer, let us notE” (K, ;) be the pair formed of the cyclic branched covering
of $3 of orderr overk , , and the ramification link.

If r is coprime withp andg, the ramification locus is a knot, and the underlying 3-
manifold is a rational homology sphere, the Brieskorn manifi{g, g, r).

In [3], a map Lift- is described which intertwines rational invariant of the cyclic
branched coverings and rational invantiaf the initial knot in the following way:

ZUrat(Er(K)) — eXp(ar(K)

T e) Lift, z™a(K).
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We now study this map in the case of torus knots and loop degree lower than 3 and
prove the following proposition:

Proposition 4. Note Z%3(K , ,) = exp(}_, o &) decomposing by loop degree as before,
then for allk < 3,

Lift, zx = rk_lzk.

Proof. Fork =1, the Alexander polynomial is invariant by these branched coverings. The
same will be true for the 1-loop patt.

Let us look to the other cases. The Lifbap was defined only for diagrams decorated by
fractions without poles at-roots of unity. As we extended the decorations to all fractions,
the definition of Liff. makes sense for any diagram. In the definition of the, ltifap, we
need to express all denominators as polynomialg oThen, we look to the numerators
as a coloring by monomials, which is the same as a linear combination of 1-cohomology
classes of the underlying graph. We keep only the classes divisibleaby divide them,
then we put back denominators replacifidpy ¢. Finally we multiply the result by. This
construction is very easy in our case because every edge colored is part of a circle without
other colorings and the colorings are the following:

let n be coprime withr (n = p, g or pq)
e f1= 5t} comes from the first derivativg’(x) = 3 coth(x/2) — 5-;

S ivati =1 1 . 1
o fo= Gro12 comes from the second derivatiyé (x) = —3 Sinx /22 + 52

In order to expresg; with the right denominator, we multiply numerator and denominator

by 141" + - -+ (") L to get 2 =420 " The onlyr-divisible numerators are 1
andt™ becausea andr are coprime. The result of the Liftnap is then the identity (before
multiplying by r).

We do the same operation witlf, and multiply numerator and denominator by

n n nyr—1y2 .
A+1" 4+ (") H2 to get? (l+’(;;;“_+1§’2) )~ The numerator is

r—1
(14" 4+ (tn)r—l)z _ Z +j+D)
i,j=0

The indices for which the order of the monomiatiglivisible are such that+ j =n — 1.
There arer such terms, and the result of the Liftnap is then the multiplication by
(before multiplying byr at the end).

For thez, term, we have two termg;, and then Lift z> = rz». For thezz term, we
have two termsfy and one termf> and then Liff z3 = r?z3. This ends the proof of the
proposition. O

Question 2. Can we extend this proposition for larger valuesid Do we have any
conceptual interpretation of this formuta



26 J. Marché / Topology and its Applications 143 (2004) 15-26

4.2. Application to LMO invariant of Brieskorn spheres

The LMO invariant of X(p,q,r) is just the closed part obZ(X" (K, ,)), i.e.,
(ZD(E’(K,,,,])), £2). Using the map Lift we have the following formula:
oy (K) (Lift, Zrat(Kp,q)»Q)
16 (2,92)

LMO(E(p, q, r)) = exp(

i HisDg> =D (?-1)
From this formula, we can prove that the degree two ter 1152 .

Supposing the propd#n is true forn = 4 we deduced the following formula for the
- =pqr(p®=1)(g>=D (-1
degree 3term: LMQX (p, q,r))3 = 13894 O3.
These computations agree with formulas fee t MO invariant of Seiferts spaces which
can be found in [1,7].

References

[1] D. Bar-Natan, R. Lawrence, A rational surgeryrfala for the LMO invariant, math.GT/0007045, Israel J.
Math., submitted for publication.
[2] S. Garoufalidis, Whitehead doubling persists, math.GT/0003189.
[3] S. Garoufalidis, A. Kricker, Finite type invariants of cyclic branched covers, math.GT/0107220.
[4] S. Garoufalidis, A. Kricker, A rational noncomutative invariant of boundary links, math.GT/0105028.
[5] A. Kricker, The lines of the Kontsevich integrahd Rozansky’s rationality conjecture, math.GT/0005284.
[6] C. Lescop, Introduction to the Kontsevich integadliframed tangles, Technical Report, Grenoble Summer
School, June 1999.
[7] M. Marifio, Chern-simons theory, matrix integraland perturbative three-manifold invariants, hep-
th/0207096.
[8] T. Ohtsuki, A cabling formula for th@-loop polynomial of knots, Preprint.
[9] B. Patureau-MirandNon-injectivity of the hair map, math.GT/0202065.
[10] L. Rozansky, A rationality conjecture about Kontsevietegral of knots and its implications to the structure
of the colored jones polynonjaropology Appl. 127 (2003) 47-76.
[11] D. Thurston, Wheeling: A diagrammatic analogue of the Duflo isomorphism, Ph.D. Thesis, UC Berkeley,
math.QA/0006083, 2000.
[12] P. Vogel, Vassiliev theory, Technical Report, MaPhySto, February 2000.



