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The notion of * H-space’ is of considerable importance in the homotopy theory of CW-complexes.
This paper studies a similar notion in the framework of pro-homotopy and shape theories. This
is achieved by following the general plan set forth by Eckmann and Hilton. Examples of shape
H-space are also given: it is observed that every compact connected topological monoid is a
shape H-space. The Whitehead product is defined and studied in the pro-homotopy and shape
categories; and. it is shown that this Whitehead product vanishes on an H-object in pro-homotopy.
These results are the natural extensions of some well-known classical results in the homotopy
theory of CW-complexes.
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1. Introduction

The notion of ‘H-space’ is of considerable importance in the homotopy theory
of CW-complexes. It is well-known that homotopy theoretic notions break down
when applied to spaces with irregular local structure. In order to overcome this
difficulty, K. Borsuk [2] was led to develop ‘shape theory’; see also [6, 8]. We
emphasize that the notion of H-space is also not very useful on spaces with local
pathologies, and hence, an analogous notion of ‘shape H-space’ must be carefully
formulated. A similar need exists in pro-homotopy; this is discussed below.

Artin and Mazur {1] have extensively discussed the pro-homotopy theory in their
study of ‘etale homotopy type’ of locally Noetherian schemes. They give analogues
of many theorems from classical algebraic topology in the setting of pro-homotopy.
Pro-homotopy provides a natural setting in which ‘completions’ are studied; see [1]
for pro-finite completions. Bousfield and Kan [3] have obtained their R-completion
by first, constructing a pro-homotopy tvpe like Artin and Mazur [1], and then
‘collapsing’ it to ordinary homotopy type. Dror [4] has pointed out that it is more
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advantageous to work with the pro-homotopy type. i.e.. not to collapse. These
considerations provide motivation for pro-homotopy: it is also worth pointing out
that pro-homotopy theory includes shape theory.

The business at hand is, as stated above. to provide an all encompassing definition
of multiplicative objects in pro-homotopy and shape. This is done by following a
general plan set forth by Eckmann-Hilton {7]; a quick review of [7] is presented
in Section 2. In Section 3, we concretely discuss “group-like structures’ in pro-
categories; this section is of independent interest. These discussions are then applied
in Section 4 to obtain "group-like structures’ in pro-homotopy and shape. In Section
5. we have presented a brief study of the Whitehead products in pro-homotopy and
shape. This study terminates with our major theorem which roughly states that the
extended Whitehead products vanish on H-objects in pro-homotopy; see Theorem
6.1 for a precise statement. This theorem represents convincing evidence that all
the notions are correctly and naturally formulated.

We have demonstrated in Section 4 that there are plenty of examples of shape-H -
spaces. There are numerous examples of H-objects which naturally arise in pro-
homotopy in the context of completions or Moore-Postnikov decompositions associ-
ated with H-spaces. A complete study of these examples with additional results is
postponed because of length; a good reference for these matters is [3] where other
references may also be found. As a concluding remark, we emphasize that H-objects
are particularly interesting in pro-homotopy since we have extended Dror’s [4]
celebrated generalization of the Whitehead theorem to pro-homotopy; see 18, 19].
Some related shape theoretic results are given in [17].

2. Group-like structures in categories

2.1. A review of Eckmann-Hilton [7]. All categories considered in this section are
assumed to possess zero-maps. Let € be a category and let P be the direct product
of objects A, A,,..., A, of €. A system of maps {f: X > A;:1=<j=<n} from an
object X in € determines a unique map f: X - P satisfying p;f = f; where p;; P> A,
1 <j=<n, is the projection. The map f is often denoted by {f,, f>,. ... f.} where f;’s
are called the components f. We follow [7] for notation and terminology whenever
appropriate; this allows us to be brief concerning these matters. A category is called
a D-category if it has finite direct products. The operation of forming direct products
is commutative and associative; more specifically, there are canonical equivalences
T:AX B> BXA (7 is called the switching map) and a:(AXB)X C->AX(BxC(C),
see [7] for details.

Let € be a D-category. An M-structure or multiplication on an object A of € is
simply a map m: AX A-> A in €; and, the pair (A, m) is called an M-object of €.
The following is a list of axioms that can be imposed on an M-object (A, m) of €.

I (Zero as Unit). m{1,0}=m{0,1}=1:A> AXA-> A where 1 and 0 denote
the identity map and the zero-map.



S. Singh / Group-like structures 235

II {(Associativity). The maps m(mx1) and m(lxXm)a are equal whenever
appropriately interpreted from the diagram

{AXA)XA->AX(AXA)-AXA->A

where a is a canonical equivalence.

III (Inverse). There exists a map s: A— A in € such that m{l, s}=m{s, 1} =
0:A-AXA- A

IV (Commutativity). The map m+: AX A - A equals to the map m:AXA->A
where T AXA—-> AX A is the switching map.

2.1.1. Definition. An M -structure m: AXA—-> A in % is called H-structure, AH-
structure, G-structure, CG-structure, or ACH-structure if it satisfies:

(a) The axiom I;

(b) the axioms I and II;

(¢) the axioms I, II, and I1I;

(d) the axioms I, II, III. and IV; or

(e) the axioms I. II, and IV, respectively.

The following is a theorem of Eckmann and Hilton [7].

2.1.2. Theorem. Let (A, m) be an M-object of € and let H(X, A), the set of
morphisms in € from X into A, have the induced M-structure. Then (A, m) satisfies
axiom K, K =1, 1I. l1I, or IV if and only if the induced M-structures on H(X. A)’s,
for varying X, satisfy axiom K. Moreover, zero is a right (left) unit for (A, m) if and
only if it is a right (left) unit for H(X, A)'s; and, a right (left) inverse exists for
(A, m) if and only if it exists for H(X, A)’s.

2.1.3. Examples. We shall briefly review some examples from [7]. Example: In the
category of pointed sets, G-objects and CG-objects are just the groups and the
abelian groups, respectively. Example: In the category of pointed topological spaces
and pointed homotopy classes of maps, the H-objects are the well-known H-spaces
and all topological groups are G-objects. A detailed discussion of these two examples
is given in [7] where other examples may also be found.

2.2. Pro-categories. The concept of a pro-category is due to Grothendieck [11, 12];
see Artin and Mazur [1; Appendix] for an excellent treatment. A concrete descrip-
tion of a morphism in a pro-category can be found in [6]. {8], or [15]; we assume
familiarity with Mardesi¢ [15], and Edwards and Hastings [8; p. 4-8].

3. Group-like structures in pro-categories

The purpose of this section is to concretize the notions of M-structure, H-
structure, etc., given in (2.1), in suitable pro-categories. We begin with the following
proposition.
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3.1. Proposition. [f € isa D-category with zero-maps, then pro-'6 is also a D-category
with zero maps.

It is easy to see that pro-¥% has zero-maps if € does; and. pro-%€ is a D-category
when % isa D-category (this follows from [1]. see page 164). Moreover. the product
X X Y is isomorphic to {X;x Y;:iel jeJ} where X ={X: iel}, Y={Y;:jel},
and I xJ is directed by (i, j)<(i',j') if and only if i<i" and j</’

3.2. M-objects in pro-%. Suppose € is a D-category with zero-maps. Suppose X
admits an M-structure m: X X X » X. The map m: X X X - X can be interpreted
as follows. There isamap a: [ - F x [ defined by a(i) = (a,(i), a,(i)) and morphisms
{Xo 0 X X, (,,——*X i€ I} such that if i<i' in [, then there is a commutative
diagram

Xu,u‘; X Xu;ti‘) '—-—ixi‘

3.2.1 X XX, bond

Xal{nx X{r:til —_— X,

where (i, i) = (o (i), a>(i)) and (a,(i"), a(i’'}). Clearly, (i, {») may be chosen so
that i, =i>.

3.3. H-structure in pro-¢. With notation as abovein 3.1, let (X, m) be an M -object
which satisfies axiom I of (2.1), i.e., (X, m) is an H-object. This means that the
two composites in the diagram

XxX-"25X

are equal to the identity, i.e., m{0, 1} = m{1, 0} = 1. This is discussed as follows. For
each i in I, there exists an i, =i such that the diagram

i1 0 bond m

3.3.1 X, o X <X, 2 S X0 X X —2 s X,

Xﬂdl\\\/'

u(l

Xu,u'x

has the properties: (a) Each composite starting from X; and ending at X; is equal
to the bond X; - X;; and (b) the upper and lower triangles commute, i.e., for the
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upper triangle, bond{1.0}={1.0}bond, and similarly for the lower triangle. This
finishes our discussions of an H-structure and we next discuss AH -structure.

3.4. AH -structure in pro-%. With notation as above in 3.1-3.2, suppose an M-
object {or H-object) (X, m) satisfies axiom II of 2.1. We study this axiom as follows,
i.e., we study the diagram

(XXX)XX —— sy XX (X X X)

I xXm

XxX—2 5 x

where the two comEosite maps from (X X X)X X to X are equal. Consider the
map X, X Xayiy — X; and put j=a,(i) and k = a,(i). The following diagram
explains the situation:

(X, XXal(’\')) X /\,L.;lm_a—" X/ X (X.,(A) X Xzz:4k»)

>
&

341 (X, X X,)xX, 1 X my
%,
% m; <1 m,
(Xult X /Yu:l 1») X ‘YA_——’X/' X Xk — X

where both the composites from (X; X X)X X}, to X; are equal and (i}, i1, i5) =
(a,(f), ax()), k) and (j, a,(k), a;(k)); and furthermore, we may choose (i,. i, i3)
such that i; =i, =I;. In the case when (X, m) is an H-object, our choice of i, in
3.4.1 and our choice of i; in 3.3.1 can be assumed to be the same (this is the reason
for using i, in both cases).

3.5. G-structuresin pro-¢. With notation as above in 3.2-3.4, suppose an M-object
(or AH-object) satisfies axiom III. We study this axiom as follows. Suppose there
exists a map s: X - X such that both the composites in the diagram

(1.5}

—

X {s.1}

—

XxX=2-X

are equal to the zero-map, i.e., m{l, s}=m{s, 1} =0. Let 8:1 - I denote the map
given in the definition of the map s. The following diagram contains all the relevant
information:
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bond
X, X X, mee————> Xy, X X

3.5.1 bond 5% 1

1 X5 m;
X X Xy i) —mmeeere—e——3 X; X X ————— > X

where both the composites from X X X, to X; are equal to the zero-map, j = a,(i).
k = a,(i), and (i, i.) = (j, B(k)) and (B(j), k); and furthermore, we may choose
i, =1i,. In the case (X, m) is G-object, we may choose i, such that i, simultaneously
works for 3.3.1, 3.4.1. and 3.5.1. This finishes our discussions of G-objects.

3.6. CG-objects in pro-¢. With notation as above in 3.2-3.5, suppose an M-object
(or G-object) (X, m) satisfies the axiom IV of 2.1. This means that the two maps

m

XXX m_ X

are equal where 7 is ‘the switching map’ 7: X X X » X X X. We study this situation
as follows. The following commutative diagram explains the situation:

T
N Xu:(l') X Xa,m —_— Xul(i) X Xu:(ib
o«
3-6.1 X,‘I X Xi: n,

6&

i/

(74 m;

Xal(i)xxuzlil — X;

where (iy, iy) = (a,(i), a5(i)) and (a,(i), a,(i)); and furthermore, we may choose
i, = i,. In the case (X, m) isa CG-object, we may choose i, such that i; simultaneously
works for all the diagrams 3.3.1, 3.4.1, 3.5.1, and 3.6.1. This finishes our discussions
of CG-objects.

3.7. ACH-objects in pro-%¢. With notation as above, an M-object (X, m) is an
ACH -object if the M-structure on X satisfies the axioms I, II, and IV of 2.1. This
can be interpreted by combining our discussions given in 3.4 with 3.6.

The following is easy to prove:

3.8. Theorem. A retract of an H-object of pro-€ is also an H-object of pro-€.

4. Group-like structures in pro-homotopy and shape theories

4.1. Pro-homotopy. Let % denote the pointed homotopy category of pointed and
connected: (a) CW-complexes, (b) Kan complexes, or (c) topological spaces (satisfy-
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ing some property). Observe that # is a D-category with zero-maps. By Proposition
3.1, the pro-homotopy category pro-# is a D-category with zero-maps. A pro-
homotopy K-object is by definition an object of pro-# which is a K-object of pro-%
in the sense of Section 2 and Section 3, where K =M, H, AH, G, CG, or ACH.
More specifically. put # equal to € in Section 3 and define a pro-homotopy M-object,
H-object, . . . to be the respective M-object, H-object, ... of pro-¥ as discussed in
3.2-3.7.

4.2. Shape. Let %, denote the pointed homotopy category of pointed CW-
complexes. A pointed topological space A is a shape K-space if and only if there
exists a K-object {A;: ie [} of pro-¥, associated with A in the sense of Morita
[16], (see [6, 15] for some relevant discussions), where K =M, H, AH, G, CG, or
ACH.

Group-like structures are commonly studied in the context of the homotopy
theory under the broad title * H-spaces’. Our notions of H -object, shape-H -space,
etc., are natural extensions of the notion of H-space.

4.3. Examples of pro-homotopy H-objects and shape H-spaces. We now give
several examples. We merely point out the sources of examples and leave the details
to the reader.

4.3.1. Example. Every object {X: i€ I} of pro-# (see 4.1 for the definition of %)
such that each X; is an H-space and each bond is structure preserving. In particular,
any inverse system of Lie groups whose bonds are continuous homomorphisms is
a pro-homotopy H-object (or even a G-object).

4.3.2. Example. For each object {X;: i€ I} of pro-#, the object {2X;:ie I} is an
H-object of pro-# where X, denotes the suitable loop-space of X, of pro-#.

4.3.3. Example. Any object of pro-# whose bonds are the zero-maps in # is an
H-object of pro-#.

4.3.4. Example. A Moore-Postnikov system of an H-space in # is an H-object
of pro-#.

4.3.5. Example. For each object {G,: i € I} of pro-(topological groups), the object
{BG;: ie I} is an H-object of pro-% where BG; is the suitable classifying space of
G;; there are many well-known constructions of the classifying spaces (see [9] for
related references, in particular, see G. Segal’s construction cited in [9]).

4.3.6. Example. The tower of fibrations { R, X'} used to construct the R-completion
in [3] is a pro-homotopy H-object when X is an H-space.
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4.3.7. Example. Given G a compact metric group. {G,} be a Lie series for G, and
{BG,} the inverse system of classifying spaces corresponding to {G,} as in [9].
Edwards and Hastings have shown that the inverse limit of {BG,} is useful for
classifying open principal G-fibrations over compact metric spaces; see (9] for a
precise statement. It follows that the pro-homotopy information of {BG,} can be
useful in the classification of G-fibrations as above; we emphasize that { BG,} must
be regarded as an H-object while studying its pro-homotopy.

4.3.8. Example. Let X be a compact metric semigroup with identity such that X
is a subset of the Hilbert cube Q or an absolute neighborhood retract { Abbreviate:
ANR) A. Observe that for any nbd. U of X in Q or A there exists a nbd. V of
X contained in U such that the multiplication X xX 5 X suitably extends to a
map VX V = U satisfying the maps #i( ,*), rii(*, ): V> U (defined by sending
x to m(x, *) or m(*, x), respectively) are homotopic to the inclusion V- U rel.
the base-point *. Use this fact to inductively construct a nest {X,} such that: (a)
each X, is an nbd. of X in Q or A, (b) each X, is an ANR which is compact for
Q and which may be non-compact for A. (c) the intersection of {X,} is X (this
implies { X} is associated with X in Morita's sense), and (d) {X,.} is a pro-homotopy
H-object in our sense. Thus, every compact metric semigroup with identity is a shape
H-space. In fact, the following more general result can be easily deduced from
Keesling [14].

Theorem. Every compact Hausdorff semigroup with identity or an H-space is a shape
H-space.

We conclude this example with the remark that one must carefully develop shape
theory for topological semigroups which classifies topological semigroup structures
on a space upto shape.

4.4. Shape H-spaces: geometric examples. Here we are interested in the specific
constructions of examples of shape H-spaces. The following propositions follow
immediately.

4.4.1. Proposition. Any space X having the shape of a point is a shape K-space,
where K = H, AH, G, CG, or ACH.

4.4.2. Proposition. If X is a space having the shape of a shape K-space, K = H,
AH, G, CG, or ACH, then X is a shape H-space.

4.4.3. Proposition. The Warsaw circle W, see Fig. 1, is a shape H-space; moreover,
it is shape CG-space. This follows, since W has the shape of the circle S*.
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w

Fig. 1.

4.4.4. Example. The space W, see Fig. 2, has also the shape of S'; and hence, 1°%
is a shape CG-space. Although, W is not an H-space in the usual sense (or even
an H-space up to homotopy).

We obtain W from W by attaching two copies of cylinder S' %[0, x) along an
infinite ray of W as in Fig. 2. Of course, any finite number and even countably
many cylinders can be similarly attached. It is easy to see that W has the shape of
a circle. Now, W is not an H -space since W is nonabelian (it is a free group on
two generators).

Fig. 2.

4.4.5. Example. Let P be any polyhedron (or more generally any space). Let A
equal to the following Warsaw interval, see Fig. 3, with end-points a and b. Construct
a space P by identifying the subset Px{b} of PX A to a point. The space P will be
called a ‘wiggly cone’” over P. It is easy to see that P has the shape of a point;
although, the inclusion P- P induces an isomorphism of homotopy groups. This
shows that the homotopy groups of a shape H-space X may be quite arbitrary even
when X has trivial shape (see [10] for a more general result in this direction).

A
b

Fig. 3.
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4.4.6. Example. Let X be any H-space which is a CW-complex. The following
operation will generate many interesting examples of shape H-spaces: Remove any
open n-cell bounded by (n—1)-sphere X and glue in the ‘wiggly cone’ over X. This
operation can be carefully repeated to construct rather complicated looking shape
H -spaces, which are not H-spaces, each of which has the shape of X but not the
homotopy type of X.

5. The Whitehead product in pro-homotopy

The main purpose of this section is to carefully develop an analogue of the
Whitehead product (Abbreviate: W-product) in pro-homotopy. We assume
familiarity with the homotopy notions of W-product and the action of the funda-
mental group of a space on its homotopy groups. Our development of the W-product
in pro-homotopy and its formalization has necessitated the definitions of several
auxiliary categories; thus, this development appears to be more complicated than
it actually is.

5.1. A category of pro-actions. By a left action of a group H on a group G
we mean a map HXGi G satisfying the usual properties e-g=g, h-(gg') =
(h-g)(h-g'),and (hh')-g=h-(h"-g) where g, g’ isin G, h, k' is in H, e is the
identity of H, and £(h, g) is denoted by h- g. We form a category of ‘left actions’
P whose objects are maps of the form ¢ and a morphism (¢, ¢): €= ¢ is a
commutative diagram

I3
HXG———G

§'
Hlx Gr __—___;Gr

where ¢ and ¢ are homomorphisms. The category 24 of ‘right actions’ is similarly
defined. The corresponding pro-categories pro-Z.&f or pro-Rs will be called the
category of pro-actions.

5.2. The pro-action of the fundamental pro-group. Let € equal to 7, or W,
throughout the following. Suppose {X;: i € I'} is an object of pro- €. The fundamental
pro-group m X ={m X,: i € I} pro-acts (we often drop the prefix ‘pro’) on 7, X =-
{m,X;:iel}as follo;vs: The morphisms {m, X; X m,X; — m,X;: i € I} determine an
object 7, X X 7,X —— m,X of pro-£« since for each j= i the diagram
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&
m XX m X, — 2 5 7, X,

&
m X X, X — 2w, X,

commutes where the vertical maps are induced by the bond X, - X.

5.2.1. Simplicity. With notation as above, X is p-simple in pro-¥ if and only if for
each i in I there exist j= j(i) =i in [ such that &,(x, y) =y for all (x, ¥) in the image
of the homomorphism 7, X X 7,X; » 7, X; X 7,X; induced by the bond X; > X,. We
say X is simple if and only if it is p-simple for all p=1. We say X is uniformly
simple if and only if for each i in I there exists j=j(i) =i in [ such that §,(x, y)=y
for all p=1 and all (x, y) as above. In case there is ambiguity, we may use the
terminology pro-p-simple, pro-simple, and pro-(uniformly simple) instead of p-simple,
simple, and uniformly simple.

5.3. A pro-category of bilinear maps. Suppose G, H, and K are abelian groups.
A bilinear map GXH - K is a map of sets which is linear in each coordinate
separately. Let 3.7 denote the category of ‘bilinear maps’ whose objects are bilinear
maps and whose morphism are pairs (¢, ¢) of homomorphisms such that the diagram

G'XH — K’

GXH———K

commutes where the horizontal maps are two objects of . The objects of pro-BL
are called ‘pro-bilinear’.

5.4. The Whitehead product in pro-homotopy. Suppose p and q are greater than
1 until further notice. With notation as above, the set of bilinear maps {7, X; X 7, X; —
Tpeq—1 Xt i€ I} form an object m,X X m,X — 7,4 X of pro-BF since for each
j=i the diagram

71'/’)(/' X 774)(/ [ ] T"I’*fq-l/Y/

[]

“TpXi X ﬂpXi —_— T"p-kq——l Xi
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commutes where the vertical maps are induced by the bond X, —» X; and further-
p . .
more, the set {7,X,® 7, X, — 7,y Xi: i€ I} of homomorphisms determines a
4 .
map 7,X ® 7,X — m,.4-1 X of pro-groups such that the diagram

m, X X7, X _— m, X &7, X
(1] 2

Tpag-1 X

commutes. The pro- Whitehead product or pro-W-product (or W-product when there

is no confusion) is defined to be the object w,X X 7, X — 7,1 X of pro-BL or
the morphism p of pro-groups whichever is convenient.

£
Inthe case p =g = 1, the pro- W-product is defined to be the object m, X X m; X ——
m X of pro-2, see 5.4. We often use [ ] for ‘£€,". We need the following auxiliary
category before proceeding further.

5.4.1. An auxiliary category. Let GXH 5 H be a group action where G is
a (possibly nonabelian) group and H is an abelian group. Define a new map
GxH>H by setting £(g, h) equal to [£(g, h) — h]for every (g, h) in G X H. Define
a category ? whose objects are maps of the form £and a morphism (&, w): €&
of 2 is the commutative diagram

GxH————————H

E",
G’XH"—'—-——’H,

where ¢ and ¢ are homomorphisms.

Suppose p=1<gq until further notice. The pro-W-product is defined to be the
object m X X m, X e, 7,X of pro-? determined by the object m X X 7, X SN X
of pro-ﬁé’&f.[We often use [ ] for ‘fp’. Now fq determines the pro-W-product
7, X X 7 X — w,X as follows: For each i in I define 7, X; X m, Xi = meX; by sending
(x,y) to (=1)7[&,(y, x) — x]. This finishes our definition of the Whitehead product
in the pro-homotopy setting.
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6. Pro-Whitehead product vanishes on H-objects in pro-homotopy

It is well-known that the Whitehead products vanish on H-spaces. The purpose
of this section is to prove an analogous result in pro-homotopy and shape theory.
Suppose X ={X: i€ I} is an object of pro-6, € as in 5.2. Let us observe that the
W-product, see 5.4, of the pro-groups 7,X and =,X vanishes if and only if for each
i in I there exists j=j(i{)=1i in I such that the map m,. ;-1 X; > 7psq-1X; induced
by the bond takes the W-product of two elements of #,X; and 7, X; onto the zero
element.

6.1. Theorem. If X ={X;:ie I} is an H-object of pro-%, then the ( pro-) Whitehead
product of pro-groups w,X and =, X vanishes for all p and q = 1.

Proof. With notation as in 3.3, we consider the following diagram

§7x {*} inclusion SPx §4
A
f fxg
{1,0}
vV i——— J' bond m;
i {0.1} an){h I —— AYu,mXXu:tn—_"X'
A T > A
8
inclusion

{#}X 8§ ———> S’ x §9

satisfying: (a) the map f and g represent elements « in 7,X; and 8 in 7 X,
respectively; (b) {1, 0}f = (f X g) inclusion; (c¢) {0, 1}g = inclusion( f X g); and (d) the
middle of the diagram comes from the diagram 3.3.1. This suffices to prove that
the image of [a, 8] under the bond X - X; is zero. This completes our proof. O

6.2. Corollary. If X ={X;: ie I} is an H-object of pro-€, then X is uniformly simple
(see 5.2.1).

This follows immediately from Theorem 6.1.
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