Topology and its Applications 17 (1984) 233-246 North-Holland

GROUP-LIKE STRUCTURES AND THE WHITEHEAD PRODUCT IN PRO-HOMOTOPY AND SHAPE

S. SINGH

Department of Mathematics and Computer Science, Southwest Texas State University, San Marcos, TX 78666, USA

Received 29 January 1982 Revised 1 June 1983

The notion of 'H-space' is of considerable importance in the homotopy theory of CW-complexes. This paper studies a similar notion in the framework of pro-homotopy and shape theories. This is achieved by following the general plan set forth by Eckmann and Hilton. Examples of shape H-space are also given; it is observed that every compact connected topological monoid is a shape H-space. The Whitehead product is defined and studied in the pro-homotopy and shape categories; and, it is shown that this Whitehead product vanishes on an H-object in pro-homotopy. These results are the natural extensions of some well-known classical results in the homotopy theory of CW-complexes.

AMS (MOS) Subj. Class. (1980): Primary 55P55, 55Q15; Secondary 57T99, 54H15.	
pro-homotopy	simple space
shape	multiplicative structures
Whitehead product	H-space.

1. Introduction

The notion of 'H-space' is of considerable importance in the homotopy theory of CW-complexes. It is well-known that homotopy theoretic notions break down when applied to spaces with irregular local structure. In order to overcome this difficulty, K. Borsuk [2] was led to develop 'shape theory'; see also [6, 8]. We emphasize that the notion of H-space is also not very useful on spaces with local pathologies, and hence, an analogous notion of 'shape H-space' must be carefully formulated. A similar need exists in pro-homotopy; this is discussed below.

Artin and Mazur [1] have extensively discussed the pro-homotopy theory in their study of 'etale homotopy type' of locally Noetherian schemes. They give analogues of many theorems from classical algebraic topology in the setting of pro-homotopy. Pro-homotopy provides a natural setting in which 'completions' are studied; see [1] for pro-finite completions. Bousfield and Kan [3] have obtained their R-completion by first, constructing a pro-homotopy type like Artin and Mazur [1], and then 'collapsing' it to ordinary homotopy type. Dror [4] has pointed out that it is more

advantageous to work with the pro-homotopy type, i.e., not to collapse. These considerations provide motivation for pro-homotopy; it is also worth pointing out that pro-homotopy theory includes shape theory.

The business at hand is, as stated above, to provide an all encompassing definition of multiplicative objects in pro-homotopy and shape. This is done by following a general plan set forth by Eckmann-Hilton [7]; a quick review of [7] is presented in Section 2. In Section 3, we concretely discuss 'group-like structures' in procategories; this section is of independent interest. These discussions are then applied in Section 4 to obtain 'group-like structures' in pro-homotopy and shape. In Section 5, we have presented a brief study of the Whitehead products in pro-homotopy and shape. This study terminates with our major theorem which roughly states that the extended Whitehead products vanish on H-objects in pro-homotopy; see Theorem 6.1 for a precise statement. This theorem represents convincing evidence that all the notions are correctly and naturally formulated.

We have demonstrated in Section 4 that there are plenty of examples of shape-H-spaces. There are numerous examples of H-objects which naturally arise in prohomotopy in the context of completions or Moore-Postnikov decompositions associated with H-spaces. A complete study of these examples with additional results is postponed because of length; a good reference for these matters is [3] where other references may also be found. As a concluding remark, we emphasize that H-objects are particularly interesting in pro-homotopy since we have extended Dror's [4] celebrated generalization of the Whitehead theorem to pro-homotopy; see [18, 19]. Some related shape theoretic results are given in [17].

2. Group-like structures in categories

2.1. A review of Eckmann-Hilton [7]. All categories considered in this section are assumed to possess zero-maps. Let \mathscr{C} be a category and let P be the direct product of objects A_1, A_2, \ldots, A_n of \mathscr{C} . A system of maps $\{f_j: X \to A_j: 1 \le j \le n\}$ from an object X in \mathscr{C} determines a unique map $f: X \to P$ satisfying $p_j f = f_j$ where $p_j: P \to A_j$, $1 \le j \le n$, is the projection. The map f is often denoted by $\{f_1, f_2, \ldots, f_n\}$ where f_j 's are called the *components f*. We follow [7] for notation and terminology whenever appropriate; this allows us to be brief concerning these matters. A category is called a *D-category* if it has finite direct products. The operation of forming direct products is commutative and associative; more specifically, there are canonical equivalences $\tau: A \times B \to B \times A$ (τ is called *the switching map*) and $a: (A \times B) \times C \to A \times (B \times C)$, see [7] for details.

Let \mathscr{C} be a *D*-category. An *M*-structure or multiplication on an object *A* of \mathscr{C} is simply a map $m: A \times A \rightarrow A$ in \mathscr{C} ; and, the pair (A, m) is called an *M*-object of \mathscr{C} . The following is a list of axioms that can be imposed on an *M*-object (A, m) of \mathscr{C} .

I (Zero as Unit). $m\{1, 0\} = m\{0, 1\} = 1: A \rightarrow A \times A \rightarrow A$ where 1 and 0 denote the identity map and the zero-map.

II (Associativity). The maps $m(m \times 1)$ and $m(1 \times m)a$ are equal whenever appropriately interpreted from the diagram

$$(A \times A) \times A \to A \times (A \times A) \to A \times A \to A$$

where a is a canonical equivalence.

III (Inverse). There exists a map $s: A \to A$ in \mathscr{C} such that $m\{1, s\} = m\{s, 1\} = 0: A \to A \times A \to A$.

IV (Commutativity). The map $m\tau: A \times A \rightarrow A$ equals to the map $m: A \times A \rightarrow A$ where $\tau: A \times A \rightarrow A \times A$ is the switching map.

2.1.1. Definition. An *M*-structure $m: A \times A \rightarrow A$ in \mathscr{C} is called *H*-structure, *AH*-structure, *G*-structure, *CG*-structure, or *ACH*-structure if it satisfies:

- (a) The axiom I;
- (b) the axioms I and II;
- (c) the axioms I, II, and III;
- (d) the axioms I, II, III, and IV; or
- (e) the axioms I, II, and IV, respectively.

The following is a theorem of Eckmann and Hilton [7].

2.1.2. Theorem. Let (A, m) be an M-object of \mathscr{C} and let H(X, A), the set of morphisms in \mathscr{C} from X into A, have the induced M-structure. Then (A, m) satisfies axiom K, K = I, II, III, or IV if and only if the induced M-structures on H(X, A)'s, for varying X, satisfy axiom K. Moreover, zero is a right (left) unit for (A, m) if and only if it is a right (left) unit for H(X, A)'s; and, a right (left) inverse exists for (A, m) if and only if and only if it exists for H(X, A)'s.

2.1.3. Examples. We shall briefly review some examples from [7]. *Example*: In the category of pointed sets, G-objects and CG-objects are just the groups and the abelian groups, respectively. *Example*: In the category of pointed topological spaces and pointed homotopy classes of maps, the H-objects are the well-known H-spaces and all topological groups are G-objects. A detailed discussion of these two examples is given in [7] where other examples may also be found.

2.2. Pro-categories. The concept of a pro-category is due to Grothendieck [11, 12]; see Artin and Mazur [1; Appendix] for an excellent treatment. A concrete description of a morphism in a pro-category can be found in [6], [8], or [15]; we assume familiarity with Mardešić [15], and Edwards and Hastings [8; p. 4–8].

3. Group-like structures in pro-categories

The purpose of this section is to concretize the notions of M-structure, H-structure, etc., given in (2.1), in suitable pro-categories. We begin with the following proposition.

3.1. Proposition. If C is a D-category with zero-maps, then pro-C is also a D-category with zero maps.

It is easy to see that pro- \mathscr{C} has zero-maps if \mathscr{C} does; and. pro- \mathscr{C} is a *D*-category when \mathscr{C} is a *D*-category (this follows from [1], see page 164). Moreover, the product $X \times Y$ is isomorphic to $\{X_i \times Y_j : i \in I, j \in J\}$ where $X = \{X_i : i \in I\}, Y = \{Y_j : j \in J\}$, and $I \times J$ is directed by $(i, j) \leq (i', j')$ if and only if $i \leq i'$ and $j \leq j'$.

3.2. *M*-objects in pro- \mathscr{C} . Suppose \mathscr{C} is a *D*-category with zero-maps. Suppose *X* admits an *M*-structure $m: X \times X \to X$. The map $m: X \times X \to X$ can be interpreted as follows. There is a map $\alpha: I \to I \times I$ defined by $\alpha(i) = (\alpha_1(i), \alpha_2(i))$ and morphisms $\{X_{\alpha_1(i)} \times X_{\alpha_2(i)} \xrightarrow{m_i} X_i: i \in I\}$ such that if $i \leq i'$ in *I*, then there is a commutative diagram

where $(i_1, i_2) \ge (\alpha_1(i), \alpha_2(i))$ and $(\alpha_1(i'), \alpha_2(i'))$. Clearly, (i_1, i_2) may be chosen so that $i_1 = i_2$.

3.3. *H*-structure in pro- \mathscr{C} . With notation as above in 3.1, let (X, m) be an *M*-object which satisfies axiom I of (2.1), i.e., (X, m) is an *H*-object. This means that the two composites in the diagram

$$X \xrightarrow[(1,0)]{(0,1)} X \times X \xrightarrow{m} X$$

are equal to the identity, i.e., $m\{0, 1\} = m\{1, 0\} = 1$. This is discussed as follows. For each *i* in *I*, there exists an $i_1 \ge i$ such that the diagram

has the properties: (a) Each composite starting from X_{i_1} and ending at X_i is equal to the bond $X_{i_1} \rightarrow X_i$; and (b) the upper and lower triangles commute, i.e., for the

upper triangle, bond $\{1, 0\} = \{1, 0\}$ bond, and similarly for the lower triangle. This finishes our discussions of an *H*-structure and we next discuss *AH*-structure.

3.4. AH-structure in pro- \mathscr{C} . With notation as above in 3.1-3.2, suppose an M-object (or H-object) (X, m) satisfies axiom II of 2.1. We study this axiom as follows, i.e., we study the diagram

where the two composite maps from $(X \times X) \times X$ to X are equal. Consider the map $X_{\alpha_1(i)} \times X_{\alpha_2(i)} \xrightarrow{m_i} X_i$ and put $j = \alpha_1(i)$ and $k = \alpha_2(i)$. The following diagram explains the situation:

3.4.1
$$(X_{i_1} \times X_{i_2}) \times X_{i_3}$$

 $(X_j \times X_{\alpha_1(k_j)}) \times X_{\alpha_2(k_j)} \xrightarrow{a} X_j \times (X_{\alpha_1(k_j)} \times X_{\alpha_2(k_j)})$
 $\downarrow 1 \times m_k$
 $(X_{\alpha_1(j)} \times X_{\alpha_2(j_j)}) \times X_k \xrightarrow{m_j \times 1} X_j \times X_k \xrightarrow{m_i} X_i$

where both the composites from $(X_{i_1} \times X_{i_2}) \times X_{i_3}$ to X_i are equal and $(i_1, i_2, i_3) \ge (\alpha_1(j), \alpha_2(j), k)$ and $(j, \alpha_1(k), \alpha_2(k))$; and furthermore, we may choose (i_1, i_2, i_3) such that $i_1 = i_2 = i_3$. In the case when (X, m) is an *H*-object, our choice of i_1 in 3.4.1 and our choice of i_1 in 3.3.1 can be assumed to be the same (this is the reason for using i_1 in both cases).

3.5. G-structures in pro- \mathscr{C} . With notation as above in 3.2-3.4, suppose an *M*-object (or *AH*-object) satisfies axiom III. We study this axiom as follows. Suppose there exists a map $s: X \to X$ such that both the composites in the diagram

$$X \xrightarrow[\{s,1\}]{\{s,1\}} X \times X \xrightarrow{m} X$$

are equal to the zero-map, i.e., $m\{1, s\} = m\{s, 1\} = 0$. Let $\beta: I \to I$ denote the map given in the definition of the map s. The following diagram contains all the relevant information:

3.5.1 $X_{i_{1}} \times X_{i_{2}} \xrightarrow{\text{bond}} X_{\beta(j)} \times X_{k}$ $\downarrow s_{i} \times 1$ $X_{j} \times X_{\beta(k)} \xrightarrow{1 \times s_{k}} X_{j} \times X_{k} \xrightarrow{m_{i}} X_{i}$

where both the composites from $X_{i_1} \times X_{i_2}$ to X_i are equal to the zero-map, $j = \alpha_1(i)$, $k = \alpha_2(i)$, and $(i, i_2) \ge (j, \beta(k))$ and $(\beta(j), k)$; and furthermore, we may choose $i_1 = i_2$. In the case (X, m) is G-object, we may choose i_1 such that i_1 simultaneously works for 3.3.1, 3.4.1, and 3.5.1. This finishes our discussions of G-objects.

3.6. CG-objects in pro- \mathscr{C} . With notation as above in 3.2–3.5, suppose an *M*-object (or G-object) (*X*, *m*) satisfies the axiom IV of 2.1. This means that the two maps

$$X \times X \xrightarrow{m} X$$

are equal where τ is 'the switching map' τ : $X \times X \rightarrow X \times X$. We study this situation as follows. The following commutative diagram explains the situation:

where $(i_1, i_2) \ge (\alpha_1(i), \alpha_2(i))$ and $(\alpha_2(i), \alpha_1(i))$; and furthermore, we may choose $i_1 = i_2$. In the case (X, m) is a CG-object, we may choose i_1 such that i_1 simultaneously works for all the diagrams 3.3.1, 3.4.1, 3.5.1, and 3.6.1. This finishes our discussions of CG-objects.

3.7. ACH-objects in pro- \mathscr{C} . With notation as above, an *M*-object (X, m) is an *ACH*-object if the *M*-structure on *X* satisfies the axioms I, II, and IV of 2.1. This can be interpreted by combining our discussions given in 3.4 with 3.6.

The following is easy to prove:

3.8. Theorem. A retract of an H-object of pro-C is also an H-object of pro-C.

4. Group-like structures in pro-homotopy and shape theories

4.1. Pro-homotopy. Let \mathcal{H} denote the pointed homotopy category of pointed and connected: (a) CW-complexes, (b) Kan complexes, or (c) topological spaces (satisfy-

ing some property). Observe that \mathcal{H} is a *D*-category with zero-maps. By Proposition 3.1, the pro-homotopy category pro- \mathcal{H} is a *D*-category with zero-maps. A prohomotopy K-object is by definition an object of pro- \mathcal{H} which is a K-object of pro- \mathcal{H} in the sense of Section 2 and Section 3, where K = M, H, AH, G, CG, or ACH. More specifically, put \mathcal{H} equal to \mathscr{C} in Section 3 and define a pro-homotopy M-object, H-object, ... to be the respective M-object, H-object, ... of pro- \mathscr{C} as discussed in 3.2-3.7.

4.2. Shape. Let \mathcal{W}_0 denote the pointed homotopy category of pointed CW-complexes. A pointed topological space A is a *shape K-space* if and only if there exists a K-object $\{A_i: i \in I\}$ of pro- \mathcal{W}_0 associated with A in the sense of Morita [16], (see [6, 15] for some relevant discussions), where K = M, H, AH, G, CG, or ACH.

Group-like structures are commonly studied in the context of the homotopy theory under the broad title 'H-spaces'. Our notions of H-object, shape-H-space, etc., are natural extensions of the notion of H-space.

4.3. Examples of pro-homotopy *H***-objects and shape** *H***-spaces.** We now give several examples. We merely point out the sources of examples and leave the details to the reader.

4.3.1. Example. Every object $\{X_i: i \in I\}$ of pro- \mathcal{H} (see 4.1 for the definition of \mathcal{H}) such that each X_i is an *H*-space and each bond is structure preserving. In particular, any inverse system of Lie groups whose bonds are continuous homomorphisms is a pro-homotopy *H*-object (or even a *G*-object).

4.3.2. Example. For each object $\{X_i: i \in I\}$ of pro- \mathcal{H} , the object $\{\Omega X_i: i \in I\}$ is an *H*-object of pro- \mathcal{H} where ΩX_i denotes the suitable loop-space of X_i of pro- \mathcal{H} .

4.3.3. Example. Any object of pro- \mathcal{H} whose bonds are the zero-maps in \mathcal{H} is an *H*-object of pro- \mathcal{H} .

4.3.4. Example. A Moore-Postnikov system of an *H*-space in \mathcal{H} is an *H*-object of pro- \mathcal{H} .

4.3.5. Example. For each object $\{G_i: i \in I\}$ of pro-(topological groups), the object $\{BG_i: i \in I\}$ is an *H*-object of pro- \mathcal{H} where BG_i is the suitable classifying space of G_i ; there are many well-known constructions of the classifying spaces (see [9] for related references, in particular, see G. Segal's construction cited in [9]).

4.3.6. Example. The tower of fibrations $\{R_sX\}$ used to construct the *R*-completion in [3] is a pro-homotopy *H*-object when X is an *H*-space.

4.3.7. Example. Given G a compact metric group, $\{G_n\}$ be a Lie series for G, and $\{BG_n\}$ the inverse system of classifying spaces corresponding to $\{G_n\}$ as in [9]. Edwards and Hastings have shown that the inverse limit of $\{BG_n\}$ is useful for classifying open principal G-fibrations over compact metric spaces; see [9] for a precise statement. It follows that the pro-homotopy information of $\{BG_n\}$ can be useful in the classification of G-fibrations as above; we emphasize that $\{BG_n\}$ must be regarded as an H-object while studying its pro-homotopy.

4.3.8. Example. Let X be a compact metric semigroup with identity such that X is a subset of the Hilbert cube Q or an absolute neighborhood retract (Abbreviate: ANR) A. Observe that for any nbd. U of X in Q or A there exists a nbd. V of X contained in U such that the multiplication $X \times X \xrightarrow{m} X$ suitably extends to a map $V \times V \xrightarrow{\hat{m}} U$ satisfying the maps $\hat{m}(\ ,*), \hat{m}(*,\): V \to U$ (defined by sending x to $\hat{m}(x,*)$ or $\hat{m}(*,x)$, respectively) are homotopic to the inclusion $V \to U$ rel. the base-point *. Use this fact to inductively construct a nest $\{X_n\}$ such that: (a) each X_n is an nbd. of X in Q or A, (b) each X_n is an ANR which is compact for Q and which may be non-compact for A. (c) the intersection of $\{X_n\}$ is X (this implies $\{X_n\}$ is associated with X in Morita's sense), and (d) $\{X_n\}$ is a pro-homotopy H-object in our sense. Thus, every compact metric semigroup with identity is a shape H-space. In fact, the following more general result can be easily deduced from Keesling [14].

Theorem. Every compact Hausdorff semigroup with identity or an H-space is a shape H-space.

We conclude this example with the remark that one must carefully develop shape theory for topological semigroups which classifies topological semigroup structures on a space upto shape.

4.4. Shape H-spaces: geometric examples. Here we are interested in the specific constructions of examples of shape H-spaces. The following propositions follow immediately.

4.4.1. Proposition. Any space X having the shape of a point is a shape K-space, where K = H, AH, G, CG, or ACH.

4.4.2. Proposition. If X is a space having the shape of a shape K-space, K = H, AH, G, CG, or ACH, then X is a shape H-space.

4.4.3. Proposition. The Warsaw circle W, see Fig. 1, is a shape H-space; moreover, it is shape CG-space. This follows, since W has the shape of the circle S^1 .

Fig. 1.

4.4.4. Example. The space \hat{W} , see Fig. 2, has also the shape of S^1 ; and hence, \hat{W} is a shape CG-space. Although, \hat{W} is not an H-space in the usual sense (or even an H-space up to homotopy).

We obtain \hat{W} from W by attaching two copies of cylinder $S^1 \times [0, \infty)$ along an infinite ray of W as in Fig. 2. Of course, any finite number and even countably many cylinders can be similarly attached. It is easy to see that \hat{W} has the shape of a circle. Now, \hat{W} is not an H-space since $\pi_1 \hat{W}$ is nonabelian (it is a free group on two generators).

Fig. 2.

4.4.5. Example. Let P be any polyhedron (or more generally any space). Let A equal to the following Warsaw interval, see Fig. 3, with end-points a and b. Construct a space \hat{P} by identifying the subset $P \times \{b\}$ of $P \times A$ to a point. The space \hat{P} will be called a 'wiggly cone' over P. It is easy to see that \hat{P} has the shape of a point; although, the inclusion $P \rightarrow \hat{P}$ induces an isomorphism of homotopy groups. This shows that the homotopy groups of a shape H-space X may be quite arbitrary even when X has trivial shape (see [10] for a more general result in this direction).

4.4.6. Example. Let X be any H-space which is a CW-complex. The following operation will generate many interesting examples of shape H-spaces: Remove any open n-cell bounded by (n-1)-sphere Σ and glue in the 'wiggly cone' over Σ . This operation can be carefully repeated to construct rather complicated looking shape H-spaces, which are not H-spaces, each of which has the shape of X but not the homotopy type of X.

5. The Whitehead product in pro-homotopy

The main purpose of this section is to carefully develop an analogue of the Whitehead product (Abbreviate: W-product) in pro-homotopy. We assume familiarity with the homotopy notions of W-product and the action of the fundamental group of a space on its homotopy groups. Our development of the W-product in pro-homotopy and its formalization has necessitated the definitions of several auxiliary categories; thus, this development appears to be more complicated than it actually is.

5.1. A category of pro-actions. By a *left action* of a group H on a group G we mean a map $H \times G \xrightarrow{\xi} G$ satisfying the usual properties $e \cdot g = g$, $h \cdot (gg') = (h \cdot g)(h \cdot g')$, and $(hh') \cdot g = h \cdot (h' \cdot g)$ where g, g' is in G, h, h' is in H, e is the identity of H, and $\xi(h, g)$ is denoted by $h \cdot g$. We form a category of 'left actions' \mathcal{LA} whose objects are maps of the form ξ and a morphism $(\phi, \psi) : \xi \to \xi'$ is a commutative diagram

where ϕ and ψ are homomorphisms. The category \mathcal{RA} of 'right actions' is similarly defined. The corresponding pro-categories pro- \mathcal{LA} or pro- \mathcal{RA} will be called the category of *pro-actions*.

5.2. The pro-action of the fundamental pro-group. Let \mathscr{C} equal to \mathscr{HT}_0 or \mathscr{HW}_0 throughout the following. Suppose $\{X_i: i \in I\}$ is an object of pro- \mathscr{C} . The fundamental pro-group $\pi_1 X = \{\pi_1 X_1: i \in I\}$ pro-acts (we often drop the prefix 'pro') on $\pi_p X = \{\pi_p X_i: i \in I\}$ as follows: The morphisms $\{\pi_1 X_i \times \pi_p X_i \xrightarrow{\xi_p} \pi_p X_i: i \in I\}$ determine an object $\pi_1 X \times \pi_p X \xrightarrow{\xi_p} \pi_p X$ of pro- \mathscr{LA} since for each $j \ge i$ the diagram

commutes where the vertical maps are induced by the bond $X_i \rightarrow X_i$.

5.2.1. Simplicity. With notation as above, X is *p*-simple in pro- \mathscr{C} if and only if for each *i* in *I* there exist $j = j(i) \ge i$ in *I* such that $\xi_p(x, y) = y$ for all (x, y) in the image of the homomorphism $\pi_1 X_j \times \pi_p X_j \to \pi_1 X_i \times \pi_p X_i$ induced by the bond $X_j \to X_i$. We say X is simple if and only if it is *p*-simple for all $p \ge 1$. We say X is uniformly simple if and only if for each *i* in *I* there exists $j = j(i) \ge i$ in *I* such that $\xi_p(x, y) = y$ for all $p \ge 1$ and all (x, y) as above. In case there is ambiguity, we may use the terminology pro-p-simple, pro-simple, and pro-(uniformly simple) instead of p-simple, simple, and uniformly simple.

5.3. A pro-category of bilinear maps. Suppose G, H, and K are abelian groups. A bilinear map $G \times H \rightarrow K$ is a map of sets which is linear in each coordinate separately. Let \mathcal{BL} denote the category of 'bilinear maps' whose objects are bilinear maps and whose morphism are pairs (ϕ, ψ) of homomorphisms such that the diagram

commutes where the horizontal maps are two objects of \mathcal{BL} . The objects of pro- \mathcal{BL} are called 'pro-bilinear'.

5.4. The Whitehead product in pro-homotopy. Suppose p and q are greater than 1 until further notice. With notation as above, the set of bilinear maps $\{\pi_p X_i \times \pi_q X_i \xrightarrow{[1]} \pi_{p+q-1} X_i : i \in I\}$ form an object $\pi_p X \times \pi_q X \xrightarrow{[1]} \pi_{p+q-1} X$ of pro- \mathcal{BL} since for each $j \ge i$ the diagram

commutes where the vertical maps are induced by the bond $X_j \to X_i$; and furthermore, the set $\{\pi_p X_i \otimes \pi_q X_i \xrightarrow{p} \pi_{p+q-1} X_i : i \in I\}$ of homomorphisms determines a map $\pi_p X \otimes \pi_q X \xrightarrow{p} \pi_{p+q-1} X$ of pro-groups such that the diagram

commutes. The pro-Whitehead product or pro-W-product (or W-product when there is no confusion) is defined to be the object $\pi_p X \times \pi_q X \xrightarrow{[1]} \pi_{p+q-1} X$ of pro- \mathscr{BL} or the morphism p of pro-groups whichever is convenient.

In the case p = q = 1, the pro-W-product is defined to be the object $\pi_1 X \times \pi_1 X \xrightarrow{\xi_1} \pi_1 X$ of pro- \mathcal{LA} , see 5.4. We often use '[]' for ' ξ_1 '. We need the following auxiliary category before proceeding further.

5.4.1. An auxiliary category. Let $G \times H \xrightarrow{\xi} H$ be a group action where G is a (possibly nonabelian) group and H is an abelian group. Define a new map $G \times H \xrightarrow{\xi} H$ by setting $\hat{\xi}(g, h)$ equal to $[\xi(g, h) - h]$ for every (g, h) in $G \times H$. Define a category \mathcal{P} whose objects are maps of the form $\hat{\xi}$ and a morphism $(\phi, \psi): \hat{\xi} \to \hat{\xi}'$ of \mathcal{P} is the commutative diagram

where ϕ and ψ are homomorphisms.

Suppose p = 1 < q until further notice. The pro-W-product is defined to be the object $\pi_1 X \times \pi_q X \xrightarrow{\xi_q} \pi_q X$ of pro- \mathcal{P} determined by the object $\pi_1 X \times \pi_q X \xrightarrow{\xi_q} \pi_q X$ of pro- $\mathcal{L}\mathcal{A}$. We often use '[]' for ' $\hat{\xi}_p$ '. Now $\hat{\xi}_q$ determines the pro-W-product $\pi_q X \times \pi_1 X \xrightarrow{1} \pi_q X$ as follows: For each *i* in *I* define $\pi_q X_i \times \pi_1 X_i \to \pi_q X_i$ by sending (x, y) to $(-1)^q [\xi_q(y, x) - x]$. This finishes our definition of the Whitehead product in the pro-homotopy setting.

6. Pro-Whitehead product vanishes on H-objects in pro-homotopy

It is well-known that the Whitehead products vanish on *H*-spaces. The purpose of this section is to prove an analogous result in pro-homotopy and shape theory. Suppose $X = \{X_i : i \in I\}$ is an object of pro- \mathscr{C} , \mathscr{C} as in 5.2. Let us observe that the W-product, see 5.4, of the pro-groups $\pi_p X$ and $\pi_q X$ vanishes if and only if for each *i* in *I* there exists $j = j(i) \ge i$ in *I* such that the map $\pi_{p+q-1}X_j \to \pi_{p+q-1}X_i$ induced by the bond takes the W-product of two elements of $\pi_p X_j$ and $\pi_q X_i$ onto the zero element.

6.1. Theorem. If $X = \{X_i : i \in I\}$ is an H-object of pro- \mathcal{C} , then the (pro-)Whitehead product of pro-groups $\pi_p X$ and $\pi_q X$ vanishes for all p and $q \ge 1$.

Proof. With notation as in 3.3, we consider the following diagram

satisfying: (a) the map f and g represent elements α in $\pi_p X_{i_1}$ and β in $\pi_q X_{i_1}$, respectively; (b) $\{1, 0\}f = (f \times g)$ inclusion; (c) $\{0, 1\}g = \text{inclusion}(f \times g)$; and (d) the middle of the diagram comes from the diagram 3.3.1. This suffices to prove that the image of $[\alpha, \beta]$ under the bond $X_{i_1} \rightarrow X_i$ is zero. This completes our proof. \Box

6.2. Corollary. If $X = \{X_i : i \in I\}$ is an H-object of pro- \mathscr{C} , then X is uniformly simple (see 5.2.1).

This follows immediately from Theorem 6.1.

References

- M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Math. 100 (Springer-Verlag, Berlin, 1969).
- [2] K. Borsuk, Theory of shape, Monografie Matematyczne 59, Warsaw, 1975.

- [3] A.K. Bousfield and D.M. Kan, Homotopy limits, and completions and localizations, Lecture Notes in Math. 304 (Springer-Verlag, Berlin, 1972).
- [4] E. Dror, A generalization of the Whitehead theorem, Lecture Notes in Math. 249 (Springer-Verlag, Berlin, 1971), 13-22.
- [5] E. Dror, Pro-nilpotent representation of homotopy types, Proc. Amer. Math. Soc. 38 (1973), 657-660.
- [6] J. Dydak and J. Segal, Shape theory: An introduction, Lecture Notes in Math. 688 (Springer-Verlag, Berlin, 1978).
- [7] B. Eckmann and P.J. Hilton, Group-like structures in general categories..., Math. Annalen 145 (1962), 227-255.
- [8] D.A. Edwards and H.M. Hastings, Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Math. 542 (Springer-Verlag, Berlin, 1976).
- [9] D.A. Edwards and H.M. Hastings, Classifying open principal fibrations, Trans. Amer. Math. Soc. 240 (1978), 213-220.
- [10] J.E. Felt, Homotopy groups of compact Hausdorff spaces with trivial shape, Proc. Amer. Math. Soc. 44 (1974), 500-504.
- [11] A. Grothendieck, Technique de decente ..., Seminar Bourbaki, Exp. 190, 195, 212, 221 (1959-61).
- [12] J. Grothendieck and J.L. Verdier, Théory des topos et cohomologie Etale de Schémes, SGA4, Exp. I. Lecture Notes in Math. 269 (Springer-Verlag, Berlin, 1972).
- [13] K.H. Hoffman and P.S. Mostert, Elements of Compact Semigroups (Charles E. Merrill Books, Inc., Columbus, Ohio, 1966).
- [14] J. Keesling, Products in the shape category and some applications, Symposia Mathematica 16 (1975), 133-142.
- [15] S. Mardešić, On the Whitehead theorem in shape theory I, II, Fund. Math. 91 (1976) 51-64 and 93-103.
- [16] K. Mortia, On shapes of topological spaces, Fund. Math. 86 (1975), 251-259.
- [17] S. Singh, Mittag-Leffler for homotopy pro-groups of Movable Continua, Glasnik Mat. 16 (1981), 131-143.
- [18] S. Singh, The Dror-Whitehead theorem in pro-homotopy and shape theories, Trans. Amer. Math. Soc. 268 (1981), 487-496.
- [19] S. Singh, Pro-homology and isomorphisms of pro-groups, Journal of Pure and Applied Algebra, 23 (1982), 209-219.
- [20] E. Spanier, Algebraic Topology (McGraw-Hill, New York, 1966).