Platform P: Member-Organized Session: Biophysical Approaches to Study Nucleoid Compaction, Recombination & Gene Regulation

1067-Plat
Direct Visualization of Fis-DNA Interactions
John S. Graham1, Reid C. Johnson2, John F. Marko3.
1Northwestern University, Evanston, IL, USA, 2University of California, Los Angeles, CA, USA.

The multistep kinetics through which DNA-binding proteins bind their targets is heavily studied, but relatively little attention has been paid to mechanisms of how proteins leave the double helix. We used a single-DNA stretching and fluorescence detection approach to study the kinetics of unbinding of the E. coli nucleoid-associated protein Fis, which is known to have site-specific regulatory and non-specific chromosome-compacting functions. We find that a fraction of Fis bound to DNA spontaneously dissociates into protein-free solution leaving some Fis tightly bound to the double helix on cell-cycle-long timescales. However, if Fis is present in solution, we find that a concentration-dependent exchange reaction occurs which turns over all the bound protein.

1068-Plat
DNA Shape Recognition by the Nucleoid Protein Fis and Its Role in Chromosome Compaction and DNA Recombination
Reid C. Johnson1, Stefano Stella1, Gautam Dhar2, Meghan M. McLean3, John K. Heiss1, John F. Marko3.
1UCLA Medical School, Los Angeles, CA, USA, 2Northwestern University, Evanston, IL, USA.

The Fis nucleoid-associated DNA bending protein dynamically binds DNA in a largely sequence-neutral manner. Fis also forms stable complexes to DNA segments that share little sequence conservation. In order to understand how Fis is forming these specific DNA complexes and how it distorts DNA structure upon binding, we have determined X-ray crystal structures of 12 Fis-DNA complexes of variable affinities and stabilities. These structures reveal that Fis selects targets primarily through indirect recognition mechanisms involving the shape of the DNA minor groove and sequence-dependent induced fits over adjacent major groove interfaces to generate overall curvatures of 60-75°. In silico DNA modeling of Fis-bound and unbound DNA molecules suggests a model in which Fis initially selects binding sites based on their intrinsic minor groove shape and then bends the DNA to generate the bound structure. The structures show how binding of Fis leads to DNA compaction, and the location of residues involved in capturing DNA loops implies protein-protein interactions are required for loop stabilization. We have shown that DNA supercoiling and torsional energy associated with the Fis-bound DNA enhancer segment controls the rotational direction and number of Hin subunit translocations that mediate DNA C and D during Hin-catalyzed site-specific DNA inversion. The Fis-DNA structures, together with supporting experimental evidence, enable us to propose a new model for the structure of the Fis-bound Hin inverterasome structure.

1069-Plat
Fidelity and Target Location During RecA-Catalyzed Homologous Recombination
Joel Stavans, Adam Mani, Rinat Arbel-Goren.
Weizmann Institute of Science, Rehovot, Israel.

Homologous recombination plays pivotal roles in DNA repair and in the generation of genetic diversity from prokaryotes to man. To locate homologous target sequences at which strand exchange can occur within a timescale that a cell's biology demands, a single-stranded DNA-recombinase complex must search among an extraordinarily large number of sequences on a genome, by forming synapses with chromosomal segments of DNA. A key element in the search is the time it takes for the two sequences of DNA to be compared, i.e. the synapse lifetime. Here we visualize for the first time fluorescently-tagged individual synapses at which strand exchange can occur within a timescale that a cell's biology demands.

1070-Plat
Biophysical Studies of H-NS Binding to DNA
Yingjie Liu1, Hu Chen1, Linda J. Kenney2, Jie Yan3.
1National University of Singapore, Singapore, Singapore, 2University of Illinois at Chicago, Chicago, IL, USA.

Heat-stable nucleoid structuring protein (H-NS) is an abundant prokaryotic protein that organizes chromosomal DNA and plays an important role in gene silencing. Here we report that H-NS can have two distinct binding modes that can be distinguished from one to another by changes in divalent ion concentrations. Further, we show that the switching does not require dissociation of H-NS from the DNA. Our finding resolves an important controversy in the field in which mutually exclusive observations of H-NS/DNA interaction were reported. In single-molecule manipulation experiments, one binding mode leads to stiffening of DNA backbone, while the other leads to DNA folding. AFM imaging showed that the stiffening is caused by polymerization of H-NS along DNA starting from a few nucleation sites, while the folding is caused by formation of large DNA hairpins. The transition from stiffening to bridging occurs when the magnesium or calcium concentration is around or above 5 mM, suggesting that both binding modes are likely present at physiological conditions. Furthermore, the susceptibility of the two binding modes to physiological stimuli (pH and temperature), which are known modulators of H-NS activity, are discussed.

1071-Plat
The Role of SsrB And H-NS in Transcription Activation and Silencing Anti-Silencing During Salmonella Pathogenesis
Don Walthers1, Yingjie Liu1, Hu Chen1, Jie Yan3, Linda J. Kenney4.
1University of Illinois-Chicago, Chicago, IL, USA, 2National University of Singapore, Singapore, Singapore.

In bacterial pathogenesis, virulence gene regulation is controlled by two-component regulatory systems. In Escherichia coli, the EnvZ/OmpR two-component system regulates expression of outer membrane proteins, but in Salmonella enterica, OmpR activates transcription of the ssrA/B two-component system located on pathogenicity island 2 (SPI-2). SsrB controls expression of a type three secretion system whose effectors modify the vacuolar membrane and prevent its degradation via the endocytic pathway. Vacular modification enables Salmonella to survive and replicate in the macrophage phagosome and disseminate to the liver and spleen to cause systemic infection. The signals that activate EnvZ and SsrA are unknown, but are related to the acidic pH of the vacuole. SsrB binds to regions of DNA that are AT rich, with poor sequence conservation (Liao et al., J. Biol. Chem. 284: 12008-12019, 2009). Although SsrB is a major virulence regulator in Salmonella, very little is known regarding how it binds DNA and activates transcription. Pathogenicity island genes are silenced by the heat-stable protein H-NS (Lucchini et al., PLoS Pathog 2: e81, 2006; Navarre et al., Science 313: 236-238, 2006). How transcription factors counter or relieve H-NS silencing is presently a major focus of study. The siA gene is located outside of SPI-2 and encodes a product required for maintenance of the Salmonella-containing vacuole, involving formation of Salmonella-induced filaments or Sifs (Stein et al., Mol Microbiol 20: 151-164, 1996). SsrB directly activates expression of the siA gene and relieves H-NS silencing to activate transcription. We used atomic force microscopy and single molecule experiments to examine H-NS/DNA interactions and the effect of SsrB on H-NS/DNA binding. Our recent findings will be discussed. Supported by NIH GM-058746, VA BX00372-01 to LJK, and the RCE in Mechanobiology, National University of Singapore, Singapore.