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Abstract In this study, a method for the removal of anionic sulphonated Acid Red 14 (AR) dye

from aqueous solution using the chemical interaction of dye molecules with nano-polyaniline is

reported. Nano-polyaniline (PANI) was synthesized by chemical oxidation in presence of different

surfactants. The experimental observations from UV/Vis spectroscopy, rule out the possibility of

secondary doping of polyaniline salt by AR14 molecules. A possible mechanism for the chemical

interaction between the polymer and dye molecules is proposed. In order to get a better comparison,

adsorption experiments were also carried out using Baker’s yeast (BY) individually and in mixture

with nano-PANI. Kinetic parameters for the adsorption of AR dye on the selected adsorbents are

also reported. It was found that application of BY with PANI for the removal of anionic sulpho-

nated dyes such as AR dye from aqueous solution is very promising.
ª 2012 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Water pollution by high levels of pollutant dyes from textile
industry is a serious problem owing to the toxicity effect of
these compounds (Al-Momani et al., 2002; Is�ik and Sponza,
2005). Complete removal or at least decolorization of these

compounds from the environment is therefore an important
issue. The dyes from textile industries are major sources of
environmental pollution because they are non biodegradable.

Many methods such as flocculation, reverse osmosis and acti-
vated carbon adsorption have been used in wastewater treat-
ment. Conducting polymers are becoming the most

promising new materials for next-generation electronic devices
(Wang et al., 1996). Polyaniline (PANI) is one of the conduct-
ing polymers that generated a great interest over the past two
decades because of its potential applications in many fields. Its

high electrical and electronic properties, ease of preparation,
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and low costs render the polymer promising material for

several technological applications (Yue andEpstein, 1990; Fer-
dinando et al., 2001; Mahanta et al., 2008). These applications
include rechargeable batteries (Zhang et al., 2007), sensors
(Clark and Maher, 2009), separation membranes (Bhattach-

arya et al., 2008) and corrosion inhibitor (Musiani et al., 1984).
The removal of anionic sulphonated dyes from aqueous

solutions using the chemical interaction of dye molecules with

polyaniline is reported by Mahanta et al. (2008) and consid-
ered as a green method for removal of sulphonated organics
from wastewater. Mahanta et al. (2009) have reported an ap-

proach for the adsorption and desorption of anionic (sulpho-
nated) dyes from aqueous solution by doped polyaniline.
Polyaniline nano-tubes (PANI NTs) base has been utilized

as an adsorbent for dye removal from water (Ayad and
Abu El-Nasr, 2010).

The use of biomaterials as biosorbents for the treatment of
waste waters provides a potential alternate and/or complimen-

tary to the conventional treatment methods. The process of
uptake of solute using biomaterials including microbial cells,
whether dead or alive, is known as biosorption. The main

advantages of biosorption are high selectivity, cost effective-
ness and good removal performance (El-Khaiary, 2007; Vijay-
araghavan and Yun, 2008). Ability of Baker’s yeast

(Saccharomyces cerevisiae) as biosorbent for heavy metals
(Strandberg et al., 1981; Vasudevan et al., 2002; Goksungur
et al., 2005) and textile dyes (Safrik et al., 2002; Farah et al.,
2007; Farah and El-Gendy, 2007; Yu et al., 2009, 2010; Wang

andGuo, 2011) has been recognized, which is inexpensive, safe,
easily grown, readily available and produces high yields of bio-
mass. That is why it was selected as biosorbent material for the

present study.
The present paper aims to study the feasibility of removal

of a textile Acid Red 14 dye from aqueous solution using a

series of nano-polyaniline salts prepared by different types
of commercial surfactants. The effect of some important
parameters such as initial concentration of sorbate, sorbent

dosage and contact time on adsorption of AR dye using
the most efficient prepared PANI, will be studied. The
adsorption of AR dye on Baker’s yeast (BY) and mixture
of PANI(NPE)/BY as an efficient commercial adsorbent will

be also investigated.

2. Materials and methods

2.1. Chemicals

Acid Red 14 dye (Ism acid red B), 1/94-95, from Chemical-dye
Co. Egypt, was used as received. Ammonium peroxy disulfate

(APS), the surfactants; sodium dodecyl sulfate (SDS), cetyltri-
methylammonium bromide (CTAB) and nonylphenol ethoxy-
late (NPE) and aniline were purchased from Aldrich. Other

chemicals were of analytical reagent grade and were used di-
rectly without further purification.

2.2. Biosorbent preparation

Baker’s yeast (product of Three Pyramids Company, Egypt,
with 70% moisture by weight) was dried in a hot air oven at

60 �C overnight, then powdered using mortar and sieved to se-
lect the particle size (0.63–0.8 mm) for use as a biosorbent.
2.3. Synthesis of polyaniline nanostructures

A stock micelle solution was prepared by dissolving surfac-
tants into distilled water with continuous stirring. The micelles

were formed spontaneously as the concentration of the surfac-
tant in the solution was greater than its critical micelle concen-
tration (CMC).

In a typical fabrication of PANI nano-particles, 1 g
(10.7 mL/mol) of aniline monomers was added drop wise to
40 mL of the surfactant solution (0.5 M) and 1.23 g (5.3 mL/
mol) of APS and 22 g (33 mL/mol) of 1.5 M HCl were added

to the mixed solution. The chemical oxidation polymerization
proceeded with vigorous stirring for 3 h at 3 �C. After poly-
merization, the reaction product was washed with ethanol

and distilled water to remove surfactants. The PANI nano-
particles were retrieved and dried in a vacuum oven at 40 �C
(El-Dib et al., 2012). The nanostructures of the synthesized

polyaniline were examined by transmission electron micros-
copy (TEM) on a JEOL JEM -2000EX, at an accelerating volt-
age of 100 kV. Specific surface area of different prepared

PANI nano-particles were analyzed by means of nitrogen
adsorption isotherm, using Nova 2000, Quanta Chrome (com-
mercial Brunauer, Emmett and Teller (BET) unit), according
to the method reported by Badawi et al. (2012).

2.4. Analysis of dye

kmax of Acid Red dye was determined on a JASCO UV/Vis/
NIR spectrophotometer model V-570. The observed kmax

was found to be 519 nm. Standard curve for different concen-

trations of the dye solution (2.5–500 mg/L) was established.

2.5. Adsorption reactions

A stock solution of AR dye with a concentration of 500 mg/L
was prepared in double distilled water and was diluted to the
desired concentrations according to the experimental condi-

tions. Batch experiments were conducted at fixed agitation
speed of 150 rpm and room temperature for 120 min, in
250 mL Erlenmeyer flasks containing 100 mL aqueous solution

of AR dye with fixed pH 4 and adsorbent, according to the
experiment conditions. Adsorbent was separated from the
solution at predetermined time intervals by centrifugation at

4000 rpm for 15 min. The absorbance of the supernatant solu-
tion at 519 nm was measured to determine the residual dye
concentration and to calculate the percentage of dye removal.
Negative controls (with no sorbent) were carried out to ensure

that sorption is by adsorbents only and any sorption effect of
dye onto the wall of the conical flasks can be ruled out. Trip-
licate samples were measured for each experiment and the

reported data are the average of the measurements with high
precision.

3. Results and discussion

3.1. Preparation of PANI nano-particles

Different types of surfactants with different molecular struc-

tures anionic (SDS), cationic (CTAB) and nonionic (NPE)
were selected to form the micelle templates for polymerization
of aniline. The particles size, surface area and morphology of



Table 1 Physical characteristics of the prepared nano-PANI.

Adsorbents Specific

surface

area

(m2/g)

Particles

size

range

(nm)

PANI(SDS) 17.344 34–63

PANI(CTAB) 23.292 43–45

PANI(NPE) 30.684 14–23

Figure 2 Removal of AR dye using different prepared PANI.
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PANI nano-particles were controlled as function of different

micelles as shown in Table 1 and Fig. 1.
The TEM images of PANI nano-particles synthesized in

SDS micellar solution appeared as rod shapes and their diam-
eter sizes varied from 34 to 63 nm. While, for PANI nano-par-

ticles polymerized with CTAB micelles, it appeared as
homogeneous rod shapes 43–45 nm in diameter. But, in the
NPE micellar solution, some precipitates which had a slightly

spherical shape and ranged from 14 to 23 nm in diameter, were
formed. The specific surface area of the prepared PANI
nano-particles revealed its increase in the following order

PANI(SDS) < PANI(CTAB) < PANI(NPE), recording approxi-
mately; 17.3, 23.3, 30.7 m2/g, respectively, as listed in Table 1.

3.2. Adsorption efficiency of prepared PANI nano-particles

To investigate the effect of different prepared PANI nano-par-
ticles on the adsorption of AR dye, batch experiments were

conducted at room temperature for 120 min in 250 mL Erlen-
meyer flasks with 100 mL aqueous solution of AR dye with ini-
tial dye concentration Co 275 mg/L, fixed adsorbent dosage of

0.1 g, initial pH 4 and fixed agitation speed of 150 rpm.
Fig. 2 shows that, there was no significant difference in

adsorption of AR dye using PANI(SDS) and (CTAB), recording

maximum dye uptake qe of 251 and 256 mg/g, with % removal
of 91% and 93%, respectively. While PANI(NPE) expressed the
highest dye uptake, 266 mg/g, with % removal of 97% and it
was selected as adsorbent for further experiments. A good evi-

dence for this adsorption behavior comes from the observed
difference in particles size, specific surface area and morphol-
ogy between the prepared nano PANI(SDS), (CTAB) and (NPE)

as shown in Table 1 and Fig. 1. The smaller the particle size
Figure 1 TEM of the prepared PANI(SDS),
is, the greater the specific surface area, which consequently
led to greater adsorption capacity.

3.3. Effect of different adsorbent dosages

To investigate the effect of different adsorbent dosages on the
adsorption of AR dye, batch experiments were conducted at

room temperature for 120 min in 250 mL Erlenmeyer flasks
with 100 mL aqueous solution of AR dye (Co 275 mg/L), dif-
ferent adsorbent dosage (PANI (NPE) 0.025–0.2 g), initial pH

4 and fixed agitation speed of 150 rpm. Fig. 3 shows the plot
of equilibrium uptake capacity, qe (mg/g) and % dye removal
against the adsorbent dosage. It was observed that, the %
dye removal increased reaching � 97% at 0.1% (w/v) adsor-

bent dosage and then slightly decreased as the adsorbent con-
centration increased, recording �94% and 93% at 0.15% and
0.2% (w/v), respectively. Based on these results, 0.1% (w/v)

of adsorbent concentration was used for further experiments.
On the other hand as adsorbent dosage increased the ad-
sorbed dye quantity per gram adsorbent qe mg/g decreased.

The primary factor explaining this performance is that at
adsorbent concentration of 0.025% (w/v), adsorption sites re-
main unsaturated during the adsorption reaction, whereas the

number of sites available for adsorption increases by increas-
ing the adsorbent concentration to 0.1% (w/v) due to the in-
crease of available surface area. The presence of relatively
higher concentration of adsorbent in the solution resulting
PANI(CTAB) and PANI(NPE), respectively.



Figure 3 Effect of adsorbent dosage on AR dye removal.
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in reduced distances between the adsorbent particles, thus
making many binding sites unoccupied (Farah and El-Gendy,

2007). Also the inter-particles interactions such as aggrega-
tion, overlapping and overcrowding occur at high adsorbent
concentrations lead to decrease in available total surface

area (Iscen et al., 2007). Another reason could be due to
the splitting effect of concentration gradient between dye
molecules and adsorbent concentration causing a decrease

in the amount of dye adsorbed onto unit weight of adsorbent
(Malik, 2004).

3.4. Effect of different initial dye concentrations with contact
time

The effect of initial dye concentration on the rate of dye uptake

was studied in batch experiments conducted at room tempera-
ture for 120 min in 250 mL Erlenmeyer flasks with 100 mL
aqueous solution of AR dye with different Co 50–500 mg/L,

fixed adsorbent dosage (PANI (NPE) 0.1 g), initial pH 4 and
fixed agitation speed of 150 rpm. Obtained results are shown
in Fig. 4. It was observed that the amount of dye adsorbed
per gram adsorbent increased with increasing initial dye con-

centration and contact time. The rate of dye uptake was ob-
served to be very rapid for the initial period of 10 min and
thereafter, the dye uptake process tends to proceed at a very

slow rate and finally reached equilibrium within 60 min. The
rapid uptake of the dye by the adsorbent indicates high effi-
ciency, and this occurs in physical adsorption or strong chem-

isorptions. Rapid kinetics has significant practical importance
as it will facilitate smaller reactor volumes ensuring efficiency
and economy (Aksu, 2001). Complete removal was achieved

at low concentrations (Co 50 and 120 mg/L) after 60 and
Figure 4 Effect of initial dye con
120 min, respectively. The dye removal decreased from 97%

to 59% with the increase in initial dye concentration, Co 275
and 500 mg/L, respectively. Initial dye concentration provides
the necessary driving force to overcome the resistances against
the mass transfer of dye between the aqueous and the solid

phases. The increase in the Co also enhances the interaction be-
tween dye and adsorbent. Therefore, an increase in Co of dye
enhances the adsorption uptake of AR dye per gram of adsor-

bent due to the increase in the driving force of the process
(Mane et al., 2007), recording equilibrium adsorption capacity
of 50 and 297 mg/g at Co 50 and 500 mg/g, respectively. Also,

as adsorption process precedes the driving force decreases with
time, indicating that there is a saturation limit for the polymer
above which it does not remove the dyes.

3.5. Adsorption kinetic study

In order to investigate the adsorption processes of Acid Red

dye onto PANI(NPE), the adsorption kinetics of AR dye onto
the PANI(NPE) was verified at different initial dye concentra-
tions. Two different kinetic models were tested for the ob-

tained data to elucidate the adsorption mechanism. The
classical method to find out the most suitable kinetic model
to represent the experimental data was the use of the correla-

tion coefficient (R2).
The percentage removal of dyes was calculated as:

Percentage removal ¼ 100ðCo � CeÞ=Co ð1Þ

The dye uptake was calculated as:

qt ¼ ðCo � CtÞV=W ð2Þ

where qt (mg/g) is the amount adsorbed at time t (min), Co

(mg/L) is the initial dye concentration, Ct (mg/L) is the dye
concentration at time t (min), V (L) is the volume of the solu-
tion, and W (g) is the mass of adsorbent taken for the

experiment.

3.5.1. Pseudo-second-order kinetic model
This model can be represented in the following form (Ho and
McKay, 1999):

t=qt ¼ 1=Ksq
2
e þ t=qe ð3Þ

where qe and qt are the amount of dye adsorbed (mg/g) at equi-

librium and at time t (min), respectively, Ks is the pseudo-sec-
ond-order rate constant (g/mg min) and t is the time (min).
Values of qe and Ks can be determined by plotting t/qt against
t and calculated from the slope and intercept of the straight

line, respectively.
centration on adsorption rate.



A kinetic study for the removal of anionic sulphonated dye from aqueous solution using nano-polyaniline S1725
3.5.2. Intraparticle diffusion model
Based on the theory proposed by Weber and Morriss
(1963), the intraparticle diffusion model can be expressed
as follows:

qt ¼ Kpt
1=2 þ C ð4Þ

where Kp is the intraparticle diffusion rate constant (mg/
g min1/2) and C (mg/g) is a constant that gives idea about

the thickness of the boundary layer, i.e. the larger the value
of C the greater is the boundary layer effect (Kannan and Sun-
daram, 2001). According to this model, the plot of uptake, qt
versus the square root of time, t1/2 should be linear if particle

diffusion is involved in the biosorption process and if these
lines pass through the origin so the intraparticle diffusion is
the rate controlling step (Chen et al., 2003). When the plots

do not pass through the origin, this is indicative that the
intraparticle diffusion is not the only rate limiting step (Poots
et al., 1978). The plot of the intraparticle diffusion model at

different initial dye concentration is shown in Fig. 5. which
showed that the plots of the obtained data did not pass
through the origin indicating that the intraparticle diffusion

is not the sole rate limiting step.
In order to quantitatively compare the applicability of each

kinetic model, error analysis was established using the follow-
ing equations;
Figure 5 Intraparticle diffusion model plots.

Table 2 Kinetic parameters for the adsorption of AR dye on PAN

Kinetic model Initial dye concentration (mg/L)

50 120

Pseudo-second order

Experimental qe mg/g 50 120

Theoretical qe mg/g 50 120

Ksq
2
e mg/g min 11.9 56

Ks · 10�3 g/mg min 4.7 3.9

R2 0.999 1

X2 0.283 0.032

SSE 13.46 3.401

Intraparticle diffusion

Experimental qe mg/g 50 120

Theoretical qe mg/g 40 109

Kp mg/g min1/2 1.46 2.08

C mg/g 36 99

R2 0.879 0.838

X2 0.677 0.378

SSE 26.92 41.45
The Chi-square test (Ho et al., 2005):

X2 ¼
XN
i¼1

ðqt;exp � qt;calÞ
2

qt;cal

 !
ð5Þ

The sum of the squares of the errors SSE (Wong et al., 2004):

SSE ¼
XN
i¼1
ðqt;cal � qt;expÞ

2 ð6Þ

where qt,exp and qt,cal are the experimental and calculated data
from the models at time t (min), respectively and N is the num-
ber of the experimental points.

All parameters of each of the used models are summarized
in Table 2. The correlation coefficients, R2, for the pseudo-sec-
ond-order kinetic model (R2 0.999–1) were greater than that of

the intraparticle diffusion coefficients (R2 0.688–0.879). While
the error analysis values are lower, confirming the applicability
of the pseudo-second order equation. This strongly suggests a

chemisorption mechanism (Ho and McKay, 1998). From the
pseudo-second-order model, the initial adsorption rate can
be calculated, as t= 0, is kadsq

2
e , and it was evident that the ini-

tial adsorption rate decreased with the increase of initial dye
concentration. From the intraparticle diffusion model, it can
be detected that, as the initial dye concentration increased,
the boundary layer effect C (mg/g) increased.

3.6. Effect of different adsorbents

To study the effect of different adsorbents; PANI(NEP), BY
and PANI(NPE)/BY on the adsorption of AR dye, batch exper-
iments were conducted at room temperature for 300 min in

250 mL Erlenmeyer flasks with 100 mL aqueous solution of
AR dye (Co 500 mg/L), fixed adsorbent dosage of 0.1 g, initial
pH 4 and fixed agitation speed of 150 rpm.

Results illustrated in Fig. 6. indicate that the highest re-

moval efficiency was observed for PANI(NEP)/BY at all expo-
sure times followed by PANI(NEP) and BY adsorbents, in
decreasing order. Where the recorded percentage removal after

300 min was 86%, 65% and 53%, respectively and the maxi-
I(NPE).

275 300 400 500

266 277 286 297

270 286 294 303

83 101 128 135

1.13 1.23 1.48 1.47

0.999 1 0.999 0.999

0.883 0.114 0.7 0.495

199.9 30.46 175.8 127.8

266 277 286 297

235 264 284 304

7.25 6.28 5.82 5.92

195 215 230 240

0.696 0.824 0.684 0.688

4.61 1.558 2.797 2.74

1051 386 715 728.7



Figure 7 Pseudo-second order and intraparticle diffusion models plots for the effect of different adsorbents on AR dye removal.

Figure 6 Effect of contact time on the removal AR dye using PANI(NPE), BY and PANI(NPE)/BY.
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mum adsorption capacity was 430, 323 and 263 mg/g,
respectively.

The plots and all parameters of the used models are illus-
trated and summarized in Fig. 7 and Table 3. The plots of
intraparticle diffusion model with different adsorbents showed

that obtained data did not pass through the origin indicating
that the intraparticle diffusion is not the sole rate limiting step.

The correlation coefficients, R2, for the pseudo-second-or-
der kinetic model (R2 0.997–0.999) were greater than that of

the intraparticle diffusion coefficients (R2 0.842–0.865),
Table 3 Kinetic parameters for the adsorption of AR dye on

different adsorbents.

Kinetic model Different adsorbents

PANI(NPE) BY PANI(NPE)/BY

Pseudo-second order

Experimental qe mg/g 323 263 430

Theoretical qe mg/g 323 263 435

Ksq
2
e mg/g min 52 48 35

Ks · 10�4 g/mg min 4.61 5.07 2.75

R2 0.999 0.997 0.999

X2 3.256 1.566 8.808

SSE 878.9 348.22 2751

Intraparticle diffusion

Experimental qe mg/g 323 263 430

Theoretical qe mg/g 329 262 456

Kp mg/g min1/2 4.778 3.252 9.975

C mg/g 247 205 283

R2 0.841 0.949 0.865

X2 18.969 51.20 10.133

SSE 4150 8092 3189
strongly suggesting a chemisorption mechanism (Ho and
McKay, 1998) and the adsorption of AR dye onto PANI(NPE),

BY and PANI(NPE)/BY follows the pseudo-second-order ki-
netic model. This was also confirmed by error analysis values
reported in Table 3 using Eqs. (5) and (6).

From the data of the pseudo-second-order kinetic model
listed in Table 3 the initial adsorption rate for the three adsor-
bents; PANI(NPE)/BY, PANI(NPE) and BY can be calculated,
as t = 0, is kadsq

2
e . This showed that, the highest initial rate

was PANI(NPE)/BY, followed by PANI(NPE) and BY in
decreasing order, recording 52, 48 and 35 mg/g min,
respectively.

3.7. A proposed adsorption mechanism

The adsorption mechanism often depends on the chemical
composition of adsorbent, the nature of adsorbate and the
solution environment. Mechanisms of pollutants removal by
adsorption were assigned to be complicated as they involve

several possible interactions. The interactions include acid–
base interactions, hydrogen bonding, ion exchange, coordina-
tion/chelation, complexation, precipitation, physical adsorp-

tion, and electrostatic interactions (Crini, 2005).
In our case, the electrostatic interaction is expected to be

the dominant for the removal of AR dye with PANI, owing

to the existence of NH+ centers of PANI salt and the presence
of dye anions generated from the dissociation of the dye mol-
ecule (–SO�3 Naþ) in solution (Crini, 2008). It is well-known

that the degree of ionization of a dye molecule depends on
the pH of the aqueous medium. AR dye contains two sulpho-
nated groups (SO3Na) and one hydroxyl group (OH). The pH
of the batch experiments were acidic, pH 4 and did not change



Scheme 1 Structure of Acidic Red dye.

Scheme 2 Interaction of AR dye with PANI(NPE).
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during the course of adsorption process. AR with sulphonated
functional groups would have been dissociated into its anionic
form in this acidic medium. The SO�3 groups on the dye could
lead to chemical interactions with the positively charged back-

bone of nano PANI (Schemes 1 and 2). It can be suggested
that the yeast can follow the same mechanism as PANI where
the yeast mainly consists of proteins, carbohydrates. Akar et

al. (2009) have reported that the Beer yeast (Saccharomyces
cerevisiae) has good biosorption capacity in strong acid condi-
tions due to electrostatic attraction between positively charged

protonated amino groups in Beer yeast and negatively charged
–SO�3 group in acidic dye.

4. Conclusion

Nano-polyaniline was synthesized by chemical oxidation in
presence of different types of commercial surfactants; SDS,

CTAB and NPE. The prepared nano polyaniline was used
for the adsorption of aqueous solution of sulphonated AR
dye. Also biosorbent Baker’s yeast (BY) was used for the

AR dye adsorption. Removal of AR dye using mixture of PA-
NI(NPE)/ BY was more efficient than using PANI(NPE) or BY,
individually. The removal process followed pseudo-second-or-

der kinetics. The rate of dye removal increased with increasing
the amount of PANI(NPE), but decreased with increasing the
initial dye concentration. The present method is promising

and can be considered as one of those methods devoted to treat
the wastewater streams with low cost.
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