Cauchy Problem and Initial Trace for a Doubly Degenerate Parabolic Equation with Strongly Nonlinear Sources

Jing Li

Institute of Mathematics, Xiamen University, Xiamen, People's Republic of China, 361005
E-mail: jli@math.cuhk.edu.hk

Submitted by C. V. Pao

Received May 25, 1999

1. INTRODUCTION

In this paper, we consider the Cauchy problem

\[u_t = \text{div}(|Du|^p - 2Du^m) + u^q, \quad (x, t) \in S_T = \mathbb{R}^N \times (0, T), \quad (1.1) \]

\[u(x, 0) = u_0(x) \geq 0, \quad x \in \mathbb{R}^N, \quad (1.2) \]

where \(p > 1, m > 0, m(p - 1) > 1, q > 1, N \geq 1, \) and \(u_0 \in L^1_{\text{loc}}(\mathbb{R}^N) \).

Equation (1.1) has been suggested as a mathematical model for a variety of physical problems (see [1, 2]). In particular, the evolution \(p \)-Laplacian equation \((m = 1) \) and porous media equation \((p = 2) \) are some special cases of (1.1). In this paper, we are interested in solving the Cauchy problem (1.1)–(1.2) for the largest possible class of initial functions.

Definition 1.1. A nonnegative measurable function \(u(x, t) \) defined in \(S_T \) is called a weak solution of (1.1)–(1.2) if for every bounded open set \(\Omega \) with smooth boundary \(\partial \Omega \),

\[u \in C_{\text{loc}}(S_T), \quad u^m \in L^p_{\text{loc}}(0, T; W^{1,p}(\Omega)), \quad (1.3) \]

\[\text{Present address: Department of Mathematics, Lady Shaw Building, Chinese University of Hong Kong, Shatin, Hong Kong.} \]
and
\[
\int_{\Omega} u(x, t) \phi(x, t) \, dx + \int_{t_0}^{t} \int_{\Omega} (-u \phi_t + |Du|^p D\phi : D\phi) \, dx \, d\tau \\
= \int_{t_0}^{t} \int_{\Omega} u^q \phi \, dx \, d\tau + \int_{\Omega} u(x, t_0) \phi(x, t_0) \, dx
\]
(1.4)
for all \(0 \leq t_0 \leq t \leq T\) and all test functions \(\phi \in C^1(\overline{\Omega} \times [0, T])\) that equal zero near \(\partial \Omega \times (0, T)\). Moreover,
\[
\lim_{t \to 0^+} \int_{B_R} |u(x, t) - u_0(x)| \, dx = 0 \quad \forall \, R > 0.
\]
(1.5)

Weak subsolutions (resp. supersolutions) are defined in the same way except that the \(=\) in (1.4) is replaced by \(\leq\) (resp. \(\geq\)) and \(\phi\) is taken to be nonnegative.

To describe the class of initial data, we introduce the norm \(\|f\|_{h}\). Let
\[
B_\rho(x) = \{y \in R^N : |x - y| < \rho\}.
\]
For \(f \in L^h_{\text{loc}}(R^N)\), \(h \geq 1\), we define
\[
\|f\|_h = \sup_{x \in R^N} \left(\int_{B_\rho(x)} |f(y)|^h \, dy \right)^{1/h}.
\]

We shall prove the following results.

Theorem 1.1. Assume that \(u_0 \geq 0\) and
\[
\|u_0\|_h < \infty,
\]
(1.6)
where \(h = 1\) if \(q < m(p - 1) + p/N\) and \(h > (N/p)(q - m(p - 1))\) if \(q \geq m(p - 1) + p/N\). Then there exist a constant \(C = C(N, p, q, h, m)\) and a positive \(T_0\) defined by
\[
T_0 \|u_0\|_h^{m(p-1)-1} + T_0^{1+N(m(p-1)-q)/(ph)} \|u_0\|_{h^{-1}}^{q-1} = C^{-1}
\]
(1.7)
such that a weak solution \(u\) to (1.1)–(1.2) exists in the strip \(S_{T_0}\) and satisfies, \(\forall \, 0 < t < T_0\),
\[
\|u(\cdot, t)\|_h \leq C \|u_0\|_h, \quad 0 < t < T_0, \quad u(x, t) \leq C t^{-N/\kappa_h}, \quad \kappa_h = N(m(p - 1) - 1) + ph \quad \forall \, x \in R^N, \quad (1.8)
\]
\[
\int_{0}^{t} \int_{B_\rho(x_0)} |Du|^\sigma \, dx \, d\tau \leq C t^{1-\sigma/p-N((m+1)\sigma-p)/(ph)}
\]
\[
\times \left(\sup_{0 < r < t} \int_{B_{2r}(x_0)} u(x, \tau) \, dx \right)^{1+((m+1)\sigma-p)/\kappa}, \quad (1.10)
\]
where \(p/(m+1) < \sigma < p - mN/(mN + 1)\), \(\kappa = N(m(p - 1) - 1) + p\), and \(C\) also depends on \(\sigma\).
Theorem 1.2. Let \(u \) be a supersolution of (1.1) in \(S_T \) and let \(q > m \times (p - 1) \). Then there exists a constant \(C = C(p, q, m, N) \) such that for all \(0 < t < T \leq 1 \),

\[
\|u(\cdot, t)\|_1 + \int_0^t \|u(\cdot, \tau)\|_q^q \, d\tau \leq C(1 + (T - t)^{-1/(q-1)}),
\]

where the constant \(C \) depends also on \(T \) if \(T > 1 \). If \(1 < q \leq m(p - 1) \), then there exists a constant \(C = C(p, q, m, N) \) such that for all \(0 < t < T \),

\[
\|u(\cdot, t)\|_1 \leq C((T - t)^{-1/(m(p-1)-1)} + (T - t)^{(-p + N(m(p-1)))/(p(q-1))}).
\]

Theorem 1.3. Let \(u \) be a weak solution of (1.1) in \(S_T \) and let \(q > m \times (p - 1) \). Then there exists a unique measure \(\mu \) such that

\[
u(\cdot, t) \to \mu \quad \text{in the sense of measure as } t \to 0.
\]

Moreover,

\[
\sup_{x \in \mathbb{R}^N} \int_{B_1(x)} d|\mu| \leq C(1 + T^{-1/(q-1)}).
\]

We now state a uniqueness result of the solution of the Cauchy problem (1.1)–(1.2) in a class \(S \) suggested by the properties of the solution found in Theorem 1.1.

We say that a function \(u: S_T \to \mathbb{R}^+ \) is a solution of class \(S \) to (1.1)–(1.2) if \(u \) satisfies (1.4) and

\[
u \in L^1(S_T), \quad u^m \in L^p_{\text{loc}}(0, T; W^{1, p}(\mathbb{R}^N)),
\]

\[
u_t \in L^1_{\text{loc}}(0, T; L^1(\mathbb{R}^N)), \quad \lim_{t \to 0} \int_{\mathbb{R}^N} |u(x, t) - u_0(x)| \, dx = 0,
\]

\[
\sup_{x \in \mathbb{R}^N} u(x, t) \leq Ct^{-\delta} \quad \forall t \in (0, T),
\]

where \(\delta, C \) are given positive constants (depending on \(u \)) with \(\delta < \frac{1}{q-1} \).

Estimate (1.9) shows that the preceding solution actually satisfies (1.17).

Theorem 1.4. Assume that \(u, v \) are two solutions of class \(S \) to (1.1)–(1.2) corresponding to the same initial datum \(u_0 \in L^1(\mathbb{R}^N) \). Then \(u \equiv v \) in \(S_T \).

Theorems 1.2 and 1.3 show that if \(q > 1 \), then the growth condition (1.6) is optimal. For the porous medium equation \((p = 2) \) with strongly nonlinear sources, the problem of growth condition on the initial datum \(u_0 \) was
studied in [3]. For the evolution p-Laplacian equation ($m = 1$), the anal-
gon problem was studied in [4]. In this paper, some ideas in [3, 4] are used.
Whereas Eq. (1.1) is degenerate at the points where $|Du| = 0$ and $u = 0$,
there exist some new difficulties to be overcome.
We denote by $C = C(a_1, a_2, \ldots, a_n)$ ($n \in N$), a positive constant that can
be determined a priori in terms of the specified quantities a_1, a_2, \ldots, a_n.

2. PROOF OF THEOREM 1.1

2.1. Main Estimates

PROPOSITION 2.1. Let u be any weak subsolution of (1.1) in S_T for some
$0 < T < \infty$. Then for fixed $h \geq 1$ there exists a constant C depending only on
N, p, q, h, m such that for every ball $B_{2\rho}(x_0)$ and for all $t \in (0, T)$ satisfying

$$
\rho^{-p} \|u(\cdot, \tau)\|_{\infty, B_{2\rho}(x_0)}^{(p-1)\frac{1}{p}} + \|u(\cdot, \tau)\|_{\infty, B_{2\rho}(x_0)}^{q-1} \leq \tau^{-1}, \quad \tau \in (0, t),
$$

(2.1)

the estimate

$$
\|u(\cdot, t)\|_{\infty, B_{2\rho}(x_0)} \leq C \left(\frac{1}{t} \int_0^t \int_{B_{2\rho}(x_0)} u^h \, dx \, d\tau \right)^{\frac{p}{p+1}}
$$

(2.2)

holds, where κ_h is given by (1.9).

Proof. Let $\rho > 0$, $\sigma \in (0, \frac{1}{2}]$ be fixed, let $k > 0$ remain to be chosen,
and for $n = 0, 1, 2, \ldots$, set

$$
\rho_n = \rho + \frac{\sigma}{2^n} \rho, \quad t_n = \frac{t}{2} - \left(\frac{\sigma}{2^{n+1}} \right)^p t, \quad k_n = k - \frac{k}{2^{n+1}},
$$

$$
B_n = B_{\rho_n}(x_0), \quad Q_n = B_n \times (t_n, t), \quad 0 < t_n < t \leq T.
$$

Let $\xi_n(x, t)$ be a smooth cutoff function in Q_n such that

$$
\xi_n = 1 \quad \text{in} \ Q_{n+1}, \quad |D\xi_n| \leq C \frac{2^{n+1}}{\sigma \rho}, \quad 0 \leq \frac{\partial \xi_n}{\partial t} \leq C \frac{2^{n+1}}{\sigma^p t}.
$$

Take the testing function ϕ in Definition 1.1 as

$$
\phi = (u - k_{n+1})^h \xi_n^p = (\max\{0, u - k_{n+1}\})^h \xi_n^p,
$$
and by a standard Steklov approximating procedure, we get
\[
\frac{1}{h+1} \int_{B_n(t)} (u - k_{n+1})_+^{h+1} \xi_n^p \, dx \\
+ h \left(\frac{P}{h + m(p - 1)} \right)^p \int_{t_n}^{t} \int_{B_n} |D(u - k_{n+1})_+^{(h+m(p-1)/p)} \xi_n^p| \, dx \, d\tau \\
+ m^{p-1} \int_{t_n}^{t} \int_{B_n} (u - k_{n+1})_+^{h(m-1)(p-1)} \xi_n^{p-1} |Du|^{p-2} Du \cdot D\xi_n \, dx \, d\tau \\
\leq \int_{t_n}^{t} \int_{B_n} p(u - k_{n+1})_+^{h+1} \xi_n^{p-1} \xi_n \, dx \, d\tau \\
+ \int_{t_n}^{t} \int_{B_n} (u - k_{n+1})_+^h u^q \xi_n^p \, dx \, d\tau,
\tag{2.3}
\]
where \(t_n < t' < t \).

By the Schwarz inequality,
\[
|p(u - k_{n+1})_+^{h+1} \xi_n^{p-1} |Du|^{p-2} Du \cdot D\xi_n \, dx \, d\tau| \\
\leq \frac{1}{2} h \left(\frac{P}{h + m(p - 1)} \right)^p \int_{t_n}^{t} \int_{B_n} |D(u - k_{n+1})_+^{(h+m(p-1)/p)} \xi_n^p| \, dx \, d\tau \\
+ C \int_{t_n}^{t} \int_{B_n} (u - k_{n+1})_+^{h(m-1)(p-1)} |D\xi_n|^p \, dx \, d\tau.
\]
Notice that
\[
(u - k_{n+1})_+^{h+1} \geq (u - k_{n+1})_+^h \frac{u}{2} \geq C(u - k_{n+1})_+^h u
\]
if \(u/2 > k_n \) and
\[
(u - k_{n+1})_+^{h+1} \geq (u - k_{n+1})_+^h (k_{n+1} - k_{n}) \geq 2^{n-3} u(u - k_{n+1})_+^h
\]
if \(k_{n+1} \leq u \leq 2k_{n+1} \). Thus, we have
\[
\int_{t_n}^{t} \int_{B_n} (u - k_{n+1})_+^h u^q \xi_n^p \, dx \, d\tau \leq C_2^n \int_{t_n}^{t} \int_{B_n} u^q (u - k_{n+1})_+^{h+1} \, dx \, d\tau.
\]
Substituting (a) and (b) into (2.3) leads to
\[
\text{ess sup}_{t_n < \tau < t} \int_{B_n(\tau)} (u - k_{n+1})_+^{h+1} \xi_n^p \, dx \\
+ \int_{Q_\tau} |D((u - k_{n+1})_+^{(h+m(p-1)/p)} \xi_n)|^p \, dx \, d\tau \\
\leq \frac{C_2^n p}{\sigma^p t} (1 + M) \int_{Q_\tau} (u - k_{n})_+^{h+1} \, dx \, d\tau,
\tag{2.4}
\]
From (2.4)–(2.6), we get

\[M = \sup_{0 < \tau < t} \left\{ \rho^{-p} \| u(\cdot, \tau) \|^{m(p-1)-1}_{\infty, B_\rho(x_0)} + \| u(\cdot, \tau) \|_{p-1}_{\infty, B_\rho(x_0)} \right\}. \]

By the Gagliardo–Nirenberg inequality (see [5, p. 62]),

\[
\int Q_n \xi_n^d (u - k_{n+1})_+^b \, dx \, d\tau \\
\leq C \int Q_n \left| D((u - k_{n+1})_+^{(h+m(p-1)/p)} \xi_n) \right|^p \, dx \, d\tau \\
\times \left(\operatorname{ess sup} \int_{t_n < \tau < t} (u - k_{n+1})_+^{h+1} \xi_n^p \, dx \right)^{p/N},
\]

(2.5)

where \(b = h + m(p - 1) + p(h + 1)/N \) and \(d \) is sufficiently large.

Let \(A_n = \{ (x, t) \in Q_{n-1} : u(x, t) > k_n \}, n = 1, 2, \ldots \), and observe that

\[
\int Q_n (u - k_{n+1})_+^{h+1} \, dx \, d\tau \geq C 2^{-((h+1)n)} |A_{n+1}| k_{n+1}^{b+1}.
\]

(2.6)

From (2.4)–(2.6), we get

\[
\int Q_{n+1} (u - k_{n+1})_+^{h+1} \, dx \, d\tau \\
\leq \int Q_n (u - k_{n+1})_+^{h+1} \xi_n (h+1)/b \, dx \, d\tau \\
\leq |A_{n+1}|^{1-(h+1)/b} \left(\int Q_n (u - k_{n+1})_+^{h+1} \xi_n^d \, dx \, d\tau \right)^{(h+1)/b} \\
\leq C |A_{n+1}|^{1-(h+1)/b} \left(\frac{2n^p}{\sigma \rho t} (1 + M) \int Q_n (u - k_{n+1})_+^{h+1} \, dx \, d\tau \right)^{(1+p/N)(h+1)/b} \\
\leq C k^{-(b-h-1)(h+1)/b} C_0^{(1+p/N)(h+1)/b} (1 + M)^{(1+p/N)(h+1)/b} \\
\times \left(\int Q_n (u - k_{n+1})_+^{h+1} \, dx \, d\tau \right)^{1+(p(h+1)/bN)},
\]

where \(C_0 = 2^{(b+1)(b-h-1+p^2/N)/b} \geq 1. \) Thus, if \(k \) is chosen to satisfy

\[
\int Q_b (u - k/2)_+^{h+1} \, dx \, d\tau \leq C k^{N(h-b-1)/p} \left(\frac{1 + M}{\sigma \rho t} \right)^{(1+N/p)}
\]

then by Lemma 5.6 of [5, p. 95], we get

\[
\lim_{n \to \infty} \int Q_n (u - k_n)_+^{h+1} \, dx \, d\tau = 0,
\]
i.e., \(\|u\|_{\infty, Q_\infty} \leq k \). By the Schwarz inequality, we obtain

\[
\|u\|_{\infty, Q_\infty} \leq C \left(1 + \frac{M}{\sigma \rho_t} \right)^{(N+p)/(N(b-h-1))} \\
\times \left(\int_{Q_\infty} (u - k/2)^{b+1} \, dx \, d\tau \right)^{p/(N(b-h-1))} \\
\leq C \left(1 + \frac{M}{\sigma \rho_t} \right)^{(N+p)/(N(b-h-1))} \\
\times \left(\|u\|_{\infty, Q_\infty} \int_{Q_\infty} u^b \, dx \, d\tau \right)^{p/(N(b-h-1))} \\
\leq \frac{1}{2} \|u\|_{\infty, Q_\infty} + C \left(1 + \frac{M}{\sigma \rho_t} \right)^{(N+p)/\kappa_h} \left(\int_{Q_\infty} u^b \, dx \, d\tau \right)^{p/\kappa_h}.
\]

Hence by [6, p. 161, Lemma 3.1], we get

\[
\|u\|_{\infty, B_\rho(x_0) \times (t/2, t)} \leq C \left(1 + \frac{M}{\sigma \rho_t} \right)^{(N+p)/\kappa_h} \left(\int_{Q_\infty} u^b \, dx \, d\tau \right)^{p/\kappa_h}.
\]

This implies (2.2).

Proposition 2.2. Let the assumptions in Proposition 2.1 hold and let

\[
G(t) = \sup_{0 < \tau < t} \int_{B_{\rho}(x_0)} u(x, \tau) \, dx < \infty.
\]

(2.7)

Then there exists a constant \(C(N, q, m, \sigma) \) such that for every ball \(B_{2\rho}(x_0) \), \(0 < t < T \) satisfying (2.1), and \(p/(m+1) < \sigma < p - mN/(mN + 1) \),

\[
\int_0^t \int_{B_{\rho}(x_0)} |D u^m|^{\sigma} \, dx \, d\tau \leq C t^{1-\sigma/p-N((m+1)\sigma-p)/(p\kappa)} (G(t))^{1+((m+1)\sigma-p)/\kappa}.
\]

In particular,

\[
\int_0^t \int_{B_{\rho}(x_0)} |D u^m|^{p-1} \, dx \, d\tau \leq C t^{1/\kappa} (G(t))^{1+(m(p-1)-1)/\kappa},
\]

(2.8)

where \(\kappa = N(m(p - 1) - 1) + p \).

Proof. Let \(\xi(x) \) be a piecewise smooth cutoff function in \(B_{3\rho/2}(x_0) \) such that \(\xi = 1 \) in \(B_{\rho}(x_0) \) and \(|D \xi| \leq 2\rho^{-1} \). The calculations to follow are formal.
in which \(u \) is required to be strictly positive. They can be made rigorous by replacing \(u \) with \(u + \varepsilon \) and letting \(\varepsilon \to 0 \). By the Hölder inequality,

\[
\int_0^t \int_{B_{\rho}(x_0)} u^{m-1}\sigma |Du|^\sigma \, dx \, d\tau
\]

\[
= \int_0^t \int_{B_{\rho}(x_0)} \tau^\beta u^{(m-1)\sigma(p-1)/p-\delta} |Du|^{\sigma}\tau^{-\beta} u^{(m-1)\sigma/p+\delta} \, dx \, d\tau
\]

\[
\leq \left(\int_0^t \int_{B_{\rho}(x_0)} \tau^{\beta p/\sigma} u^{(m-1)(p-1)} |Du|^p \, dx \, d\tau \right)^{\sigma/p}
\]

\[
\times \left(\int_0^t \int_{B_{\rho}(x_0)} \tau^{-\beta p/(p-\sigma)} u^{((m-1)\sigma+p\delta)/(p-\sigma)} \, dx \, d\tau \right)^{1-\sigma/p}.
\]

By (2.2), we can take the testing function

\[
\phi = t^{\beta p/\sigma} u^{1-p\delta/\sigma} \xi^p(x), \quad p\delta = p - m\sigma
\]
in (1.4) to obtain

\[
\int_0^t \int_{B_{\rho}(x_0)} \tau^{\beta p/\sigma} u^{(m-1)(p-1)} |Du|^p \, dx \, d\tau
\]

\[
\leq C \rho^{-\rho} \int_0^t \int_{B_{\rho/2}(x_0)} \tau^{\rho\delta/\sigma} u^{\rho + (m-1)(p-1) - p\delta/\sigma} \, dx \, d\tau
\]

\[
+ C \int_0^t \int_{B_{\rho/2}(x_0)} \tau^{\rho\delta/\sigma - 1} u^{2-p\delta/\sigma} \, dx \, d\tau
\]

\[
+ \int_0^t \int_{B_{\rho/2}(x_0)} \tau^{\rho\delta/\sigma} u^{2-p\delta/\sigma} \, dx \, d\tau
\]

\[
\leq C(1 + M) \int_0^t \int_{B_{\rho/2}(x_0)} \tau^{\rho\delta/\sigma - 1} u^{2-p\delta/\sigma} \, dx \, d\tau
\]

\[
\leq C(1 + M) G(t) \int_0^t \int_{B_{\rho/2}(x_0)} u^{(m(p-1)-(p-1))} \|u(\cdot, \tau)\|_{\infty, B_{\rho/2}(x_0)}^{1-p\delta/\sigma} d\tau,
\] (2.9)

where

\[
M = \sup_{0 < \tau < t} \tau \left\{ \rho^{-\rho} \|u(\cdot, \tau)\|_{\infty, B_{\rho/2}(x_0)}^{m(p-1)-1} + \|u(\cdot, \tau)\|_{\infty, B_{\rho/2}(x_0)}^{q-1} \right\}.
\]

Notice that by (2.2),

\[
\|u(\cdot, t)\|_{\infty, B_{\rho/2}(x_0)} \leq C t^{-(N+p)/\kappa} \left(\int_0^t \int_{B_{\rho/2}(x_0)} u \, dx \, d\tau \right)^{p/\kappa} \leq C t^{-N/\kappa}(G(t))^{p/\kappa}
\]
and
\[
\int_0^t \int_{B_r(x_0)} \tau^{-\beta p/(p-\sigma)} u^{(m-1)\sigma + p\delta}/(p-\sigma) \, dx \, d\tau \\
\leq \int_0^t \int_{B_r(x_0)} \tau^{-\beta p/(p-\sigma)} u \, dx \, d\tau \\
\leq C t^{1-\beta p/(p-\sigma)} G(t). \tag{2.10}
\]

From (2.9) and (2.10), we have
\[
\int_0^t \int_{B_r(x_0)} |Du|^m^\sigma \, dx \, d\tau \\
\leq C(G(t))^{1+(m+1)\sigma-p}/\kappa/\beta/(1-p\sigma)/(1-\sigma/p)+\delta/(m+1)\sigma-p/N/(p\kappa).
\]

Thus, Proposition 2.2 follows by choosing \(\beta \) such that
\[
\frac{(m+1)N\sigma}{p\kappa} - \frac{N}{\kappa} < \beta < 1 - \frac{\sigma}{p}.
\]

2.2. Proof of Theorem 1.1

Consider the approximating Cauchy problem
\[
\begin{align*}
&u_t = \text{div}(|Du|^m) + \min\{u^\delta, n\}, \\
u(x,0) = u_{0\text{n}}(x),
\end{align*}
\tag{2.11}
\]

where \(u_{0\text{n}} \in C_0^\infty(R^N) \) satisfies
\[
\lim_{n \to \infty} \int_{B_r} |u_{0\text{n}} - u_0|^{\rho} = 0 \quad \forall \rho > 0
\]

and
\[
\|u_{0\text{n}}\|_h \leq C\|u_0\|_h.
\]

It is well known that there exists a solution \(u_n \) to (2.11) with \(u_n \in C(\overline{S_T}) \cap L^\infty(S_T) \) and \(Du_n^{m} \in L^\rho(S_T) \). Therefore, \(\forall t > 0, \)
\[
\sup_{0 < \tau < t} \sup_{y \in R^N} \left[u_n^{q-1}(y, \tau) \right] \leq C(n) \tag{2.12}
\]

for a qualitative constant \(C(n) \), depending on \(n \). Theorem 1.1 will follow by a standard limiting process via the compactness results (see [7]) whence we show estimates (1.7)–(1.10) with \(u \) and \(u_0 \) replaced by \(u_n \) and \(u_{0\text{n}} \), respectively, and with the constant \(C \) independent of \(n \). It follows from (1.9) and [7] that \(u \in C_{\text{loc}}(S_T) \). To prove these estimates, we will work with (2.11) and drop the subscript \(n \).
Then (2.14) implies that
\[\forall \xi \text{ constant} \]
\[\kappa_h \]
\[\therefore \]
Thus, we can choose a \(\psi \) and observe that
\[\text{By (2.12), } \tau > 0. \]
\[\therefore \]
Thus for \(\delta > 0 \) to be chosen, let
\[\tau^* = \sup \{ t > 0 : t^h \psi^{m(p-1)-1}(t) + t^{(1/p)(\kappa_h-N(q-1))} \psi^{q-1}(t) \leq \delta \}. \]
Notice that \(\kappa_h - N(q - 1) > 0 \). Therefore, for all \(0 < t < \min \{ \tau, \tau^* \} \),
\[t \sup_{x \in \mathbb{R}^N} u^{m(p-1)-1}(x, t) + t^{q-1}(x, t) \leq C\delta^{p/h}. \]
Thus, we can choose a \(\delta = \delta(p, q, h, N, m) \) small enough to insure that \(\tau^* < \tau \). Let \(\xi \) be a nonnegative smooth cutoff function in \(B_{2\rho}(x) \) such that \(\xi = 1 \) in \(B_{\rho}(x) \), \(|D\xi| \leq C\rho^{-1} \), and we use \(u^{p-1} \xi \) as the testing function in
If \(h > 1 \), we get
\[
\int_{B_{\rho}(x)} u^h(y, t) \xi^p \, dy + h(h - 1) \int_0^t \int_{B_{\rho}(x)} \xi^p u^{(m-1)(p-1)+h-2} |Du|^p \, dy \, d\tau
\]
\[
\leq \int_{B_{\rho}(x)} u^h_0(y) \xi^p \, dy + phm^{p-1}
\]
\[
\times \int_0^t \int_{B_{\rho}(x)} u^{(m-1)(p-1)+h-1} |Du|^{p-1} |D\xi|^{p-1} \, dy \, d\tau
\]
\[
+ h \int_0^t \int_{B_{\rho}(x)} u^{q+h-1} \, dy \, d\tau.
\]
Notice that \(\rho \geq 1 \), and by the Hölder and Young inequalities,
\[
\int_{B_{\rho}(x)} u^h(y, t) \, dy \leq \int_{B_{\rho}(x)} u^h_0(y) \, dy + C \sup_{0 < \tau < t} \sup_{x \in R^N} \int_{B_{\rho}(x)} u^h(y, \tau) \, dy
\]
\[
\times \left\{ \int_0^t \tau^{-\left(N(m(p-1)-1)/\kappa_h \right)} \psi_p(m(p-1)-1)/\kappa_h(\tau) \, d\tau
\]
\[
+ \int_0^t \tau^{-\left(N(q-1)/\kappa_h \right)} \psi_q(q-1)/\kappa_h(\tau) \, d\tau \right\}
\]
\[
\leq C \| u_0 \|_{H}^{h} + C\psi(t)
\]
\[
\times \left\{ t^h \psi^{m(p-1)-1}(t) + t^{(1/p)(\kappa_h-N(q-1))} \psi^{-1}(t) \right\}^{p/\kappa_h}
\]
\[
\leq C \| u_0 \|_{H}^{h} + C\delta^{p/\kappa_h} \psi(t).
\]
By using (2.15) and (2.17), we obtain \(\forall \, t \in (0, t^*) \),
\[
\int_{B_{\rho}(x)} u^h(y, t) \, dy \leq \int_{B_{\rho}(x)} u^h_0(y) \, dy + C \sup_{0 < \tau < t} \sup_{x \in R^N} \int_{B_{\rho}(x)} u^h(y, \tau) \, dy
\]
\[
\times \left\{ \int_0^t \tau^{-\left(N(m(p-1)-1)/\kappa_h \right)} \psi_p(m(p-1)-1)/\kappa_h(\tau) \, d\tau
\]
\[
+ \int_0^t \tau^{-\left(N(q-1)/\kappa_h \right)} \psi_q(q-1)/\kappa_h(\tau) \, d\tau \right\}
\]
\[
\leq C \| u_0 \|_{H}^{h} + C\psi(t)
\]
\[
\times \left\{ t^h \psi^{m(p-1)-1}(t) + t^{(1/p)(\kappa_h-N(q-1))} \psi^{-1}(t) \right\}^{p/\kappa_h}
\]
\[
\leq C \| u_0 \|_{H}^{h} + C\delta^{p/\kappa_h} \psi(t).
\]
If \(h = 1 \), we get by Proposition 2.2,
\[
\int_{B_{\rho}(x)} u(y, t) \, dy \leq \int_{B_{\rho}(x)} u_0(y) \, dy + C \int_0^t \int_{B_{\rho}(x)} \xi^p |Du|^p \, dy \, d\tau
\]
\[
+ \int_0^t \int_{B_{\rho}(x)} u^{q-1} u \, dy \, d\tau
\]
\[
\leq \int_{B_{\rho}(x)} u_0(y) \, dy + C t^{1/\kappa} \left(\sup_{0 < \tau < t} \int_{B_{\rho}(x)} u(y, \tau) \, dy \right)^{1+(m(p-1)-1)/\kappa}
\]
\[
+ \int_0^t \int_{B_{\rho}(x)} u^{q-1} u \, dy \, d\tau.
\]
We use (2.15) and (2.17) to get \(\forall t \in (0, t^*) \),
\[
\int_{B_2(x)} u(y, t) \, dy \leq \int_{B_2(x)} u_0(y) \, dy + C \sup_{0 < \tau < t} \sup_{x \in \mathbb{R}^N} \int_{B_2(x)} u(y, \tau) \, dy
\]
\[
\times \left\{ t^{1/\kappa} \psi^{(m(p-1)-1)/\kappa}(t) + \int_0^t \tau^{-N(q-1)/\kappa} \psi^{p(q-1)/\kappa} \, d\tau \right\}
\]
\[
\leq C \|u_0\|_h^h + C\delta^{p/\kappa} \psi(t).
\] (2.21)

By (2.19) and (2.21), we can determine \(\delta = \delta(p, q, h, m, N) \) such that
\[
\psi(t) \leq C \|u_0\|_h^h \quad \forall 0 < t < t^*.
\] (2.22)

The number \(t^* \) is still only qualitatively known. A quantitative lower bound can be found by substituting (2.22) into the definition (2.16) of \(t^* \). Thus (2.22) holds for all \(0 < t < T_0 \), where \(T_0 \) is the smallest root of
\[
T_0 \|u_0\|_h^{m(p-1)-1} + T_0^{1+(m(p-1)-q)/(ph)} \|u_0\|_h^{q-1} = C^{-1}
\]
for some constant \(C = C(p, q, h, N, m) \). Substituting (2.22) into (2.15), we get (1.9). Inequality (1.10) follows from Proposition 2.2.

3. PROOF OF THEOREM 1.2

First, we prove (1.11). Let \(\xi(x, t) \in C^1(\overline{B}_2(x) \times [t_0, T]) \) with \(0 \leq \xi \leq 1 \), \(\xi = 1 \) on \(B_1(x) \times (t_0, (T + t_0)/2) \), \(\xi(x, t) = 0 \) if \(x \in \partial B_2(x) \) or \(t = T \), \(|D\xi| \leq C \), and \(|\xi_t| \leq C(T - t_0)^{-1} \). By Definition 1.1 of supersolutions of (1.1), we have
\[
\int_{B_2(x)} u(y, t_0)\xi^\alpha \, dy + \int_{B_2(x)} u^q \xi^\alpha \, dy \, d\tau
\]
\[
\leq -\alpha \int_{t_0}^T \int_{B_2(x)} u(y, \tau)\xi_t \xi^{\alpha-1} \, dy \, d\tau
\]
\[
+ \int_{t_0}^T \int_{B_2(x)} |Du|^p |D\xi|^{\alpha-1} \, dy \, d\tau,
\] (3.1)
where \(\alpha \geq pq/(q - (m + 1 - s)(p - 1)) \) and \(s > ((m + 1)(p - 1) - q)/(p - 1) \) for some \(s \in (0, 1) \).

By the Schwarz inequality,
\[
\alpha \int_{t_0}^T \int_{B_2(x)} u(y, \tau)|\xi_t| \xi^{\alpha-1} \, dy \, d\tau
\]
\[
\leq \frac{1}{4} \int_{t_0}^T \int_{B_2(x)} u^q \xi^\alpha \, dy \, d\tau + C(T - t_0)^{-1/2q}.
\] (3.2)
By the Hölder inequality, \(\forall s \in (0, 1) \),
\[
\int_0^T \int_{B_1(x)} \alpha |Du^{m-1}|D\xi |\xi^{-s-1} dy d\tau \\
\leq am^{p-1} \left(\int_0^T \int_{B_1(x)} \xi^a |Du|^p u^{(m-1)(p-1)+s-2} dy d\tau \right)^{(p-1)/p} \\
\times \left(\int_0^T \int_{B_1(x)} u^{(p-1)(m+1-s)} \xi^a p |D\xi| p dy d\tau \right)^{1/p} \\
\equiv am^{p-1} (I_1(t_0))^{(p-1)/p} (I_2(t_0))^{1/p}.
\]
To estimate \(I_1(t_0) \), we take the testing function \(\phi = \xi^a u^{p-1} \) in (1.4) to obtain
\[
\int_0^T \int_{B_2(x)} u^{m-1(p-1)+s-2} |Du|^p \xi^a dy d\tau \\
\leq C \int_0^T \int_{B_2(x)} \xi^{p-1} u^{m(p-1)+s+1} dy d\tau + \alpha \int_0^T \int_{B_2(x)} u^s \xi^{a-1} |\xi| dy d\tau \\
\equiv H_1 + H_2.
\]
Estimating \(H_1 \) and \(H_2 \) separately, we get
\[
H_1 \leq C \left(\int_0^T \int_{B_2(x)} \xi^a u^{s} dy d\tau \right)^{(m(p-1)+s-1)/q} \\
\times (T - t_0)^{(q-m(p-1)-s+1)/q}, \quad (3.5)
\]
\[
H_2 \leq C \left(\int_0^T \int_{B_2(x)} u^s \xi^{a} dy d\tau \right)^{s/q} (T - t_0)^{-s/q}. \quad (3.6)
\]
By the Hölder inequality,
\[
I_2(t_0) \leq C \left(\int_0^T \int_{B_2(x)} u^s \xi^{a} dy d\tau \right)^{(p-1)(m+1-s)/q} \\
\times (T - t_0)^{(q-(p-1)(m+1-s))/q}. \quad (3.7)
\]
From (3.1)–(3.7), we get
\[
\int_{B_1(x)} u(y, t_0) dy + \int_0^T \int_{B_1(x)} u^d dy d\tau \leq C((T - t_0)^{-1/(q-1)} + 1).
\]
Whereas \(t_0 \in (0, T) \) is arbitrary, we deduce (1.11).
Second, we prove the Hanack inequality for the case \(1 < q \leq m(p-1) \).
It can be verified that the function
\[
z(x, t) = a(T_0 - t)^{-1/(q-1)} f(x, t)^{(p-1)/(m(p-1)-1)}, \quad (3.8)
\]
where \(f(x, t) = \{1 - b|x - x_0|^{p(T_0 - t)^{(m(p-1)-q)/(q-1)}}\}_+ \) satisfies
\[
z_t - \text{div}(\|Dz^m\|^{p-2}Dz^m) \leq \sigma z^a \quad \text{in } S_{T_0}, \quad \forall \sigma > 0, \tag{3.9}
\]
if the constants \(a \) and \(b \) are suitably chosen depending on \(N, m, p, q, \sigma \).

Indeed, noticing that
\[
z_t = \frac{a}{q-1}(T_0 - t)^{-q/(q-1)} f(x, t)^{(p-1)/(m(p-1)-1)}
\times \left[1 - b \left(1 - \frac{(p-1)(m(p-1)-q)}{m(p-1)-1} \right) \right]
\times |x - x_0|^p(T_0 - t)^{(m(p-1)-q)/(q-1)}
\times f(x, t)^{1/(m(p-1)-1)},
\]
we have
\[
z_t - \text{div}(\|Dz^m\|^{p-2}Dz^m)
= \frac{a}{q-1}(T_0 - t)^{-q/(q-1)} f(x, t)^{(p-1)/(m(p-1)-1)}
\times \left[1 - b \left(1 - \frac{(p-1)(m(p-1)-q)}{m(p-1)-1} \right) \right] |x - x_0|^p(T_0 - t)^{(m(p-1)-q)/(q-1)}
- a^{m(p-1)m(p-1)} \left(\frac{bp(p-1)}{m(p-1)-1} \right)^p |x - x_0|^{p(p-1)}
\times (T_0 - t)^{(m(p-2)-q)/(q-1)+m(p-1)-q)/(q-1)}
\times f(x, t)^{(p-1)/(m(p-1)-1)-1}
+ (N + p(p-2)) \left(\frac{a^{m}bm(p-1)}{m(p-1)-1} \right)^{p-1}
\times (T_0 - t)^{(p-1)(m(p-2)-q)/(q-1)}|x - x_0|^{p(p-2)} f(x, t)^{(p-1)/(m(p-1)-1)}.
\]
Hence (3.9) follows by considering the cases
\[
|x - x_0|^p(T_0 - t)^{(m(p-1)-q)/(q-1)} \leq \delta b^{-1}
\]
and
\[
\delta b^{-1} \leq |x - x_0|^p(T_0 - t)^{(m(p-1)-q)/(q-1)} \leq b^{-1}, \quad \delta \in (0, 1),
\]
separately. We take \(\sigma = 1 \) in the following discussion.
To derive (1.12), we may assume, modulo a translation in time and space, that u is defined and continuous up to $t = 0$. Accordingly it suffices to estimate the quantity

$$E_0 = \int_{B_1(0)} u(x, 0) \, dx.$$

Let v be the unique solution of

$$
\begin{align*}
&v_t - \text{div}(|Dv|^p Dv) = 0 \quad \text{in } S_{\infty}, \\
&v(x, 0) = u(x, 0)\chi_{B_1(0)}, \quad x \in \mathbb{R}^N.
\end{align*}
$$

(3.10)

By the comparison principle,

$$u \geq v \quad \text{in } S_T. \quad (3.11)$$

Next let

$$k = \left(C_0^{-1} E_0^{m(p-1)-1} T \right)^{1/\kappa}, \quad \kappa = N(m(p-1) - 1) + p,$$

where $C_0 = C_0(N, p, m)$. It is shown in [8] that for a suitable C_0, either $k \leq 2$ and

$$E_0 \leq C T^{-1/(m(p-1)-1)}, \quad (3.12)$$

or $k > 2$ and

$$v(x, \frac{1}{2} T) \geq \frac{1}{4} k^{-N} E_0 \quad \forall x \in \{|x - x_0| < e_1 k\} \quad (3.13)$$

for some $x_0 \in \mathbb{R}^N$ and $e_1 = e_1(N, p, m)$. From (3.11) and (3.13) it follows that either (3.12) holds or

$$u(x, \frac{1}{2} T) \geq \frac{1}{4} k^{-N} E_0, \quad |x - x_0| < e_1 k. \quad (3.14)$$

Without loss of generality, we may assume $T_0 > T/2$ and observe that the subsolution in (3.9) satisfies

$$
\begin{align*}
z(x, \frac{T}{2}) &\leq a \left(T_0 - \frac{T}{2} \right)^{-1/(q-1)} \\
&\quad \text{if } |x - x_0|^p < b^{-1} \left(T_0 - \frac{T}{2} \right)^{(q-m(p-1))/(q-1)} \quad (3.15) \\
z(x, \frac{T}{2}) &\equiv 0 \quad \text{if } |x - x_0|^p \geq b^{-1} \left(T_0 - \frac{T}{2} \right)^{(q-m(p-1))/(q-1)}.
\end{align*}
$$
Choose $T_0 > T/2$ such that
\[a \left(T_0 - \frac{T}{2} \right)^{-1/(q-1)} = \frac{1}{4} k^{-N} E_0, \] (3.16)
and consider separately the cases
\[b^{-1/p} \left(T_0 - \frac{T}{2} \right)^{(q-m(p-1))/(p(q-1))} \leq \varepsilon_1 k, \] (3.17)
\[b^{-1/p} \left(T_0 - \frac{T}{2} \right)^{(q-m(p-1))/(p(q-1))} > \varepsilon_1 k. \] (3.18)
If the latter holds, we get from the definition of k, (3.16), and (3.18) that
\[
E_0^{(m(p-1)-1)/\kappa} = (C_0^{-1} T)^{-1/\kappa} k \leq C_1 T^{-1/\kappa} \left(T_0 - \frac{T}{2} \right)^{(q-m(p-1))/(p(q-1))} \\
= C_2 T^{-1/\kappa} \left(E_0^{N(q-m(p-1)-1)/\kappa} T^{-N/\kappa} E_0 \right)^{(m(p-1)-q)/p} \\
= C_2 E_0^{(m(p-1)-q)/\kappa} T^{-1/(\kappa+N(q-m(p-1))/(\kappa p))}.
\]
This implies
\[E_0 \leq CT^{-(p-N(q-m(p-1)))/(p(q-1))}. \] (3.19)
Assume now (3.17) holds. Then
\[z(x, t) \leq u(x, t), \quad x \in \mathbb{R}^N, \quad T/2 < t < T. \]
Indeed, $z(x, T/2) \leq u(x, T/2)$ follows from (3.14)–(3.17).
Because $\lVert z(\cdot, t) \rVert_{\infty, \mathbb{R}^N} \to \infty$ as $t \to T_0$, we must have $T_0 \geq T$. Hence from (3.16),
\[a \left(T_0 - \frac{T}{2} \right)^{-1/(q-1)} \geq \frac{1}{4} k^{-N} E_0. \]
Substituting this inequality in the definition of k, we find again (3.19). Estimates (3.12) and (3.19) yield (1.12).

4. PROOF OF THEOREM 1.3

It follows from Theorem 1.2 that we can find a sequence $\{t_j\} \to 0$ and a Radon measure such that $\{u(\cdot, t_j)\} \to \mu$ in the sense of measure. In view of (1.11), the measure μ will satisfy (1.14). Assume another Radon measure ν has the property that $u(\cdot, s_k) \to \nu$ as $s_k \to 0$ for a suitable sequence $\{s_k\} \to 0$.
We may assume that $s_k < t_j$. Take any $\eta \in C^\infty_0(B_R)$ as the testing function in (1.4) to obtain
\[
\int_{R^n} u(x, t_j) \eta(x) \, dx - \int_{R^n} u(x, s_k) \eta(x) \, dx
\leq C \int_{t_k}^{t_j} \int_{B_R} |Du|^m \, dx \, d\tau + C \int_{t_k}^{t_j} \int_{B_R} u^\beta \, dx \, d\tau,
\]
where B_R contains the support of η and C depends on N, p, q, m as well as R and η. Letting $s_k \to 0$ and then $t_j \to 0$, and interchanging the role of s_k and t_j, we obtain
\[
\left| \int_{R^n} \eta \, d(\mu - \nu) \right| \leq C \lim_{t \to 0} \int_{t_0}^{t} \int_{B_R} |Du|^m \, dx \, d\tau. \quad (4.1)
\]
By the following lemma (Lemma 4.1),
\[
\lim_{t \to 0} \int_{t_0}^{t} \int_{B_R} |Du|^m \, dx \, d\tau = 0.
\]
Therefore, $\mu = \nu$ and Theorem 1.3 is proved.

Lemma 4.1. Let u be a solution of (1.1) in S_T and let $q > m(p - 1)$. Then $|Du|^m \in L^1(0, T; L^1_{\text{loc}}(R^N))$.

Proof. Without loss of generality, we assume $u > 0$. Then by the Schwarz inequality, for every $B_R = B_R(0), a > 0$, and $0 < t < T/2$, we have
\[
\int_{0}^{t} \int_{B_R} |Du|^m \, dx \, d\tau \leq \frac{1}{p} \int_{0}^{t} \int_{B_R} u^a(\beta) \, dx \, d\tau
\]
\[
+ \frac{p - 1}{p} \int_{0}^{t} \int_{B_R} |Du|^m u^{-a} \, dx \, d\tau. \quad (4.2)
\]
Let ξ be a cutoff function in B_{2R} with $\xi = 1$ on B_R and take $\phi = u^{-\beta} \xi^p$ as the testing function in (1.4); here $\beta \in (0, 1)$ is to be chosen. After standard calculations, we find
\[
\int_{0}^{t} \int_{B_R} |Du|^m u^{-\beta - m} \, dx \, d\tau \leq C \int_{B_{2R}} u^{1-\beta}(x, t) \, dx
\]
\[
+ C \int_{0}^{t} \int_{B_R} u^{m(1-\beta)} \, dx \, d\tau. \quad (4.3)
\]
From this inequality and Theorem 1.2, there exists $C = C(N, p, q, m, \beta, T, R)$ such that
\[
\int_{0}^{t} \int_{B_R} |Du|^m u^{-\beta - m} \, dx \, d\tau \leq C. \quad (4.4)
\]
Indeed, we observe from Theorem 1.2 that
\[
\int_{0}^{t} \int_{B_{2R}} u^\beta(x, \tau) \, dx \, d\tau < \infty. \quad (4.5)
\]
Choose β such that $(m + \beta)(p - 1) \leq q$. Then by choosing $a = m + \beta$ and invoking again (4.5), we have the sought after estimate.
5. PROOF OF THEOREM 1.4

Let \(g_\varepsilon : \mathbb{R} \to [-1, 1] \) be a monotone increasing smooth approximation of the function \(s \mapsto \text{sign}(s) \equiv s|s|^{-1}, \) \(s \neq 0, \) \(g_\varepsilon(0) = 0. \) Let also \(\xi \) denote a nonnegative smooth cutoff function in \(B_{2\rho} \equiv \{|x| < 2\rho\}, \rho \geq 1, \) such that
\[
\xi \equiv 1 \text{ in } B_\rho, \quad |D\xi| \leq C\rho^{-1}.
\]
Let \(\eta_j(t) \in C^1_0(0, T), 0 \leq \eta_j \leq 1, \) satisfying \(\eta_j \to \eta \) almost everywhere in \((t_1, t_2)\) as \(j \to \infty, \) where \(\eta \) is the characteristic function of \((t_1, t_2)(0 < t_1 < t_2 < T).\)

We denote \(w = u - v \) and take the testing function
\[
\phi = g_\varepsilon(u^m - v^m)\eta_j(t)\xi(x)
\]
in (1.4) to obtain
\[
\int_0^T \int_{B_{2\rho}} g_\varepsilon(u^m - v^m)\eta_j(t)\xi(x)w_t \, dx \, dt
\]
\[
+ \int_0^T \int_{B_{2\rho}} (|Du^m|^{p-2}Du^m - |Dv^m|^{p-2}Dv^m) \cdot (Du^m - Dv^m)g_\varepsilon' \eta_j \xi \, dx \, dt
\]
\[
+ \int_0^T \int_{B_{2\rho}} (|Du^m|^{p-2}Du^m - |Dv^m|^{p-2}Dv^m) \cdot D\xi g_\varepsilon\eta_j \, dx \, dt
\]
\[
= \int_0^T \int_{B_{2\rho}} (u^m - v^m)g_\varepsilon \eta_j \xi \, dx \, dt. \quad (5.1)
\]
Whereas \(u^m, v^m \in L^p_{\text{loc}}(0, T; W^{1, p}(\mathbb{R}^N)), \) that is, \(\forall 0 < \tau_1 < \tau_2 < T, \)
\[
u^m, Du^m, Dv^m \in L^p(\mathbb{R}^N \times (\tau_1, \tau_2),
\]
it follows from the Hölder and Young inequalities that
\[
\left| \int_0^T \int_{B_{2\rho}} (|Du^m|^{p-2}Du^m - |Dv^m|^{p-2}Dv^m) \cdot D\xi g_\varepsilon\eta_j \, dx \, dt \right|
\]
\[
\leq C\rho^{-1} \int_0^T \int_{B_{2\rho}} (|Du^m|^{p-1} + |Dv^m|^{p-1})|g_\varepsilon'|_{\infty}|u^m - v^m| \eta_j \, dx \, dt
\]
\[
\leq C\rho^{-1} \left(\int_0^T \int_{\mathbb{R}^N} (|Du^m|^p + |Dv^m|^p) \eta_j \, dx \, dt
\]
\[
+ \int_0^T \int_{\mathbb{R}^N} (u^m + v^m)^p \eta_j \, dx \, dt \right) \quad (5.2)
\]
and
\[
\int_0^T \int_{B_{2\rho}} (|Du^m|^{p-2}Du^m - |Dv^m|^{p-2}Dv^m) \cdot (Du^m - Dv^m)g_\varepsilon' \eta_j \xi \, dx \, dt \geq 0.
\]
Thus by letting $\rho \to \infty$ in (5.1) and (5.2), we obtain
\[
\int_0^T \int_{\mathbb{R}^N} g_\varepsilon(u^m - v^m) \eta_j(t) w \, dx \, dt \leq \int_0^T \int_{\mathbb{R}^N} (u^q - v^q) g_\varepsilon(u^m - v^m) \eta_j \, dx \, dt.
\]

Letting $\varepsilon \to 0$ and $j \to \infty$, standard calculations give
\[
\int_{\mathbb{R}^N} |w(x, t_2)| \, dx \leq \int_{t_1}^{t_2} \int_{\mathbb{R}^N} |u^q - v^q| \, dx \, dt + \int_{\mathbb{R}^N} |w(x, t_1)| \, dx.
\]

(5.3)

We get from (1.17) that
\[
\int_{t_1}^{t_2} \int_{\mathbb{R}^N} |u^q - v^q| \, dx \, dt \leq C \int_{t_1}^{t_2} t^{-\delta(q-1)} \int_{\mathbb{R}^N} |w(x, t)| \, dx \, dt.
\]

This inequality and (5.3) lead to
\[
\int_{\mathbb{R}^N} |w(x, t_2)| \, dx \leq C \int_{t_1}^{t_2} t^{-\delta(q-1)} \int_{\mathbb{R}^N} |w(x, t)| \, dx \, dt + \int_{\mathbb{R}^N} |w(x, t_1)| \, dx.
\]

Notice that $\delta(q - 1) < 1$, and by letting $t_1 \to 0$ and using the Gronwall inequality,
\[
\int_{\mathbb{R}^N} |w(x, t)| \, dx \equiv 0 \quad \forall \, t \in (0, T).
\]

REFERENCES

