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Abstract

In this work a system of two parabolic singularly perturbed equations of reaction—diffusion type is considered. The asymptotic
behaviour of the solution and its partial derivatives is given. A decomposition of the solution in its regular and singular parts has
been used for the asymptotic analysis of the spatial derivatives. To approximate the solution we consider the implicit Euler method
for time stepping and the central difference scheme for spatial discretization on a special piecewise uniform Shishkin mesh. We
prove that this scheme is uniformly convergent, with respect to the diffusion parameters, having first-order convergence in time and
almost second-order convergence in space, in the discrete maximum norm. Numerical experiments illustrate the order of convergence
proved theoretically.
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1. Introduction

We consider parabolic singularly perturbed boundary value problems given by

ou

Lzﬁzaux,gﬁ:ﬁ (x,1) € 0 =Qx (0, T]1=(0,1) x (0, T],
- - o o 1
00, 1) = Go(n), ii(1.1) =g1(1) ¥t € [0, T, M
i(x,00=0 VxeQ,
where

a2

ox2 ajp(x,t) ap(x,t)
L. 2= A A= .
e 2 |t (azl(x,t) azz(x,t)>

X

We shall denote I'g = {(x,0)|x € Q}, '1 ={(x,t)|x=0,1, t € [0,T]},  =TogUTI; and ¢ = (81,82)T, with
0 < ¢1 <& < 1, the vectorial singular perturbation parameter. The coupling matrix A satisfies the positivity condition

a1 +ai2>0, a;>0, i=1,2, (2a)
al-ng if i #J (Zb)

Otherwise, we consider the transformation v (x, t) = u(x, t)e~*! with o > 0 sufficiently large in order to transform
diagonal entries such that (2a) holds.

Also, we assume that enough regularity and compatibility conditions hold for data of problem (1) in order that
i € C*2(Q), i.e., the spatial partial derivatives of the solution are continuous up to fourth order and the time partial
derivatives are continuous up to second order. For instance, we will suppose the conditions

g0 =0, i=01, k=0,1,2,

otk 7 ok+ko £ -
——0,0)=——(1,0)=0, 0<k+2ky<2, 3
axkar OO = gegk (0O ko ©
which are an extension of compatibility conditions for the scalar case (see [7]).

The classical linear double-diffusion model for saturated flow in fractured porous media (Barenblatt system) intro-

duced in [1] is an example of systems of type (1). The first equation describes the flow in the porous material and the
4
the interchange of fluid between pores and fractures. The permeabilities ¢; and &, in these equations could be very
small and with different magnitudes. In geological models typical values are &; = 10~/ and &, = 10~%. The Barenblatt
system can be also used to model diffusion process in bones (see, for example, [4]) which can be studied as a double
porosity model where the typical values are &; = 1013 and &, = 107°.

These small parameters cause a multiscale character of the solution. Narrow regions, the boundary layers, appear
close to the boundary where the solution has strong gradients and in the rest of the domain the solution varies smoothly.
To approximate efficiently the solution it is necessary to employ special numerical methods for which the number of
mesh points is independent of the singular perturbation parameter. In recent years fitted mesh methods have been used
extensively. In these methods a graded mesh is defined according to the behaviour of the solution. In particular, we shall
use here meshes of Shishkin type (see [5,14,18,19] and the references therein) which are piecewise uniform meshes. To
design these meshes it is necessary to know a priori the asymptotic behaviour of the solution and its partial derivatives.

Singularly perturbed problems for elliptic and parabolic problems of reaction—diffusion type have been extensively
studied. We refer to [5,14] for 1D stationary problems, to [6,15] for 1D parabolic problems, to [2] for 2D stationary
problems and to [3] for 2D evolutionary problems.

The theoretical analysis and the numerical approximation is more complicated when systems are considered. Re-
cently, some papers consider problems of type (1) in the stationary case under the hypothesis a;1 + aj2 >0, i =1, 2,

second one the flow in the fracture system. The coupling terms are given by the matrix A = ( jl) which describes
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a;j >0, a;;<0, i # j. These hypothesis guarantee that the maximum principle holds. To approximate the solution,
the classical central difference operator is defined on a special Shishkin mesh, proving the uniform convergence in the
maximum norm.

Three cases can be distinguished depending on the relation between the singular perturbation parameters ¢; and &,

(i) e1=¢ &2=1,
(i) &y =& =g,
(iii) &1, &y arbitrary.

In [12,11] first-order uniform convergence was proved in cases (ii) and (iii), respectively. In [13,8,10] second-order
uniform convergence was obtained for cases (i)—(iii), respectively. Finally, in [9], the authors consider Bakhavalov
and Shishkin meshes, proving in both cases second-order convergence in norm Lj and first-order convergence in the
standard energy norm.

In this paper, Section 2 is devoted to establish the asymptotic behaviour of the solution of problem (1). Some results
in this direction has been given in [20] without proofs. Also, we use a decomposition of the solution into regular and
singular components which is different to the one given in [20]. In Section 3 we use the implicit Euler scheme to
discretize in time and the central difference scheme on a fitted Shishkin mesh to discretize in space. We analyse the
uniform convergence of this scheme, proving first-order convergence in time and almost second-order convergence in
space. The analysis given in this work for problem (1) relies on the steady problem, standing out the paper [11] because
the ideas of the authors have been extended to the evolutionary case. Finally, in Section 4 we show some numerical
experiments that confirm in practice the theoretical results.

We write T)_< wifvi<w;, i=1,2,18|=(vil, [va)T, ¢=(c, ¢)T, where ¢ is a constant, |l f 1l 7 1s the maximum norm
of fon H, || fllg = max{|| filla, Il f2l| #} and for simplicity we use f, or 0f/0z (analogously for higher order partial
derivatives). Henceforth, any positive constant is independent of the diffusion parameters ¢1, ¢, and the discretization
parameters N and At.

2. Asymptotic behaviour of the solution

In this section some bounds of the exact solution and its partial derivatives are deduced. We shall use systematically
the maximum principle (see [7,17]). This principle for system (1) is given by:

Theorem 1 (Maximum principle). Let Ly be the differential operator given in (1) and we assume that the coeffi-
cients of matrix A satisfy the positivity conditions (2a) and (2b). If zp >0on I and Lgnp >0 in Q, then x// >0 for all
(x,1) € 0.

Proof. We write y = e* {, with A a positive constant. Note that sgn Y; =sgn@;,i =1,2and

> 0¢p —&1 6297’ -
L — 4+ (A+ I >
L= (24 (T )25+ asang) =0

We shall prove that ¢ 2() forall (x,1) € Q. We suppose that there exists (xg, f9) € O\I such that

min{q)l(-x()sto)v QDZ(XO’IO)}:mm min_ (pl(xst)v min_ @2(x7t) <0
(x,0)eQ (x,0)eQ

Without loss of generality, we assume that ¢ (xo, fo) < ¢, (xo, fo). At this point

2

0
%(Xo, 1) <0, <P21 (x0, 10) 20,
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and the first component of Lz satisfies

0 02
%(XO, fo) — &1 Wq)zl(m, 1) + (a11(xo, t0) + A) @1 (xo0, fo) + a12(xo, to) ¢, (xo, lo))

[Lah(x0, 10)]; = ™0 <
LeHo (a11(xo, 10) @1 (x0, f0) + a12(x0, 10) 2 (x0, o) + 4@y (x0, 10))

<e™ ¢, (x0, o) <0,

using the hypothesis (2a) and (2b). This negative bound contradicts the hypothesis of this theorem and therefore 1132(3
forall (x,7) e Q. U

The following result is an immediately consequence of the maximum principle.

Corollary 2 (Comparison principle). Let Lg be the differential operator given in (1) and we assume that the coefficients
of matrix A satisfy the positivity conditions (2a) and (2b). If || < @ on I and |Lyy| < L;p in Q, then || < ¢ for all
(x,1) € Q.

Lemma 3. The solution of problem (1) satisfies

Proof. The barrier function 17/ =+ 1)5 , with C a sufficiently large positive constant, proves that i is bounded. Now,
we denote p = ii,;. On I'y this function satisfies

o'u

o <C, i=0,1,2.

0

5, )< max {1240, 18" 0]} <C,
|p(x )L\teﬂl§j{lgo( NGRS

and on I'p, by continuity, we have
15, 0= (x.0)[g<C.

Differentiating (1) w.r.t. #, we have
Lip=fi — Adi, (x,D) € Q,

where A; = (0a;;/0t). The same barrier function as before IZ =+ 1)6‘ , proves || p|| o= N2 |l oS C. The analysis of
the function g = i, is similar. Now, it holds

. nI<C.  (x.1) e,
1G (e 0l = 1L fy (x, 0) = Aii = Ly :f(x, 0)| g <C,
LiG = fu — Auil = 2Adi;,  (x,1) € O,

where A, = (0%q; i/ 0t?). The results follows by using again the barrier function ljb =+ 1)6‘ . g
In the following, we shall use a decomposition of the exact solution
Uu=70+w,

where v, the regular component, is the solution of the problem

5(x,0)=0 on I, )
V=7
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where 7 satisfies the following IVP

{z,+Az=f, (x,1) € {0, 1} x (0, T1, )
Z(x,00=0, xe{0,1}.
The singular component is the solution of the problem
L; =0 in Q,
{ Law =0 0 ©)
w=u—v onl.

Note that from the hypothesis on the function f given in (3) and that Z is solution of problem (5), we have that
Z(x,0) =7Z;(x,0) = Z1;(x,0) =0, x € {0, 1} and therefore v € C*2(Q). In addition w € C*2(Q).

Lemma 4. The regular component satisfies

0'v

| <G i=0.1.2 )

Q

Proof. Similarly to Lemma 3. [

Lemma 5. The regular component satisfies
o'y

Proof. From (4) and (5), we have

Ui (2,00 =0, x € Q,  Tpe(x,1) =0, (x,1) €T}, ®)
Differentiating (4) twice w.r.t. x, we have

| LTl = (frx — 2450, — A D)<+ 5l 5)C ©)
where Ay = (0a;;/0x) and Ay, = (0%a; i/ 0x2). Then, the comparison principle proves

x| <t (1 + (1311 5)C,

and therefore

IBexllp <C* (1 + [13:ll ). (10)
Similarly to [11, Lemma 3], using the Mean Value Theorem, we can prove

N ”ﬁxx”Q

||Ux||Q<C+2—C*~ (11)

The result follows from (10) and (11). [

Lemma 6. The regular component satisfies
0% 0%
0tdx 0tdx?

_<C9 ‘
0

Proof. From (8) we have that Vyyr = 6 (x,1) € I'1. Using that 9(x, 0) = Oon T o and differentiating (4) twice w.r.t.
x, we deduce |Uyys (x, 0)| = | frx (x, 0)| < C, x € Q. Differentiating (4) twice w.r.t. x and once w.r.t. 7, we obtain

|Livx| = |(fext — Axxt® — 2450y — Ay — 2440y — Axx )| <1+ [[411 )C - (12)

- ~ :
Q

The comparison principle proves ||V || oS C( + ||Vl Q) and the proof finishes using the same argument than in
previous Lemma 5. [
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Lemma 7. The regular component v = (vy, 1)2)T satisfies

Proof. We only consider the component v since the proof is similar for both components. Differentiating (4) twice
w.r.t. x, for any ¢ € (0, T], it holds

62 62v1 62v1 azvz 62f1 631)1 A N ey alj c (0 1)
—& —— —_— —_— = —d - xxV X~ ) X ) ’
1ax2 o2 a2 2572 T 52 T arax? ox

1
62 2
—50.0=25(1n=0

aivl

oluy
Ox!

ox!

<ce 7, H <Cey?i=3,4
0 o

(13)

Note that all terms of the right-hand side and 9?v; /0x? are bounded. Then, the previous differential equation directly
proves

Taking into account that the right-hand side of problem (13) is parameter uniform bounded, we can apply the argument
of [16] on {(x, t) | x € Q} for any # € (0, T], obtaining the following bound

Below to simplify the notation, we define the function

641)1

33 0 Q<Ce;1.

a?

(x t) <C81 . O

By(x) = eIV 4 ef(lfx)va/v,
where « is a positive constant.

Lemma 8. The singular component satisfies

o'w

= <By,(x)C Y(x.1)e 0, i=0,1,2. (14)

Proof. Firstly, we note that from (6) and Lemma 4

6’7;( ol +
o

l' -

Y| <
atl xv AN

l

gcv

St >‘ max {125 1. 17”01} +

for (x,t) € I'tandi =0, 1, 2. OnFo,usmgthatu(x 0) = v(x, 0)—0 we have that w(x, O)—O xeQ, and by
continuity w; (x, 0) = Wy (x, 0) = O x € Q.
If (x,1) € Q,itholds

ng = O, ng; = —A,w, ngn = —A”w — 2A;w;.

On the other hand, the function lZ(x, )= e2ot B, (x)é 1= 6, V(x,t) € Q, with Cy a sufficiently large positive constant,
for (x, t) € Q satisfies

U=Ci, (x.0) €Ty, Lgp>Croe™ By (x)(2 — &1 ez, T > 06> By, (x)C1,

since e <é. Usmg successively the comparison principle we can deduce that the function l//(x t) is a barrier function
for w, w; and wy,. Finally, note that lﬁ(x t)=B,, (x)C with C =e*T'Cy. O
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Lemma 9. The singular component satisfies

(w1 ()[SCBg(x), [wa(x)|<CBg,(x), (15)
Ow; ~12 ~12 ow S1/2

e <C(e; "B (x) + ey "TBg (X)), 6 <Ce¢ B, (x), (16)
62 2

W <ce B !B <Ce;'B 17
a2 | S (61 sl(x)'f‘fq sz(x)), o 2 &y zz(x) (17)
RV <c¥p 32 18
oS (& e (X) + &5 e (X)), (18)
63w2 —1

0 <Ce, (81 le(x)+82 Bsz(x))7 (19)
6411)1 _2 _2

ey <C(e] " Bg (x) + &, "B, (x)), (20)
o*w 1 _

Wﬁ <Ce; (67" By (x) + & ' Bey (x)). 1)

Proof. We follow the proof given in [11, Lemma 4], showing the differences that appears in the parabolic case.
Bounds (15) are proved in Lemma 8. Taking into account that [0w/0t| < B, (x)C, the same argument as in [11]
proves

owq 2wl -1
a—(x 1) <C81 By, (x), 5 (x, )| <Cép By, (x), (22)
ow» 2w2 —1
a—(x t) <C62 BSZ( X), 3 (x,1) <C82 B, (x). (23)

The bounds for the first component are not the required, but from them we deduce the following bounds on the boundary

(x,0)| <Cer', (x,1) T, (24)

_ 0w
1/2 1
a—(x NI <Ce 7, ' 32

that we shall use to improve (22).
The function ¥/, (x,1) =C g2 (81 BF1 (x) +&y 12 B, (x)), with C a sufficiently large positive constant, satisfies

d d
ozﬂ(x 0) <Y (x,0), x €, ‘%(x,t)
X

<Yy (x,0), (x,0) el (25)
and

(x,1) <L;fltp1(x,t), (x,1) € O, (26)

i

where the differential operator L;“I := 0/0t — £10?/0x* 4+ a1y, with aj; > 0, satisfies a maximum principle. From (25)
and (26), we deduce that v, is a barrier function for dw; /0x.
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A similar argument proves that Y/, (x, 1) = C et (sf] Be (x) + &5 ! Bg, (x)) is a barrier function for 0%w; /0x>.
Now we consider the third-order partial derivatives. Differentiating w.r.t. ¢ the equation

—— 2+ anwy + anwy =0, 27)

and using bounds of Lemma 8, we have

3w,

575 | < Cey ' By, (x). (28)

Hence, using a similar technique to that of [11] we have that

62 w2
oxor

<Ce 71/2

Bg, (x). 29)

Differentiating (27) w.r.t. x and using bounds (15), (16) and (29), it follows that

Pwy

=3 | <Ce 5 e By () + &5 P By (1), (30)

In a similar way, it is possible to deduce the crude bound [0*w (x, r)/0x| <Csl_3 /2 (x,1) € Q, which allows to
establish appropriated bounds on the boundary I'1. The function y3(x, 1) = C e2%t (8l 3/ 2 B (x) + 82_ 3/ 2B'82 (x)), is a
barrier function for 3wy /0x3 which proves (18).

The argument used for the third-order partial derivatives can be extended to the fourth-order partial derivatives. []

Lemma 10. Suppose that ¢ < &. Then, the singular component w = (w1, wy) can be decomposed as

W) =W + Wi, W2=W2g + W2, (31)
where
azwl’gl < 1 63w1,82 < 2
o2 <Ce B (x), 30 CPQ BPz(x) (32)
Pwy. e . Pwa g —3/2
S| <Ce By (). |52 <Co By (). (33)

Also, the singular component w = (w1, wy) can be decomposed as

Wi =21 + 21 W2=22¢ +22.; (34)
where
azzl,g 1 6411,32 -1 -1
6x21 <Ce) By, (x), 3t <Ce| & Bg,(x), (35)
azzz,g -1 6422,8 -2
S| <Co By (). |5 <Ciy Br (). (36)

Proof. See [11, Lemma 5], for the decomposition (31) and [10, Lemma 2], for the decomposition (34). [
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3. Numerical scheme. Analysis of the uniform convergence

To approximate the solution of (1), we consider the implicit Euler and the central difference schemes to discretize
the time and spatial variables, respectively. The numerical solution is defined on the mesh

~N
oV =0" x ",
where, for simplicity, we consider a uniform mesh for the time discretization
o ={kAt, 0<k<M, At =T/M)},

. . L. ~N . . . . . .
and for the spatial discretization, 2 is a piecewise uniform mesh. Because of the components of the solution in the

L . - N . o
x-direction can have two boundary layers at both sides x =0 and 1, the mesh € is defined by means of two transition
parameters. We define

15, =min{l/4, m/e2In N}, 15 = min{tg, /2, my/e] In N}, (37)

where m is an arbitrary positive real number. In the subintervals [0, 7, 1, [t¢;, Te, |, [Ty, 1 — Ty ], [1 — ¢, 1 — 7, ] and
[1 —7¢,, 1] we distribute uniformly N/8 4+ 1, N/8+ 1, N/2 41, N/8 4+ 1 and N/8 4+ 1 mesh points, respectively. So
the mesh points are given by

Jhe, s j=0,...,N/8,

xnyg+ (j— N/8)hy,, j=N/8+1,...,N/4,

Xj=qxnu+(j—N/HH, j=N/4+1,...,3N/4,
x3n/4+ (J —3N/4hg,, j=3N/4+1,....,7N/8,
xin8 +(j —TN/8)he, j=TN/8+1,...,N,

81y,

hgl _ N _ 8(T62 - Té‘])

N

2(1 — 215,)
I

k) h82 5 H ==

When 1, # % and 7, = 4—11, it means that only the first component of the exact solution has boundary layers. In this
case we will take a new grid with equally distributed points in the subintervals [0, T, ], [t¢,, 1 — 7] and [1 — 7¢;, 1]
Now the mesh points are given by

Jhe, j=0,...,N/8,
xj={xyg+G—N/®H,  j=N/8+1,...,TN/8,
x7n/8+ (j—TIN/8)hy, j=TN/8+1,...,N,

where

f— 4(1 — 2‘[81).

3N
On this mesh, we define the following finite difference scheme

U+ ALY )OI =0+ Aefit, 0<j<N, n=0,....M—1, (38)
where

N (8 a2z 2 Zin=2j Zj=Zj

. —&0 I / hj+hji hjt hj ’

withhj=x; —xj 1, j=1,..., N, A" = @i (x, ty11), i=1,2, k=1,2, f;f’“ = f(xj, tat1) and (77 denotes

the approximation of the value i (x;, #,). So, (7]0 =0,0<j<N and (7(’)”'1 = go(thr1), l};’,“ =g1(tyx1).
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Lemma 11 (Discrete maximum principle). Let (I + AILN ~) be the discrete operator given in (38) and we assume that

the coefficients of matrix A satisfy the positivity condmons (2a) and (2b). If Yisa vectorlal mesh function such that
Yo >0, YN 20 and (I + AtLN~)Yj >0, forj=1,..., N — 1, then Y] >Ofor j= , N. Moreover, it is uniformly
stable and it holds

1711y <+ ALY )Y | .
Proof. We referto [11, Lemmas 6 and 7]. O

To analyse the uniform convergence of scheme (38), we consider the following decomposition of the discrete solution
gt =yt Wt =0, M -1,
where V+1 and W"*! are solutions of the discrete problems
I+ AIL)IXE)‘;;1+1 =VI+ Atf;"H, 0<j<N, VI'=080, 1, VI =301, 1,51),
(I + ALY Wit = Wi 0<j<N, W' =d0, tyr), Wit =i, tey1), (39)
with V9 = WJO =0, 0<j<N.
Theorem 12. Let ii(x, t) be the solution of (1) and {[};1+1} the solution of (38). If the coefficients of matrix A satisfy
the positivity conditions (2a) and (2b), then
liiGej tar1) = U gy SCN M2 N + Ay, 0<g <1, (40)

where N, At and g are such that N~9 < CAt.

Proof. If the mesh is uniform, it is straightforward to deduce

614
[( +AtLN—)(u(x],tn+1) - Un+ )< u(x]a fnt1) — u(x]»tn) t(xj, Int1)

+ ALY (s tar) = Ly gt tag)] + [, 1) — U7
<CAN? + MN 2 ") + i (x). 1y) — U
<CAr(Ar+ (N In NY?) + i (x;., 1) — U],
The discrete maximum principle proves
i Cx ), tag1) — ﬁf“ gy SCAL(AL + (N~ In N)?) + [lii(x, 1) — Ut -
By using recursively this expression, we obtain
lii(xj, tar1) = U7 v SC(AL+ (N In N)).

In second place we assume that the spatial mesh is not uniform. Similarly to [20], for the analysis we must distinguish
several cases.

If &, = 1 or &1 = &, we calculate the local error associated to the regular and singular components. Taking Taylor
expansions and using bounds (7) and (14), we deduce that

<(An2C

. - ov

V(xj, fpy1) — V(xj, ) — Ata(xj, tht1)
(41)

<(An2C.

. . W
W(Xj, tyg1) — WX, 1) — Afg(xj, thy1)
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From [8] (case ¢1 = &) and [13] (case &» = 1), we have that

1/2
IL,IZgB(Xj, tat1) — Ly z0(xj, 1) SCN ™! (ii/z) ,
2
1LY (), tas1) — Ly g0 () tar) [ < (V" I N)2C. 42)
Bounds (41) and (42), the discrete maximum principle and a recursive argument prove
15, ta1) = Vil gy SC(Ar+ N7'ey?),
1 (xj tg1) = W | gy SC(AT+ (N7 InNY?). (43)
Hence, it follows
I, tp) = U0 ) gn SC(Ar + N7 ey> + N1 in? V).

Note that the reduction of the order of convergence is due to the regular component. We can sharpen the bound of the
error associated to this component by using the barrier functions given in [8] (case &1 = &) and [13] (case & = 1).
These barrier functions are defined by means of a piecewise linear function
-1
xXT, ", x €[0, 1],
(p“')(x) = 17 X € [T’}'v 1 - T’}’]v

(1— x)r,;l, x €[1—1y 1l
Taking
i) = (N2 + (A% + N 2108, P, (i) C + 150k 1) — VIl T,
as barrier function if £; = ¢, and
V() = (N2 + (AN)C + CN g0, () (e 2 DT + 150, 1) = VIl g,
if & = 1, the discrete maximum principle proves
15, 1) = ViH oy SCUAD? + N2 In N) + 150x, 1) — V7l .

Using the hypothesis N ~7 < CAt, since the barrier function does not give the necessary dependence on At, we deduce

M
19X}, tag1) — 17;“ lgy C Y At(At + N~**InN)<C(At + N">*In N). (44)

n=1

Then, the result follows combining (43) and (44).
In the third case (¢1 and ¢; are arbitrary) we use Lemmas 7, 9 and 10 to estimate |ngﬁ(xj, tht1) — Lx,gﬁ(xj, tht1)]

and |Livgﬁ)(xj, tht1) — Lx,ng)(xj, ty+1)|, and from them we deduce the same crude bound that in [10, Theorem 1], for

|L)1‘V ;zZ (xj, thg1) — Lx,gz] (xj, tag1)|. So, we can compare the local error associated to the numerical solution

[+ ALY ) GiCxjs tag1) — U< ADPC 4 ALY i, ta1) = Ly gid (g tag )]+ 1, 1) — T,
with the barrier function (see [10])

P(xi) = (A + N2> N(1 + 9, (%) + 0, 6D C + i (xj, 1) = Ul g1,
and the comparison principle proves

I, 1) = UF gy SCUAD? + (N~ In NY?) + i (xj, 1) — Ul -

The same argument given above finishes the proof. [J
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4. Numerical results

In this section we show some numerical results obtained with the numerical scheme (38) to approximate the solution
of the following problem

Ouy o%u,

E—EIW‘FK(M—W):L

N (x,1) € (0, 1) x (0, 1],

E—Sza)c—z-kk(uz—ul):l,

w(©0,0)=u(l,0)=0, 1 €[0,T], u(x,0)=0, x [0, 1]. (45)

This coupled system is used to model the flow in fractured porous media. The first equation of the system models the
flow in the fracture system and the second equation models the flow in the porous matrix structure (see [1]). In these
equations u; are the fluid pressures, ¢ the permeabilities and x is the coefficient that control the exchange of fluid
between the pores and the fractures. In the numerical experiments we take k = 1.

We use a variant of the double mesh principle to estimate the pointwise errors |U!" — i(x;, 1,,)| in the mesh points

3 n ~ . . . .
{(xi, ,)}. We calculate a new approximation {U; } on the mesh {(%;, #,)} that contains the mesh points of the original
mesh and their midpoints, i.e.,

X2i=x;, i=0,...,N, )?2i+1=(x,~+xl-+1)/2, i=0,...,N—1,
fz,lztn, n=0,...,M, f2n+1=(tn+tn+1)/2, n=0,....,.M—1.
At the mesh points of the coarse mesh we calculate the maximum errors and the uniform errors by

IR N 5 2n

dz = max max |U'—-U,,|, d = max d: , 46
&,N,At 0<n<MO<i<N| i 2i | N,At < &,N,At (46)

where the singular perturbation parameters take values on the set S = {(¢1, &)|e2 = 20, 2_2, .., 2730 &1 = &,
2_282, L., 27%8 2_60} in order to permit that the maximum errors stabilize. The extreme values of ¢| taken are very

small, but in the numerical calculations we are working with numbers 2¢; /(h; (h; + h;y1)) and 2¢; /(h;y1(h; +hit1)).
These quantities are not beyond standard machine precision inside the boundary layers and have any relevant influence
outside them.

From the values giving by (46) we can obtain, in a standard way, the corresponding orders of convergence and the
uniform orders of convergence

. log(ds N Ai/dzon Atjs) log(dy Ai/dan,At/a)
pP= s> Puni = .

log2 log?2
InTables 1-4 the spatial discretization parameter takes the values N=64, 128, 256, 512, 1024 and the time discretization
parameter At = 0.5,0.5/4,0.5/4%,0.5/43,0.5/4*. We have divided the step sizes into a different ratio in order to
corroborate at the same time first order and second order of convergence in time and space, respectively. The first time
step is sufficiently large relative to the spatial step in order that the last values of At will not become very small.

Table 1

Uniform errors JN, Ar and uniform orders of convergence pyyi for problem (45) on a uniform mesh

e, €S N =064 N =128 N =256 N =512 N =1024
At =05 At =05/4 At =0.5/4? At =0.5/43 At =0.5/4*

[JN,A,]I 0.519E — 1 0.382E — 1 0.354E — 1 0.347E — 1 0.345E — 1

[ Punili 0.443 0.111 0.030 0.008

[dn.acln 0.480E — 1 0.382E — 1 0.354E — 1 0.347E — 1 0.345E — 1

[Punil2 0.330 0.111 0.030 0.008
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Table 2

Uniform errors d ~.Ar and uniform orders of convergence pypi for problem (45)

e, €S N =064 N =128 N =256 N =512 N =1024
At=05 At =0.5/4 At =0.5/4% At =0.5/43 At =0.5/4*

m=1

[JN,A,]] 0.466E — 1 0.150E — 1 0.405E — 2 0.103E — 2 0.260E — 3

[Punili 1.631 1.892 1.972 1.993

[JN,A,]Z 0.399E — 1 0.122E — 1 0.348E — 2 0.903E — 3 0.228E — 3

[ Punil2 1.713 1.805 1.947 1.987

m=2

[JN,A,L 0.466E — 1 0.150E — 1 0.420E — 2 0.118E —2 0.326E — 3

[Punili 1.631 1.840 1.834 1.856

[JN,A,]Z 0.399E — 1 0.122E — 1 0.374E — 2 0.111E —2 0.325E — 3

[Punil2 1.713 1.704 1.752 1.771

m=4

[(?N,A,]l 0.519E — 1 0.238E — 1 0.823E — 2 0.266E — 2 0.809E — 3

[Punili 1.126 1.531 1.629 1.719

[(?N_A,Jz 0.601E — 1 0.337E — 1 0.128E — 1 0.434E — 2 0.139E — 2

[ Punil> 0.833 1.396 1.561 1.640

Table 3

Problem (45): ¢;-uniform errors, uniform errors and orders of convergence associated to the component u

& N =064 N =128 N =256 N =512 N =1024
Ar=0.5 At =0.5/4 At =0.5/4% At =0.5/43 At =0.5/4*

g =20 0.410E — 1 0.136E — 1 0.372E — 2 0.966E — 3 0.245E — 3
1.598 1.864 1.947 1.981

g =22 0.466E — 1 0.150E — 1 0.405E — 2 0.103E — 2 0.260E — 3
1.631 1.892 1.972 1.993

gH=2"" 0.399E — 1 0.120E — 1 0.327E — 2 0.855E — 3 0.220E — 3
1.727 1.879 1.937 1.955

g =270 0.371E — 1 0.119E — 1 0.327E — 2 0.855E — 3 0.220E — 3
1.642 1.860 1.937 1.955

g =278 0.371E — 1 0.119E — 1 0.327E — 2 0.855E — 3 0.220E — 3
1.642 1.860 1.937 1.955

g =210 0.371E — 1 0.119E — 1 0.327E — 2 0.855E — 3 0.220E — 3
1.642 1.860 1.937 1.955

g=2"12 0.371E — 1 0.119E — 1 0.327E — 2 0.855E — 3 0.220E — 3
1.642 1.860 1.937 1.955

gH=2"14 0.371E — 1 0.119E — 1 0.327E — 2 0.855E — 3 0.220E — 3
1.642 1.860 1.937 1.955

g =2716 0.371E — 1 0.119E — 1 0.327E — 2 0.855E — 3 0.220E — 3
1.642 1.860 1.937 1.955

g=2"18 0.371E — 1 0.119E — 1 0.327E — 2 0.855E — 3 0.220E — 3
1.642 1.860 1.937 1.955

g =272 0.371E — 1 0.119E — 1 0.327E — 2 0.855E — 3 0.220E — 3
1.642 1.860 1.937 1.955

g =230 0.371E — 1 0.119E — 1 0.327E — 2 0.855E — 3 0.220E — 3
1.642 1.860 1.937 1.955

[EN_A,]I 0.466E — 1 0.150E — 1 0.405E — 2 0.103E — 2 0.260E — 3

[Punili 1.631 1.892 1.972 1.993
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Table 4
Problem (45): &;-uniform errors, uniform errors and orders of convergence associated to the component u,

& N =64 N =128 N =256 N =512 N =1024
At=05 At =0.5/4 At =0.5/4% At =0.5/43 At =0.5/4%

g =20 0.125E — 1 0.815E — 2 0.304E — 2 0.870E — 3 0.226E — 3
0.623 1.422 1.805 1.947

g =22 0.326E — 1 0.122E — 1 0.348E — 2 0.903E — 3 0.228E — 3
1.422 1.805 1.947 1.987

g =2"* 0.399E — 1 0.120E — 1 0.318E —2 0.807E — 3 0.203E — 3
1.727 1.920 1.979 1.995

g =27 0.244E — 1 0.712E — 2 0.185E — 2 0.470E — 3 0.118E — 3
1.777 1.941 1.981 1.991

g =278 0.246E — 1 0.724E — 2 0.189E — 2 0.477E — 3 0.120E — 3
1.767 1.939 1.985 1.996

g =2"10 0.252E — 1 0.749E — 2 0.197E — 2 0.524E — 3 0.137E — 3
1.751 1.928 1.910 1.930

g =2"12 0.252E — 1 0.749E — 2 0.198E — 2 0.562E — 3 0.155E — 3
1.749 1.922 1.813 1.855

g =21 0.251E — 1 0.749E — 2 0.198E — 2 0.562E — 3 0.155E — 3
1.747 1.922 1.813 1.855

g =2710 0.251E — 1 0.749E — 2 0.198E — 2 0.562E — 3 0.155E — 3
1.745 1.922 1.813 1.855

g =2"18 0.251E — 1 0.749E — 2 0.198E — 2 0.562E — 3 0.155E — 3
1.744 1.922 1.814 1.855

g =220 0.251E — 1 0.749E — 2 0.198E — 2 0.562E — 3 0.155E — 3
1.744 1.922 1.814 1.855

g =230 0.251E — 1 0.749E — 2 0.198E — 2 0.562E — 3 0.155E — 3
1.743 1.922 1.814 1.855

ldy.aclo 0.399E — 1 0.122E — 1 0.348E — 2 0.903E — 3 0.228E — 3

[Punila 1.712 1.805 1.947 1.987

In Fig. 1 we show for &; =273% and &; = 2~ the numerical solutions corresponding to 7 = 1. The time and spatial
discretization parameters are At = 0.5 and N = 128, respectively. Clearly, from this figure we observe two boundary
layers at x = 0. Note that the values of the solution outside of the boundary layers are close to the solution of the
reduced problem

avl

54‘(”1—02):1,

61)2 (xst)e(osl) X (071],

— + 2 —v) =1,

ot
v(x,0)=0, xe]0,1], 47

given by vy (x, t) = va(x, t) = ¢. In the boundary layers the solutions are different. The first component is greater and
varies faster than the second one.

It is clear that we cannot use a uniform mesh to approximate the solution of this problem (see Table 1). In Table 2,
we show the uniform errors and the orders of convergence for several values of the constant involved in the definition
of the Shishkin mesh (37). In both tables the values of the singular perturbation parameters belong to the set S and the
results for the components u#; and u, appear in the first and second rows, respectively. Table 2 has a double purpose,
first from it we observe second order of uniform convergence proved theoretically for m = 1, 2, 4; second we deduce
that the error constant depends on m similarly to steady equations in the scalar case (see [5]).

Tables 3 and 4 display the numerical results for the components u; and u», respectively, taking m = 1. At each row
we show the maximum errors and the orders of convergence for a fix value of ¢; and ¢; € {e, 272, ..., 2_60}. The
uniform errors and the uniform orders of convergence appear at the last row.
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Fig. 1. Numerical solutions Uj (solid line) and U, (dashed line) for 7 = 1 generated by the numerical method (38) applied to problem (45) with
N=128and g =230 g =215

Table 5
Uniform errors d, 'N.Ar and uniform orders of convergence pyy; for problem (45)
e, €S N =064 N =128 N =256 N =512
At =0.01 At =0.01/4 At =0.01/4? At =0.01/4°
[JN,A,L 0.422E — 2 0.147E — 2 0.478E — 3 0.151E — 3
[ Punili 1.521 1.620 1.665
[dn a2 0.609E — 2 0.221E —2 0.768E — 3 0.254E — 3
[ Punil2 1.466 1.522 1.597

From all these tables we see that the numerical results are in agreement with Theorem 12, even though we do not have
sufficiently compatibility conditions (in the corners (0, 0) and (1, 0) only the condition of order zero holds). Finally,
we wish to note that the condition N =7 < At, 0 < g < 1, that we have imposed in Theorem 12, it is not necessary in the
different numerical experiments that we have performed. We think that it is only a theoretical restriction in the proof
by recurrence given in Theorem 12. To support it, in Table 5 we present the numerical result for problem (45) taking
m = 1 and different starting values for the discretization parameters such that Az &~ N~!, observing any anomalous
behaviour.
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