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Abstract

A natural one-parameter family of Kähler quantizations of the cotangent bundle T ∗K of a compact Lie
group K , taking into account the half-form correction, was studied in [C. Florentino, P. Matias, J. Mourão,
J.P. Nunes, Geometric quantization, complex structures and the coherent state transform, J. Funct. Anal. 221
(2005) 303–322]. In the present paper, it is shown that the associated Blattner–Kostant–Sternberg (BKS)
pairing map is unitary and coincides with the parallel transport of the quantum connection introduced in our
previous work, from the point of view of [S. Axelrod, S. Della Pietra, E. Witten, Geometric quantization
of Chern–Simons gauge theory, J. Differential Geom. 33 (1991) 787–902]. The BKS pairing map is a
composition of (unitary) coherent state transforms of K , introduced in [B.C. Hall, The Segal–Bargmann
coherent state transform for compact Lie groups, J. Funct. Anal. 122 (1994) 103–151]. Continuity of the
Hermitian structure on the quantum bundle, in the limit when one of the Kähler polarizations degenerates
to the vertical real polarization, leads to the unitarity of the corresponding BKS pairing map. This is in
agreement with the unitarity up to scaling (with respect to a rescaled inner product) of this pairing map,
established by Hall.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let K be a compact, connected Lie group of dimension n and let T ∗K be its cotangent bun-
dle. We start by recalling some aspects of [2] where, in connection with work of Hall in [6],
the geometric quantization of T ∗K was studied using a natural one-parameter family of Kähler
structures. These Kähler structures are induced on T ∗K via the following natural identifications
of T ∗K with the complexified group KC. Consider, for any real parameter s > 0, the diffeomor-
phisms

ψs :T ∗K → KC

(x,Y ) �→ ψs(x,Y ) = xeisY . (1.1)

Here, x ∈ K , Y ∈ K ≡ Lie(K), and we identify T ∗K with K × K∗ using left invariant forms and
then with K × K by means of a fixed Ad-invariant inner product on K. The diffeomorphisms ψs

endow T ∗K with a family of complex structures Js and one can check that, together with the
canonical symplectic structure ω on T ∗K , the pair (ω,Js) defines a Kähler structure on T ∗K for
every s ∈ R+ [2]. This family includes the Kähler structure on T ∗K considered by Hall in [6].

In this paper, we consider the Blattner–Kostant–Sternberg (BKS) pairing between two differ-
ent Kähler quantizations of T ∗K . To describe the results, let us consider the framework used
in [2]. Let L denote the trivial complex line bundle on T ∗K , with trivial Hermitian structure (its
sections are therefore identified with C∞ functions on T ∗K). Following the geometric quanti-
zation program with half-form correction, let us introduce the half-form bundle δs , which is a
square root of the (trivial) Js -canonical bundle κs over T ∗K . Choosing canonical trivializing
Js -holomorphic sections Ωs of κs = δ2

s and
√

Ωs of δs (we refer to the next section for precise
formulas) one introduces a natural Hermitian structure on L⊗ δs so that, for a smooth section σs

of the form

σs = f
√

Ωs, (1.2)

with f ∈ C∞(T ∗K), one has

|σs |2 := |f |2|Ωs |, (1.3)

where |Ωs | is defined by Ωs ∧ Ωs = |Ωs |2bε, b = (2i)n(−1)n(n−1)/2 and ε = 1
n!ω

n is the
Liouville measure on T ∗K .
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The prequantum Hilbert space HprQ
s , depending on s, is then the (norm completion of the)

space of C∞ sections σs of L ⊗ δs which are square-integrable with respect to the Hermitian
structure (1.3), that is

〈σs, σs〉prQ :=
∫

T ∗K

|σs |2ε < +∞. (1.4)

Proceeding with the quantization program, the quantum Hilbert space HQ
s is defined to be the

subspace of HprQ
s consisting of polarized (Js -holomorphic) sections of L ⊗ δs . This is naturally

a sub-Hilbert space of HprQ
s .

Both families of Hilbert spaces can be collected to form the Hilbert prequantum bundle
HprQ → R+ and the quantum bundle HQ → R+, which is naturally a sub-bundle of HprQ.

In the spirit of [1], we consider a natural connection δprQ on HprQ and use it to induce, by
orthogonal projection, an Hermitian connection δQ on HQ. Note that, from (1.2)–(1.4), HprQ has
a natural global (inner product preserving) trivializing morphism defined by

L2(T ∗K,ε) × R+ → HprQ

(f, s) �→ f√|Ωs |
√

Ωs.

The prequantum connection δprQ on HprQ is defined to be the connection induced via this map
from the trivial bundle L2(T ∗K,ε) × R+ → R+ equipped with the trivial connection. Then, the
quantum connection δQ is defined to be simply the orthogonal projection of δprQ to the quantum
bundle. This construction is a natural generalization, to the case with the half-form correction and
with a natural trivializing section of the square root of the canonical bundle, of the framework
considered in [1]. One of the advantages of this approach consists in the fact that it ensures
automatically that the quantum connection is Hermitian.

In the present paper, the framework of [1] is extended in another natural way. Namely, we
consider the Blattner–Kostant–Sternberg (BKS) pairing between two different fibers of HQ, cor-
responding to two different quantizations of T ∗K (see, for instance, [12]). This is the restriction
of a Hermitian pairing between the corresponding prequantum Hilbert spaces, which we call the
prequantum BKS pairing, and which is defined by

〈
σs, σ

′
s′
〉BKS =

∫
T ∗K

f̄ f ′
√

Ωs ∧ Ωs′

bε
ε,

for σs = f
√

Ωs ∈HprQ
s and σ ′

s′ = f ′√Ωs′ ∈ HprQ
s′ . This prequantum BKS pairing defines a map

B
prQ
ss′ :HprQ

s′ →HprQ
s , (1.5)

whose infinitesimal version induces a (also natural) connection δ on HprQ. We prove in Theo-
rem 1 that δ coincides with the connection δprQ. Therefore, the quantum connection δQ will also
be induced from the BKS pairing on HQ. This result shows that the approach of the infinitesimal
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BKS pairing coincides with that of [1] considered in [2]. We note, however, that the prequantum
BKS pairing map does not coincide with the parallel transport associated to δprQ (see Theorem 2.)

In [6], Hall considered two polarizations for the quantization of T ∗K . Fixing the same inner
product as Hall on K, one of these polarizations, the Kähler one, corresponds to the case of
s = 1, and the other, the vertical real polarization, corresponds, in our framework, to letting s

go to 0. He proved that the BKS pairing map between the Hilbert spaces associated to these
two quantizations coincides (up to scale) with the Segal–Bargmann coherent state transform
(CST) for K introduced in [4], provided that one takes into account the half-form correction.
In Theorem 5, see Section 3, we elaborate on this relation, by showing that the (quantum) BKS
pairing map

B
Q
ss′ :HQ

s′ →HQ
s

obtained by restriction of (1.5) to the quantum bundle is, in fact, unitary. Moreover, and unlike
the prequantum case, we show in Theorem 6 that B

Q
ss′ coincides with the parallel transport of δQ

and corresponds also to the CST. In particular this implies that the BKS pairing maps satisfy

B
Q
ss′ ◦ B

Q
s′s′′ = B

Q
ss′′ .

The quantum bundle HQ can be naturally extended to a bundle over [0,∞) by including a
fiber over s = 0 corresponding to the space of vertically polarized sections. Continuity at s = 0
of the Hermitian structure on the extended quantum bundle motivates a particular choice of scale
of the inner product on the space of vertically polarized sections. We show that with this choice
the BKS pairing map B

Q
s0 becomes unitary. We note that this is in agreement with [6], where this

map was shown to be unitary up to scale but for a different choice of scale in the inner product.
We study this fact in Section 3.1.

Therefore, we have obtained a class of examples of quantization where the BKS pairing map,
between half-form corrected Hilbert spaces corresponding to two different Kähler quantizations,
is an isometric isomorphism. We also confirm in a different way the result of [2] that the parallel
transport of the quantum connection coincides with the one given by the CST. We stress that we
prove unitarity of the quantum BKS pairing map and not just unitarity up to scale. Therefore, for
the family of polarizations that we consider, cotangent bundles of compact Lie groups provide
new examples in which the half-form correction leads to the unitarity of the BKS pairing map
(which is the case for Fock spaces, see [12, Chapter 10]).

For other related works on the dependence of the quantization on the choice of polarization,
the unitarity of the BKS pairing map and the relation between vertical and Kähler polarizations,
see also [3,8–11].

2. The prequantum BKS pairing

Let K be a compact, connected Lie group of real dimension n, and let us fix once and for all the
Ad-invariant inner product (·,·) on its Lie algebra K, for which the corresponding Riemannian
measure is the normalized Haar measure on K . Let {Xi}n be left-invariant vector fields on
i=1
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K forming an orthonormal basis for K. The cotangent bundle T ∗K ∼= K × K is naturally a
symplectic manifold with a canonical symplectic 2-form defined by ω = −dθ , where

θ =
n∑

i=1

yiwi.

Here, (y1, . . . , yn) are the global coordinates on K corresponding to the basis {Xi}ni=1, and
{wi}ni=1 is the basis of left-invariant 1-forms on K dual to {Xi}ni=1, pulled-back to T ∗K by
the canonical projection. We let ε denote the Liouville volume form on T ∗K , given by

ε = 1

n!ω
n.

For each s > 0, let ψs :T ∗K → KC denote the diffeomorphism defined in (1.1) by ψs(x,Y ) =
xeisY , which induces on T ∗K a Kähler structure (ω,Js).

2.1. The prequantum bundle HprQ

We start by recalling from [2], some of the formulas that will be needed later on. Let X̃j ,
j = 1, . . . , n, be the vector fields on T ∗K generating the right action of K lifted to T ∗K and
given by

ψs∗X̃j = Xj,C,

where Xj,C denotes the extension of Xj from a left-invariant vector field on K ⊂ KC to the
corresponding left-invariant vector field on KC. Let {w̃j } be the basis of left invariant 1-forms
defined by w̃j (X̃k) = δ

j
k and w̃j (JsX̃k) = 0, for j, k = 1, . . . , n. For every s ∈ R+, a frame of

left invariant Js -holomorphic 1-forms is then{
η̃

j
s = w̃j − iJsw̃

j
}n

j=1,

where (Jsw)(X) = w(JsX), for a vector field X and a 1-form w on T ∗K .
Consider now the Js -canonical bundle κs → T ∗K whose sections are Js -holomorphic

n-forms with natural Hermitian structure defined as follows. For a Js -holomorphic n-form αs ,
let |αs | be the unique non-negative C∞ function on T ∗K such that αs ∧ αs = |αs |2bε, where
b = (2i)n(−1)n(n−1)/2. Following [6] we write

|αs |2 = ᾱs ∧ αs

bε
.

Given the inner product on K, a canonical trivializing Js -holomorphic section of κs is given
by

Ωs := η̃1
s ∧ · · · ∧ η̃n

s

and has norm [2]

|Ωs |2 = snη2(sY ), (2.1)
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where η(Y ) is the AdK -invariant function, defined for Y in a Cartan subalgebra by the following
product over a set R+ of positive roots of K,

η(Y ) =
∏

α∈R+

sinhα(Y )

α(Y )
. (2.2)

The following proposition generalizes (2.1).

Proposition 1. Let s, s′ > 0. We have

Ωs ∧ Ωs′ =
(

s + s′

2

)n

η2
(

s + s′

2
Y

)
bε = |Ω(s+s′)/2|2bε.

Proof. The result follows by direct computation. From [5] and the definition of ψs , we can write
Dψs :T T ∗K → T KC as

Dψs(x,Y ) =
[

cos ad sY 1−cos ad sY
adY

− sin ad sY sin ad sY
adY

]
,

using the (x,Y ) coordinate basis on T ∗K and the basis {Xj,C, JXj,C}j=1,...,n on KC, where J

is the complex structure on KC. From the explicit expressions for the forms η̃
j
s we then find, for

s, s′ > 0,

Ωs ∧ Ωs′ = ¯̃η1
s ∧ · · · ∧ ¯̃ηn

s ∧ η̃1
s′ ∧ · · · ∧ η̃n

s′ = det

[
M̄s N̄s

Ms′ Ns′

]
(−1)n(n−1)/2ε,

where the endomorphisms Ms and Ns are defined by

Ms = e−i ad sY , Ns = 1 − e−i ad sY

adY
.

From the left invariance of the forms, this determinant can be evaluated for Y in the Cartan
subalgebra which, after taking care of the contribution from the null space of adY , yields

Ωs ∧ Ωs′ =
(

s + s′

2

)n ∏
α∈R

(es′〈α,Y 〉 − e−s〈α,Y 〉)
(s + s′)〈α,Y 〉 bε,

where the product runs over the set R of all roots of K. The result then follows from defini-
tion (2.2). �

As in the introduction, let δs be the Js -holomorphic bundle of half-forms on T ∗K , with triv-
ializing section whose square is Ωs . Following [6], we will denote this section by

√
Ωs . Recall

that the prequantum Hilbert space HprQ is the completion of the space of C∞-sections of L ⊗ δs

of finite norm (1.4), where L denotes the trivial complex line bundle on T ∗K , and its Hermitian
structure 〈·,·〉prQ can be written as
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〈
σs, σ

′
s

〉prQ =
∫

T ∗K

f̄ f ′|Ωs |ε =
∫

T ∗K

f̄ f ′
√

Ωs ∧ Ωs

bε
ε,

for two smooth sections of L⊗ δs written as σs = f
√

Ωs , σ ′
s = f ′√Ωs , with f,f ′ ∈ C∞(T ∗K).

The smooth Hilbert bundle structure on HprQ and the prequantum connection δprQ are chosen
to be the ones compatible with the global trivializing map

L2(T ∗K,ε) × R+ →HprQ

(f, s) �→ f√|Ωs |
√

Ωs, (2.3)

and the trivial connection on L2(T ∗K,ε)×R+. Note that the section of δs given by
√

Ωs/
√|Ωs |

has unit norm, and its use would simplify some of the formulas. However, since this section is not
holomorphic, we use

√
Ωs as trivializing section of δs , which will be more suited for describing

the polarized sections in Section 3.

2.2. The prequantum BKS pairing and its associated connection on HprQ

The general procedure, as described for instance in [12], for defining a BKS pairing, suggests,
in our setting, the definition of a Hermitian pairing which we call the prequantum BKS pairing,
as follows.

Definition 1. Let σs = f
√

Ωs ∈ HprQ
s and σ ′

s′ = f ′√Ωs′ ∈ HprQ
s′ . Their BKS pairing is defined

by

〈
σs, σ

′
s′
〉BKS =

∫
T ∗K

f̄ f ′
√

Ωs ∧ Ωs′

bε
ε. (2.4)

Note that the integral above exists for σs, σ
′
s′ satisfying the conditions for sections of the

prequantum bundle in (1.4), which in this case read f
√|Ωs |, f ′√|Ωs′ | ∈ L2(T ∗K,ε). This can

be readily checked by using Proposition 1 to write (2.4) as

〈
σs, σ

′
s′
〉BKS =

∫
T ∗K

f̄ f ′|Ω(s+s′)/2|ε, (2.5)

and using the definition of η(Y ) in (2.2) to prove that the smooth function

φ(s, s′, Y ) := |Ω(s+s′)/2|2
|Ωs ||Ωs′ | =

(
s + s′

2
√

ss′

)n η2
(

s+s′
2 Y

)
η(sY )η(s′Y)

(2.6)

is real, positive and bounded, for fixed s, s′.
We remark that, in the case when s′ and s coincide, the prequantum BKS pairing is equal to

the Hermitian structure 〈·,·〉prQ on HprQ
s . Also, we note that the pairing (2.4) is nondegenerate.
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As mentioned above, δprQ was defined as the Hermitian connection for which sections HprQ

of the form σs = f√|Ωs |
√

Ωs , with f ∈ L2(T ∗K,ε), are parallel. It is also natural to consider a

connection, δ, on HprQ, induced from the infinitesimal prequantum BKS pairing by the formula

〈
σs, δ∂/∂sσ

′
s

〉prQ = ∂

∂s′

∣∣∣∣
s′=s

〈
σs, σ

′
s′
〉BKS

. (2.7)

Let us prove that these two connections are the same.

Theorem 1. The connections δprQ and δ on HprQ are equal.

Proof. Let σ be a smooth section of HprQ, such that σs = f√|Ωs |
√

Ωs ∈ HprQ
s , for f ∈

L2(T ∗K,ε), s > 0. Since sections of this type can be used to form a global moving frame for
HprQ, to prove the theorem, it suffices to show that σ is parallel with respect to the connection δ.
Let τs = g

√
Ωs ∈HprQ

s . We have from (2.5) and (2.6),

〈τs, δ∂/∂sσs〉prQ = ∂

∂s′

∣∣∣∣
s′=s

〈τs, σs′ 〉BKS =
∫

T ∗K

ḡf |Ωs |1/2
(

∂
√

φ

∂s′

)
s′=s

ε.

From a straightforward computation using (2.6) we obtain

∂φ(s, s′, Y )

∂s′

∣∣∣∣
s′=s

= 0,

which implies that δ∂/∂sσs = 0, as required. �
One immediate consequence of this theorem is that δprQ induced from the infinitesimal pre-

quantum BKS pairing is unitary. We note that the calculation in the proof of Theorem 1 relies
just on the expression for Ωs ∧ Ωs′ in Proposition 1. While in this case this is related to the fact
that the continuous family of complex polarizations is generated by the flux of a particular vector
field [2], it is not clear to us whether this holds more generally.

In the next section, we will show that the restriction of the prequantum BKS pairing to HQ

yields the (unitary) parallel transport associated to δQ. This, however, does not hold for the pre-
quantum bundle. In fact, let us define the prequantum BKS pairing map B

prQ
ss′ :HprQ

s′ → HprQ
s

by 〈
σs, σ

′
s′
〉BKS = 〈

σs,B
prQ
ss′ σ ′

s′
〉prQ

. (2.8)

Theorem 2. The prequantum BKS pairing map (2.8), B
prQ
ss′ : HprQ

s′ → HprQ
s is given by

B
prQ
ss′

(
f ′

√
Ωs′√|Ωs′ |

)
= √

φf ′
√

Ωs√|Ωs | ,

for f ′√Ωs′/
√|Ωs′ | ∈ HprQ

s′ , where φ is given by (2.6). Consequently, B
prQ
ss′ does not coincide

with the parallel transport of the connection δprQ.
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Proof. Let us write

B
prQ
ss′

(
f ′

√
Ωs′√|Ωs′ |

)
= g

√
Ωs√|Ωs | ,

for some vector g
√

Ωs√|Ωs | ∈ HprQ
s . Then, using (2.5) we have for any f

√
Ωs ∈ HprQ

s , that

∫
T ∗K

f̄ f ′ |Ω(s+s′)/2|√|Ωs′ | ε =
〈
f

√
Ωs,B

prQ
ss′

(
f ′

√
Ωs′√|Ωs′ |

)〉prQ

=
∫

T ∗K

f̄ g
√|Ωs |ε.

Since f ∈ L2(T ∗K, |Ωs |1/2ε) is arbitrary, we obtain g = √
φf ′, as wanted.

On the other hand, the parallel transport Pss′ :HprQ
s′ → HprQ

s of δprQ is determined by (2.3)
giving

Pss′
(

f ′
√

Ωs′√|Ωs′ |
)

= f ′
√

Ωs√|Ωs | .

Clearly, this is not equal to B
prQ
ss′ since φ is not identically equal to 1. �

It follows from Theorem 2 that B
prQ
ss′ is not unitary. We will see, however, that its restriction

to the quantum Hilbert bundle is unitary.

3. Unitarity of the quantum BKS pairing map and the CST

Consider the quantum Hilbert bundle HQ → R+, whose fiber over each s > 0 consists of
Js -polarized sections of L ⊗ δs . Recall from [2] that HQ

s is given by

HQ
s := {

σs = Fe
− s|Y |2

2h̄0
√

Ωs, F is Js-holomorphic and ‖σs‖Q
s < ∞}

,

where the norm refers to the Hermitian structure on HQ as a sub-bundle of HprQ. The pairing
(2.4) between fibers of HprQ restricted to polarized sections defines the BKS pairing between
fibers of HQ, for which we use the same notation.

Definition 2. For s, s′ > 0, write

σs = Fe
− s|Y |2

2h̄0
√

Ωs ∈HQ
s and σ ′

s′ = F ′e− s′ |Y |2
2h̄0

√
Ωs′ ∈HQ

s′ .

Their (quantum) BKS pairing is given by

〈
σs, σ

′
s′
〉BKS =

∫
T ∗K

F̄F ′e− (s+s′)
2h̄0

|Y |2
√

Ωs ∧ Ωs′

bε
ε. (3.1)
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As in (2.7), the BKS pairing induces a connection δBKS on HQ defined by the same formula

〈
σs, δ

BKS
∂/∂sσ

′
s

〉Q = ∂

∂s′

∣∣∣∣
s′=s

〈
σs, σ

′
s′
〉BKS

for σs ∈ HQ
s and σ ′

s′ ∈ HQ
s′ . Recall that, along the lines of [1], the quantum bundle is equipped

with a quantum connection δQ, obtained from the orthogonal projection P :HprQ → HQ. More
precisely, we have δQ = P ◦ δprQ, which implies immediately

Theorem 3. The connections δBKS and δQ on HQ coincide.

Proof. This is an obvious corollary of Theorem 1, since the pairing on HQ is obtained by re-
striction from HprQ. �

The BKS pairing formalism in this case provides results consistent with the approach of [1].
We will establish below the fact that the BKS pairing map for HQ is unitary and coincides with
the parallel transport of δQ.

3.1. The quantum BKS pairing between Kähler polarizations and the vertical polarization

In [2], we showed that the parallel transport associated to δQ corresponds to Hall’s CST, so
that, in fact, δQ-parallel sections of HQ satisfy a heat equation on KC. This provides a better
understanding of some of the results of [6].

In [6], Hall has also shown that, up to a constant, the CST corresponds to the quantum BKS
pairing map between the vertical real polarized and the Kähler polarized quantum Hilbert spaces.
In this section, we establish in Theorem 4 an important identity for the quantum BKS pairing
between Kähler polarizations. This identity will help us understand better the s → 0 limit and,
in Section 3.3, the relation between the quantum BKS pairing and the CST.

Let now � be the invariant Laplacian on K and C denote the analytic continuation from K

to KC. We recall from [4], that the CST is a unitary isomorphism of Hilbert spaces defined by

Ch̄ :L2(K,dx) → HL2(KC, dνh̄)

f �→ Ch̄(f ) = C ◦ e
h̄
2 �f,

where dx is the normalized Haar measure on K , dνh̄(g) = νh̄(g) dg is the K-averaged heat
kernel measure of [4], and dg is the Haar measure on KC. Recall from [5] the explicit form of
the K-averaged heat kernel measure for h̄ = sh̄0

νh̄(g) = (
ass

n
2 η(Y )

)−1
e
− |Y |2

h̄ , (3.2)

where

as = (πh̄0)
n
2 e|ρ|2h̄0s , (3.3)

and ρ is the Weyl vector given by half the sum of the positive roots of K. Using the relation
of parallel sections of HQ with holomorphic functions on KC we will now obtain an explicit
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formula for the BKS pairing as an integral over KC. As in Definition 2 of the quantum BKS
pairing, let

σs = Fe
− s|Y |2

2h̄0
√

Ωs ∈HQ
s and σ ′

s′ = F ′e− s′|Y |2
2h̄0

√
Ωs′ ∈ HQ

s′ , s, s′ > 0, (3.4)

where F = F̂ ◦ ψs and F ′ = F̂ ′ ◦ ψs′ are, respectively, Js -holomorphic and Js′ -holomorphic
functions on T ∗K , with F̂ , F̂ ′ holomorphic functions on KC.

Proposition 2. The BKS pairing on HQ is given by

〈
σs, σ

′
s′
〉BKS = a(s+s′)/2

∫
KC

F̂ (gZ)F̂ ′(gZ−1)dν
h̄

′′ (g),

where g = xeiY , Z = e
i s−s′
s+s′ Y and h̄

′′ = s+s′
2 h̄0 .

Proof. From Definition 1 and Proposition 1 we have

〈
σs, σ

′
s′
〉BKS =

∫
T ∗K

F̂ (xeisY )F̂ ′(xeis′Y )
e
− (s+s′)

2h̄0
|Y |2

(
s + s′

2

) n
2

η

(
s + s′

2
Y

)
ε. (3.5)

We recall from [2,5] that ψ∗
s dg = |Ωs |2ε = snη2(sY )ε. Using (3.2) and (3.3), the formula then

follows from a change of variables of integration, from (x,Y ) to g = xeiY ′
where Y ′ = s+s′

2 Y ,
and where at the end we renamed Y ′ as Y again. �

The computation of the BKS pairing, and also its relation to the CST, is made very explicit
with the following result.

Theorem 4. Let σs ∈ HQ
s and σ ′

s′ ∈HQ
s′ be given by

σs = (Csh̄0f ) ◦ ψse
− s|Y |2

2h̄0
√

Ωs,

σ ′
s′ = (Cs′h̄0f

′) ◦ ψs′e
− s′ |Y |2

2h̄0
√

Ωs′ ,

where s, s′ > 0 and f,f ′ ∈ L2(K,dx). We have

〈
σs, σ

′
s′
〉BKS = a(s+s′)/2〈f,f ′〉L2(K,dx).

We remark that, from Theorem 3, one knows that the connection δQ is also the connection
induced from the BKS pairing between infinitesimally close fibers of HQ. Note, however, that of
course one can give many different explicit Hermitian pairings between fibers of HQ, such that
they all induce the same connection δQ on HQ. Theorem 4 implies that, among those, the pair-
ing map that corresponds to the CST is the BKS pairing map naturally defined from geometric
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quantization. This is the map B
Q
ss′ :HQ

s′ → HQ
s obtained by restriction of the prequantum BKS

map (2.8), 〈
σs, σ

′
s′
〉BKS = 〈

σs,B
Q
ss′σ ′

s′
〉Q

, (3.6)

for σs ∈ HQ
s and σ ′

s′ ∈HQ
s′ .

Postponing the proof of Theorem 4 to the end of this section, let us now address the problem
of taking the s′ → 0 limit in the BKS pairing, which corresponds to degenerating one of the
Kähler polarizations into the vertical polarization.

From [2] we obtain, for σs as in (3.4),

σs ∈ HQ
s ⇔ F̂ ∈ HL2(KC, dνh̄)

with h̄ = sh̄0. Let us use the CST to define a family of continuous sections of HQ labelled by
vectors f ∈ L2(K,dx),

σs = (Csh̄0f ) ◦ ψse
− s|Y |2

2h̄0
√

Ωs. (3.7)

Due to the fact that the coherent state transform is an isomorphism, the values of the sections
σ in (3.7) span, for every s > 0, the whole fiber HQ

s . This defines a global trivialization of
the vector bundle HQ, which is particularly suitable for studying the s → 0 limit. Let Ω0 =
lims→0 Ωs = dx, so that

√
Ω0 = √

dx, and let HQ
0 be the space

HQ
0 = {

f
√

Ω0, f ∈ L2(K,dx)
}
.

We consider the extension of the bundle HQ → R+ to a bundle

ĤQ → [0,∞),

with a given trivialization

L2(K,dx) × [0,∞) → ĤQ

(f, s) �→ (Csh̄0f ) ◦ ψse
− s|Y |2

2h̄0
√

Ωs, s > 0,

(f,0) �→ f
√

Ω0. (3.8)

Sections (3.7) are then extended by continuity to s = 0 by setting

σ0 = f
√

Ω0. (3.9)

The BKS pairing between a Kähler polarized section σs ∈ HQ
s as in (3.7) and a vertically

polarized section σ ′
0 of the form (3.9), with fixed f ′ ∈ L2(K,dx), is then defined by

〈
σs, σ

′
0

〉BKS =
∫
∗

(Csh̄0f )
(
xeisY

)
f ′(x)e

− s
2h̄0

|Y |2
(

s

2

) n
2

η

(
s

2
Y

)
ε, (3.10)
T K
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if the integral is absolutely convergent, which corresponds formally to taking the s′ → 0 limit
inside the integral in (3.5).

Remark 1. In [6], it is shown that (after a trivial rescaling of the variable Y to sY ) this integral
defines on dense subspaces a Hermitian pairing between the Hilbert space of Kähler polarized
sections and the Hilbert space of vertically polarized sections. Setting s = 1 in (3.10) and taking
care of the different normalizations, we obtain the same expression as in [6, Theorem 2.6] for
this pairing. (In our definition of the pairing there is an extra factor of 2−n/2 as compared to [6].)

Using our notation and normalization conventions, Hall’s result implies that for any s > 0,

〈
σs, σ

′
0

〉BKS = as/2〈f,f ′〉L2(K,dx). (3.11)

Remark 2. Notice that, even though the integral expression (3.10) can only be defined on dense
subspaces, from (3.11) it follows that the pairing can be extended by continuity to the respective
completions [6]. This is in contrast to the pairing between two Kähler polarized spaces, where
the integral defining the BKS pairing (2.4) is absolutely convergent.

We recall from [6] that the pairing (3.10) does coincide with the general prescription for the
geometric quantization BKS pairing between a Kähler polarized Hilbert space and a vertically
polarized one. (See [12, Section 10.4].) This can also be easily deduced from (3.1) and Proposi-
tion 1.

Corollary 1. Upon identifying HQ
s′ with L2(K,dx) as in (3.8), the BKS pairing (3.1) between

polarized sections has a well-defined (weak) s′ → 0 limit. This limit coincides with (3.10).

Proof. This follows immediately from Theorem 4 by taking the limit s′ → 0, with fixed f,f ′ ∈
L2(K,dx), which gives lims′→0〈σs, σ

′
s′ 〉BKS = as/2〈f,f ′〉L2(K,dx) as in (3.11). �

The associated pairing map between the Hilbert space of vertically polarized sections and the
Hilbert space of Kähler polarized sections (say for s = 1) is unitary only up to scale as shown by
Hall.

To further clarify this issue, let us address the choice of inner product for vertically polarized
sections which will be important for the unitarity of the BKS pairing maps B

Q
s0. The inner prod-

uct, 〈σ0, σ
′
0〉Q, that is usually considered for vertically polarized sections of the form (3.9) reads∫

K
f f ′ dx (see, e.g., [12]). However, in order to have continuity of the Hermitian structure on

ĤQ at s = 0, we will define instead the inner product as

〈
σ0, σ

′
0

〉Q :=
∫
K

f̄ f ′(πh̄0)
n/2 dx. (3.12)

We then have,

Corollary 2. With the definition of the inner product (3.12), the Hermitian structure on the bundle
ĤQ is continuous at s = 0.
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Proof. The result follows from Theorem 4 with s = s′ and from (3.3). �
The reason for the appearance of the coefficient (πh̄0)

n/2 in (3.12) is related to the fact that in
the inner product of the holomorphic sections there is a factor associated to the contribution of the
integration along K, which does not tend to 1 when s → 0. Corollary 2 is an indication that, for
real polarizations which correspond to boundary points of spaces of holomorphic polarizations,
and perhaps more generally, the inner product should be rescaled as in (3.12). As we will see,
this choice, motivated by the continuity of the Hermitian structure, will also lead to the unitarity
of the BKS pairing map, B

Q
s0 (rather than just unitarity up to scale).

For the proof of Theorem 4, we will need two auxiliary lemmas which prove analogues of
[5, Eq. (4)]. Let ρh̄ denote the analytic continuation of the heat kernel on K to KC, as in [4].
Moreover, let ∗ :KC → KC denote the unique anti-holomorphic anti-automorphism of KC which
extends the map x → x−1 on K (see also [7]). We now show that the Dirac delta distribution
on K , with respect to the Haar measure dx, can be informally written as

δ(x) =
∫

KC

ρ2h̄

(
x−1g∗g

)
dνh̄(g).

More precisely, let C(K) be the space of continuous functions on K with the supremum norm and
let F denote the dense subspace of finite linear combinations of matrix elements of irreducible
representations of K . Then, we have

Lemma 1. Let {fn}n∈N be a sequence in F converging to f ∈ C(K). Then

lim
n→∞

∫
KC

(∫
K

ρ2h̄

(
x−1g∗g

)
fn(x) dx

)
dνh̄(g) = f (e), (3.13)

where e ∈ K is the identity.

Proof. Since evaluation at the identity is a continuous linear functional on C(K), it suffices to
show that for any matrix element Rij of any irreducible representation R of K , we have

∫
KC

(∫
K

ρ2h̄

(
x−1g∗g

)
Rij (x) dx

)
dνh̄(g) = Rij (e) = δij . (3.14)

To show this, recall that ρh̄ = ∑
R dRe− h̄

2 cRχR , where dR is the dimension of R, χR denotes
its character and cR is the negative of the eigenvalue of � corresponding to the eigenvector χR .

Now, recall Weyl’s classical orthogonality relations∫
K

Rij (x)R′
lk(x) dx = δRR′

dR

δjkδil . (3.15)

From the unitarity of the CST of [4], we then obtain the following identities,
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e− h̄
2 (cR+cR′ )

∫
KC

Rij (g)R′
lk(g) dνh̄(g) = δRR′

dR

δjkδil, (3.16)

where we have used the fact that Ch̄Rij = e− h̄
2 cRRij . (We are denoting by the same symbol a

function on K and its analytic continuation to KC.)
Upon substituting the expression for ρ2h̄ in (3.14), using χR(g) = ∑dR

i=1 Rii(g) and the or-
thogonality relations (3.15), (3.14) becomes

e−h̄cR

dR∑
k=1

∫
KC

Rki(g)Rkj (g) dνh̄(g) = Rij (e).

Using (3.16), we obtain the result. �
The Dirac delta distribution can also be written informally in a different way as

δ
(
x−1

1 x2
) =

∫
KC

ρh̄

(
geitY x−1

1

)
ρh̄′

(
ge−itY x−1

2

)
dνh̄′′(g),

which should be interpreted as above. More precisely,

Lemma 2. Let {fn}n∈N be a sequence in F converging to f ∈ C(K). Then,

lim
n→∞

∫
KC

(∫
K

ρh̄

(
geitY x−1

1

)
ρh̄′

(
ge−itY x−1

2

)
fn(x1) dx1

)
dνh̄′′(g) = f (x2), (3.17)

for any x2 ∈ K , h̄ + h̄′ = 2h̄′′, and any real number t .

Proof. To prove the lemma, we substitute the explicit expressions for the heat kernels in (3.17)
and use the fact that, with g = xeiY ∈ KC, we have

χR

(
xei(1+t)Y x−1

1

) = χR

(
x1e

i(1+t)Y x−1).
Using again ρh̄ = ∑

R dRe− h̄
2 cRχR and rewriting the characters as a sum of products of ma-

trix elements, we express the integral as an integral on T ∗K . One then finds, upon integration
along K , and use of the orthogonality relations (3.15), that the t dependence in (3.17) is apparent
and cancels out. Finally, from the fact that h̄ + h̄′ = 2h̄′′ and using

∫
K

dx = 1, one rewrites the
expression as an integral on KC so that Eq. (3.17) becomes

lim
n→∞

∫
KC

(∫
K

ρ2h̄

(
x−1

2 x1g
∗g

)
fn(x1) dx1

)
dνh̄(g) = f (x2),

which, by (3.13), proves the lemma. �
We now prove Theorem 4.
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Proof of Theorem 4. Let σs, σ
′
s′ be as described in the theorem. From Proposition 2, we have

〈
σs, σ

′
s′
〉BKS = a(s+s′)/2

∫
KC

F̂ (gZ)F̂ ′(gZ−1)dνh̄′′(g), (3.18)

where Z = e
i s−s′
s+s′ Y , h̄

′′ = s+s′
2 h̄0 and where F̂ = Ch̄f and F̂ ′ = Ch̄′f ′, with h̄ = sh̄0 and h̄′ =

s′h̄0. By definition,

F̂ (gZ) =
∫
K

ρh̄

(
gZx−1

1

)
f (x1) dx1 (3.19)

and

F̂ ′(gZ−1) =
∫
K

ρh̄′
(
gZ−1x−1

2

)
f ′(x2) dx2. (3.20)

Substituting (3.19) and (3.20) in (3.18), we see that to prove the result for f,f ′ ∈ F , it is enough
to show that ∫

KC

(∫
K

ρh̄

(
gZx−1

1

)
ρh̄′

(
gZ−1x−1

2

)
f (x1) dx1

)
dνh̄(g) = f (x2),

which follows easily from Lemma 2. To prove the result for all f,f ′ ∈ L2(K,dx), we note
that from (2.5) it follows that the prequantum BKS pairing is continuous on HprQ

s × HprQ
s′ and,

therefore, the quantum BKS pairing on HQ
s ×HQ

s′ is also continuous. The theorem then follows
from the fact that F is dense in L2(K,dx), which implies, from the isomorphisms given by (3.8),
that the space of sections σs of the form above with f ∈F , is also dense in HQ

s for all s > 0. �
3.2. Unitarity of the quantum BKS pairing map

In this section, we prove the unitarity of the quantum BKS pairing map (3.6) between quantum
Hilbert spaces HQ

s and HQ
s′ using a direct calculation (the unitarity of these maps also follows

from Theorem 4).

Theorem 5. The map B
Q
ss′ :HQ

s′ → HQ
s is unitary for s, s′ � 0.

In order to prove Theorem 5 we establish an auxiliary lemma. Let

σR
s ij = Rij

(
xeisY

)
e
− s|Y |2

2h̄0
√

Ωs,

where Rij denotes a matrix element of an irreducible representation R of K , of dimension dR ,
and i, j = 1, . . . , dR .
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Lemma 3. For any s, s′ � 0, we have

B
Q
ss′

(
σR

s′ ij
) = e− s−s′

2 h̄0(cR+|ρ|2)σR
sij .

Proof. The lemma is an immediate consequence of the equality

〈
σR

sij ,B
Q
ss′σR′

s′i′j ′
〉Q = 〈

σR
s ij , σ

R′
s′ i′j ′

〉BKS

= δRR′δii′δjj ′

dR

(πh̄0)
n
2 e

s+s′
2 h̄0(cR+|ρ|2). (3.21)

To establish it, recall that ε = dx dY . For s = s′ = 0 the equality is trivial. Let either s or s′ be
positive. We then obtain

〈
σR

sij , σ
R′
s′i′j ′

〉BKS =
∫

K×K

dR∑
k=1

Rik(x)Rkj

(
eisY

) dR′∑
k′=1

R′
i′k′(x)R′

k′j ′
(
eis′Y )

× e
− (s+s′)

2h̄0
|Y |2

(
s + s′

2

) n
2

η

(
s + s′

2
Y

)
dx dY

= δRR′δii′
1

dR

∫
K

Rjj ′
(
ei(s+s′)Y )

e
− s+s′

2h̄0
|Y |2

(
s + s′

2

) n
2

η

(
s + s′

2
Y

)
dY.

From (3.16) we obtain (3.21) and the lemma. �
Proof of Theorem 5. The sections {σR

s′ ij }, with R running over all irreducible representations of

K and i, j = 1, . . . , dR , form an orthogonal basis of HQ
s′ . Therefore, using Lemma 3, the unitarity

of the map B
Q
ss′ is equivalent to the condition

〈BQ
ss′σR

s′ij ,B
Q
ss′σR

s′ij 〉Q

〈σR
s′ij , σ

R
s′ij 〉Q

= (〈σR
s ij ,B

Q
ss′σR

s′ ij 〉Q)2

〈σR
sij , σ

R
sij 〉Q〈σR

s′ij , σ
R
s′ij 〉Q

= 1.

This follows directly from (3.21). �
Note that the unitarity of B

Q
s0 follows immediately from [6] if one chooses the inner product

for the real polarization as in (3.12).

3.3. Relation between the quantum BKS pairing map and the CST

In [2], it was shown that the parallel transport between two fibers of HQ, HQ
s and HQ

s′ , for

the quantum connection δQ corresponds to Ch̄ ◦ C−1
h̄′ , where h̄ = sh̄0 and h̄′ = s′h̄0. More ex-

plicitly, we defined the CST bundle HH → R+ with HH
s = HL2(KC, dνh̄). The CST bundle

comes equipped with a connection δH for which the parallel transport Uhh′ :HH′ → HH
s is given
¯ ¯ s
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by the CST as Uh̄h̄′ = Ch̄ ◦ C−1
h̄′ . Moreover, there exists a natural unitary bundle isomorphism

S :HH →HQ such that δQ = S ◦ δH ◦ S−1. At the fiber over s > 0 this is given by

Ss(F̂ ) = F̂ ◦ ψs

e
− s|Y |2

2h̄0√
as

√
Ωs, (3.22)

for F̂ ∈HL2(KC, dνh̄).
As a corollary of the theorems above, we obtain the following result, which adds to [2, Theo-

rem 4] the explanation of the role of the BKS pairing, from the point of view of the CST.

Theorem 6. For s, s′ > 0, the BKS pairing map B
Q
ss′ :HQ

s′ →HQ
s is given by

B
Q
ss′ = Ss ◦ Ch̄ ◦ C−1

h̄′ ◦ S−1
s′ = Ss ◦ Uh̄h̄′ ◦ S−1

s′ ,

where h̄ = sh̄0 and h̄′ = s′h̄0. This pairing coincides with the parallel transport of δQ.

Proof. The result follows from direct computation and from Theorem 4 and formula (3.22),
where we use the unitarity of Ch̄ and also a(s+s′)/2 = √

asas′ . Since δQ ◦S = S ◦ δH, the theorem
states that the parallel transport of the quantum connection is given by the BKS pairing map
which is clearly unitary. �

This is in agreement with the results of [2] where, however, the quantum connection was
defined in a different way by orthogonal projection. Recall also that sections of HQ which are
horizontal with respect to δQ satisfy a heat equation on KC. The corresponding explicit form for
the connection δQ can also be found directly from Theorem 6, using [2, Lemma 1].

As a final remark, note that in the case when the group K is abelian, all the formulas in the
paper remain valid upon setting ρ = 0 and η ≡ 1.
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