Large direct $C P$ violation in $B^{0} \rightarrow \pi^{+} \pi^{-}$and an enhanced branching ratio for $B^{0} \rightarrow \pi^{0} \pi^{0}$

S. Barshay ${ }^{\text {a }}$, L.M. Sehgal ${ }^{\text {b }}$, J. van Leusen ${ }^{\text {b }}$
${ }^{\text {a }}$ III. Physikalisches Institut, RWTH Aachen, Germany
${ }^{\mathrm{b}}$ Institut für Theoretische Physik, RWTH Aachen, D-52056 Aachen, Germany
Received 10 March 2004; accepted 4 April 2004

Available online 11 May 2004
Editor: H. Georgi

Abstract

Recent measurements of $B^{0} \rightarrow \pi \pi$ decays reveal two features that are in conflict with conventional calculations: the channel $B^{0}\left(\bar{B}^{0}\right) \rightarrow \pi^{+} \pi^{-}$shows a large direct $C P$-violating asymmetry, and the channel $B^{0}\left(\bar{B}^{0}\right) \rightarrow \pi^{0} \pi^{0}$ has an unexpectedly high branching ratio. We show that both features can be understood in terms of strong-interaction mixing of $\pi \pi$ and $D \bar{D}$ channels in the isospin-zero state, an effect that is important because of the large experimentally observed ratio $\Gamma\left(B^{0} / \bar{B}^{0} \rightarrow\right.$ $\left.D^{+} D^{-}\right) / \Gamma\left(B^{0} / \bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right) \approx 50$. Our dynamical model correlates the branching ratios and the $C P$-violating parameters \mathcal{C} and \mathcal{S}, for the decays $B^{0}\left(\bar{B}^{0}\right) \rightarrow \pi^{+} \pi^{-}, B^{0}\left(\bar{B}^{0}\right) \rightarrow \pi^{0} \pi^{0}, B^{0}\left(\bar{B}^{0}\right) \rightarrow D^{+} D^{-}$and $B^{0}\left(\bar{B}^{0}\right) \rightarrow D^{0} \bar{D}^{0}$.

© 2004 Elsevier B.V. Open access under CC BY license.

The Belle Collaboration has presented new data [1] which support their original evidence [2] for large direct $C P$ violation in the decays $B^{0}\left(\bar{B}^{0}\right) \rightarrow \pi^{+} \pi^{-}$, the asymmetry parameter $\mathcal{C}(=-\mathcal{A})$ being measured to be $\mathcal{C}=-0.58 \pm 0.15 \pm 0.07$. In a related development, both the BaBar [3] and Belle [4] Collaborations have reported a sizable branching ratio for the decay $B^{0}\left(\bar{B}^{0}\right) \rightarrow \pi^{0} \pi^{0}$, with an average value $\operatorname{Br}\left(B^{0} / \bar{B}^{0} \rightarrow \pi^{0} \pi^{0}\right)=(1.9 \pm 0.6) \times 10^{-6}$. Both of these observations are unexpectedly large from the standpoint of conventional calculations [5-7] based on a short-distance, effective weak Hamiltonian and the assumption of factorization of products of currents in

[^0]matrix elements for physical hadron states. In this paper, we carry out a calculation based upon the idea [8] of final-state interactions involving the mixing of $\pi \pi$ and $D \bar{D}$ channels. This dynamics provides a natural, correlated explanation of the new experimental facts, and leads to several further predictions.

To fix notation, we write the three $\bar{B} \rightarrow \pi \pi$ amplitudes as

$$
\begin{align*}
& A\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right)=N\left(\lambda_{u} a_{1}+\lambda_{c} a_{p}\right) \\
& A\left(\bar{B}^{0} \rightarrow \pi^{0} \pi^{0}\right)=N\left(\lambda_{u} a_{2}-\lambda_{c} a_{p}\right) / \sqrt{2} \\
& A\left(B^{-} \rightarrow \pi^{-} \pi^{0}\right)=N \lambda_{u}\left(a_{1}+a_{2}\right) / \sqrt{2} \tag{1}
\end{align*}
$$

Here a_{1}, a_{2}, a_{p} are, in general, complex numbers and N is a positive normalization factor. The parameters λ_{u} and λ_{c} are CKM factors, defined as $\lambda_{u}=V_{u b} V_{u d}^{*}$,
$\lambda_{c}=V_{c b} V_{c d}^{*}$, with magnitudes $\left|\lambda_{u}\right| \cong 3.6 \times 10^{-3}$, $\left|\lambda_{c}\right| \cong 8.8 \times 10^{-3}$ and phases given by $\lambda_{u}=\left|\lambda_{u}\right| e^{-i \gamma}$, $\lambda_{c}=-\left|\lambda_{c}\right|$, with $\gamma \approx 60^{\circ}$ [9]. The amplitudes in Eq. (1) are defined so that their absolute square gives the branching ratio, and they satisfy the isospin relation [10]

$$
\begin{align*}
& \frac{1}{\sqrt{2}} A\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right)+A\left(\bar{B}^{0} \rightarrow \pi^{0} \pi^{0}\right) \\
& \quad=A\left(B^{-} \rightarrow \pi^{-} \pi^{0}\right) \tag{2}
\end{align*}
$$

From the results of the models discussed in [5-7], the parameters appearing in Eq. (1) have the following rough representation. The constants a_{1}, a_{2}, a_{p} are approximately real (to within a few degrees), with magnitudes $a_{1} \approx 1.0, a_{2} \approx 0.2, a_{p} \approx-0.1$. The normalization factor is $N \approx 0.75$; it is here fixed by the empirical branching ratio for $B^{-} \rightarrow \pi^{-} \pi^{0}$. The fact that the parameters a_{1}, a_{2}, a_{p} are nearly real implies immediately that there is very little direct $C P$-violating asymmetry between $\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}$and $B^{0} \rightarrow \pi^{+} \pi^{-}$, as well as in the channels $\pi^{0} \pi^{0}$ and $\pi^{ \pm} \pi^{0}$. Furthermore, the absolute branching ratios following from the above parametrization are as follows (with experimental values given in parentheses):
$\operatorname{Br}\left(B^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}\right)=5.3 \times 10^{-6}$
$\left[\exp .(5.3 \pm 0.8) \times 10^{-6}\right]$,
$\operatorname{Br}\left(B^{0} / \bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right)=9.3 \times 10^{-6}$
[exp. $\left.(4.6 \pm 0.4) \times 10^{-6}\right]$,
$\operatorname{Br}\left(B^{0} / \bar{B}^{0} \rightarrow \pi^{0} \pi^{0}\right)=0.2 \times 10^{-6}$
$\left[\exp .(1.9 \pm 0.6) \times 10^{-6}\right]$.
The most striking feature is the strong enhancement of the $\pi^{0} \pi^{0}$ rate compared to this model expectation.

It was pointed out in Ref. [8] that the $C P$-violating asymmetries and branching ratios in the $B \rightarrow \pi \pi$ system would be strongly affected by final-state interactions involving the mixing of the $\pi \pi$ and $D \bar{D}$ channels in the isospin $I=0$ state, as a consequence of the large ratio of partial decay widths $\Gamma\left(B^{0} \rightarrow\right.$ $\left.D^{+} D^{-}\right) / \Gamma\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right) \approx \frac{3}{14}\left|V_{c b}\right|^{2} /\left|V_{u b}\right|^{2} \approx 26$ expected in the Bauer-Stech-Wirbel model [5]. A large ratio has now been confirmed by the Belle measurement [11] of the branching ratio $\operatorname{Br}\left(B^{0} / \bar{B}^{0} \rightarrow\right.$ $\left.D^{+} D^{-}\right)=2.5 \times 10^{-4}$, which is about 50 times larger
than $\operatorname{Br}\left(B^{0} / \bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right)$. This fact gives new urgency to an investigation of $\pi \pi \leftrightarrow D \bar{D}$ mixing as a way of resolving the puzzling observations in $B \rightarrow$ $\pi \pi$ decays.

The $\pi \pi$ system exists in the states $I=0$ or $I=2$, while the $D \bar{D}$ system has $I=0$ or $I=1$. Mixing can occur between the isospin-zero states

$$
\begin{align*}
& |\pi \pi\rangle_{0}=\sqrt{\frac{2}{3}}\left|\pi^{+} \pi^{-}\right\rangle-\sqrt{\frac{1}{3}}\left|\pi^{0} \pi^{0}\right\rangle \\
& |D \bar{D}\rangle_{0}=\sqrt{\frac{1}{2}}\left[\left|D^{+} D^{-}\right\rangle+\left|D^{0} \bar{D}^{0}\right\rangle\right] \tag{4}
\end{align*}
$$

By contrast, the $I=2 \pi \pi$ state and the $I=1 D \bar{D}$ state, given by

$$
\begin{align*}
& |\pi \pi\rangle_{2}=\sqrt{\frac{1}{3}}\left|\pi^{+} \pi^{-}\right\rangle+\sqrt{\frac{2}{3}}\left|\pi^{0} \pi^{0}\right\rangle, \\
& |D \bar{D}\rangle_{1}=\sqrt{\frac{1}{2}}\left[\left|D^{+} D^{-}\right\rangle-\left|D^{0} \bar{D}^{0}\right\rangle\right] \tag{5}
\end{align*}
$$

are unaffected by mixing. The physical decay amplitudes of \bar{B}^{0} to the above four states are
$A_{\pi \pi}^{(0)}=\sqrt{\frac{2}{3}} A_{\pi^{+} \pi^{-}}-\sqrt{\frac{1}{3}} A_{\pi^{0} \pi^{0}}$,
$A_{\pi \pi}^{(2)}=\sqrt{\frac{1}{3}} A_{\pi^{+} \pi^{-}}+\sqrt{\frac{2}{3}} A_{\pi^{0} \pi^{0}}$,
$A_{D \bar{D}}^{(0)}=\sqrt{\frac{1}{2}}\left[A_{D^{+} D^{-}}+A_{D^{0} \bar{D}^{0}}\right]$,
$A_{D \bar{D}}^{(1)}=\sqrt{\frac{1}{2}}\left[A_{D^{+} D^{-}}-A_{D^{0} \bar{D}^{0}}\right]$.
These physical decay amplitudes are related to the "bare" amplitudes calculated in the absence of finalstate interactions, i.e., with no mixing, which we denote by \tilde{A} :
$\binom{A_{\pi \pi}^{(0)}}{A_{D \bar{D}}^{(0)}}=S^{\frac{1}{2}}\binom{\tilde{A}_{\pi \pi}^{(0)}}{\tilde{A}_{D \bar{D}}^{(0)}}$,
$A_{\pi \pi}^{(2)}=\tilde{A}_{\pi \pi}^{(2)}, \quad A_{D \bar{D}}^{(1)}=\tilde{A}_{D \bar{D}}^{(1)}$.
Here S denotes the strong-interaction S matrix connecting the isospin-zero states $|\pi \pi\rangle_{0}$ and $|D \bar{D}\rangle_{0}$
which can be written generally as ${ }^{1}$

$$
S=\left(\begin{array}{cc}
\cos 2 \theta e^{i 2 \delta_{1}} & i \sin 2 \theta e^{i\left(\delta_{1}+\delta_{2}\right)} \tag{8}\\
i \sin 2 \theta e^{i\left(\delta_{1}+\delta_{2}\right)} & \cos 2 \theta e^{i 2 \delta_{2}}
\end{array}\right)
$$

where θ is a mixing angle, and δ_{1} and δ_{2} are the stronginteraction phase shifts for the elastic scattering of $\pi \pi$ and $D \bar{D}$ systems in the $I=0$ state, at $\sqrt{s}=M_{B}$. For any choice of these three parameters, the matrix $S^{\frac{1}{2}}$ can be calculated numerically, and the set of four equations (7) solved to obtain the physical amplitudes $A_{\pi^{+} \pi^{-}}, A_{\pi^{0} \pi^{0}}, A_{D^{+} D^{-}}$and $A_{D^{0} \bar{D}^{0}}$ in terms of the bare amplitudes. The bare amplitudes are identified with those calculated in the factorization model [5-7], which we list below
$\tilde{A}_{\pi^{+} \pi^{-}}=N\left(\lambda_{u} a_{1}+\lambda_{c} a_{p}\right)$,
$\tilde{A}_{\pi^{0} \pi^{0}}=N\left(\lambda_{u} a_{2}-\lambda_{c} a_{p}\right) / \sqrt{2}$,
$\tilde{A}_{D^{+} D^{-}}=N^{\prime} \lambda_{c} a_{1}, \quad \tilde{A}_{D^{0} \bar{D}^{0}}=0$,
where the first two equations are as in Eq. (1), and the factor N^{\prime} is determined from the empirical [11] branching ratio $\operatorname{Br}\left(B^{0} / \bar{B}^{0} \rightarrow D^{+} D^{-}\right)=$ $N^{\prime 2}\left|\lambda_{c}\right|^{2} a_{1}^{2}=2.5 \times 10^{-4}$ to be $N^{\prime}=1.79$.

In order to show, in a transparent way, how the mixing mechanism gives rise to large direct $C P$ violation in $B^{0} \rightarrow \pi^{+} \pi^{-}$, as well as an enhanced branching ratio for $B^{0} \rightarrow \pi^{0} \pi^{0}$, we consider, for illustration, the case where the elastic phases δ_{1} and δ_{2} in the S matrix (Eq. (8)) are neglected, so that $S^{\frac{1}{2}}$ may be written as
$S^{\frac{1}{2}}=\left(\begin{array}{cc}\cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta\end{array}\right)$.
The amplitudes $A_{\pi^{+} \pi^{-}}$and $A_{\pi^{0} \pi^{0}}$ for \bar{B}^{0} decay are then given by

$$
\begin{aligned}
A_{\pi^{+} \pi^{-}}= & \frac{1+2 \cos \theta}{3} \tilde{A}_{\pi^{+} \pi^{-}}+\sqrt{2} \frac{1-\cos \theta}{3} \tilde{A}_{\pi^{0} \pi^{0}} \\
& +i \sin \theta \frac{1}{\sqrt{3}}\left(\tilde{A}_{D^{+} D^{-}}+\tilde{A}_{D^{0}} \bar{D}^{0}\right)
\end{aligned}
$$

[^1]\[

$$
\begin{align*}
A_{\pi^{0} \pi^{0}}= & \sqrt{2} \frac{1-\cos \theta}{3} \tilde{A}_{\pi^{+} \pi^{-}}+\frac{2+\cos \theta}{3} \tilde{A}_{\pi^{0} \pi^{0}} \\
& -i \sin \theta \frac{1}{\sqrt{6}}\left(\tilde{A}_{D^{+} D^{-}}+\tilde{A}_{D^{0} \bar{D}^{0}}\right) \tag{11}
\end{align*}
$$
\]

Clearly for $\theta=0$, the physical amplitudes reduce to the bare amplitudes. Inserting the bare amplitudes from Eq. (9), we can rewrite $A_{\pi^{+} \pi^{-}}$and $A_{\pi^{0} \pi^{0}}$ as linear combinations of λ_{u} and λ_{c} :

$$
\begin{align*}
& A_{\pi^{+} \pi^{-}}=N[\lambda_{u}\left\{\frac{1+2 \cos \theta}{3} a_{1}+\frac{1-\cos \theta}{3} a_{2}\right\} \\
&\left.+\lambda_{c}\left(a_{p} \cos \theta+a_{m}\right)\right] \\
& A_{\pi^{0} \pi^{0}}=\frac{N}{\sqrt{2}}\left[\lambda_{u}\left\{\frac{2(1-\cos \theta)}{3} a_{1}+\frac{2+\cos \theta}{3} a_{2}\right\}\right. \\
&\left.-\lambda_{c}\left(a_{p} \cos \theta+a_{m}\right)\right] \tag{12}
\end{align*}
$$

where
$a_{m}=i \frac{1}{\sqrt{3}} \sin \theta \frac{N^{\prime}}{N} a_{1}$.
Note that the isospin relation in Eq. (2) continues to be fulfilled. The important new feature of the amplitudes in Eq. (12) is the appearance of the imaginary term a_{m} in the coefficient of λ_{c}, in striking contrast to the real term a_{p}. The imaginary nature of this dynamical term is an inescapable consequence of S-matrix unitarity, which enforces the factor i in the off-diagonal matrix element in Eq. (10). The term a_{m}, given in Eq. (13), has a magnitude $\left|a_{m}\right| \approx 1.39 \sin \theta$, and dominates the term $a_{p} \cos \theta$ even for a modest mixing angle ~ 0.1. We will now show that the mixing term a_{m} has profound consequences for direct $C P$ violation in the decays $B^{0} \rightarrow \pi^{+} \pi^{-}$, and for the branching ratio of the channel $B^{0} \rightarrow \pi^{0} \pi^{0}$.

1. \mathcal{C} and \mathcal{S} parameters for $B^{0} \rightarrow \pi^{+} \pi^{-}$and $B^{0} \rightarrow \pi^{0} \pi^{0}$

The \mathcal{C} and \mathcal{S} parameters derived from the timedependent asymmetry between \bar{B}^{0} and B^{0} decays into $\pi^{+} \pi^{-}$are defined as
$\mathcal{C}_{+-}=\frac{1-\left|\lambda_{+-}\right|^{2}}{1+\left|\lambda_{+-}\right|^{2}}$,
$\mathcal{S}_{+-}=\frac{2 \operatorname{Im} \lambda_{+-}}{1+\left|\lambda_{+-}\right|^{2}}$,
where
$\lambda_{+-}=\frac{q}{p} \frac{A\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right)}{A\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)}$
with
$\frac{q}{p}=e^{-i 2 \beta}, \quad 2 \beta \approx 45^{\circ}$.
\mathcal{C}_{+-}is the parameter for direct $C P$ violation (i.e., $\left.\left|A\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right) / A\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)\right| \neq 1\right)$. Using the amplitude $A_{\pi^{+} \pi^{-}}$in Eq. (12), we obtain

$$
\begin{align*}
& \lambda_{+-}=e^{-i 2 \beta} {\left[\lambda_{u}\left(\frac{1+2 \cos \theta}{3} a_{1}+\frac{1-\cos \theta}{3} a_{2}\right)\right.} \\
&\left.+\lambda_{c}\left(a_{p} \cos \theta+a_{m}\right)\right] \\
& \times\left\{\lambda_{u}^{*}\left(\frac{1+2 \cos \theta}{3} a_{1}+\frac{1-\cos \theta}{3} a_{2}\right)\right. \\
&+\left.\lambda_{c}^{*}\left(a_{p} \cos \theta+a_{m}\right)\right\}^{-1} \tag{17}
\end{align*}
$$

The asymmetry parameters \mathcal{C}_{+-}and \mathcal{S}_{+-}calculated from the above expression are plotted as functions of θ in Fig. 1. Good approximate agreement with data is obtained for $\theta \approx 0.2$ (see Table 1, where we also list \mathcal{C}_{00} and \mathcal{S}_{00}). We note that the amplitudes in Eq. (12) have been derived from the matrix $S^{\frac{1}{2}}$ in Eq. (10), which was obtained from (8) by neglecting the phase shifts δ_{1} and δ_{2}. We have also explored numerically S matrices with non-zero phases, and indicate in Figs. 1 and 2 two examples, obtained with the values $\delta_{1}=$ $\pm 10^{\circ}, \delta_{1}+\delta_{2}=-30^{\circ}$. Table 1 gives numerical values for a few choices of parameters. In all cases, there is a large direct $C P$ violation.

Discussions of the direct $C P$-violating parameter \mathcal{C}_{+-}are often based on an amplitude for $\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}$ written in the form
$A_{\pi^{+} \pi^{-}} \sim\left[e^{-i \gamma}+\frac{P_{\pi \pi}}{T_{\pi \pi}}\right]$.
The parametrization in Eq. (1), based on the models [5-7], gives $\left|P_{\pi \pi} / T_{\pi \pi}\right| \cong 0.24$, and $\arg \left(P_{\pi \pi} /\right.$ $\left.T_{\pi \pi}\right) \cong 0$. The small phase of the "penguin-to-tree" ratio $P_{\pi \pi} / T_{\pi \pi}$ is a generic feature of these models, and is responsible for the prediction $\mathcal{C}_{+-} \approx 0$, which is now contradicted by data [1]. In our approach, the role of $P_{\pi \pi} / T_{\pi \pi}$ is played by the ratio
$" P / T "=-\frac{\left|\lambda_{c}\right|\left(a_{p} \cos \theta+a_{m}\right)}{\left|\lambda_{u}\right|\left(\frac{1+2 \cos \theta}{3} a_{1}+\frac{1-\cos \theta}{3} a_{2}\right)}$.

Fig. 1. \mathcal{C} and \mathcal{S} parameters for the decay $B^{0}\left(\bar{B}^{0}\right) \rightarrow \pi^{+} \pi^{-}$. Full line is for $\delta_{1}=\delta_{2}=0^{\circ}$, dotted line for $\delta_{1}=-10^{\circ}, \delta_{2}=-20^{\circ}$, dashed line for $\delta_{1}=10^{\circ}, \delta_{2}=-40^{\circ}$.

For a typical value $\theta=0.2$, this ratio has the modulus $|" P / T "| \approx 0.77$, and a phase $\arg (" P / T ") \approx-70^{\circ}$. The difference is a consequence of the term a_{m} in Eq. (19), which reflects the physical final-state

Table 1
Observables for different mixing angles θ and strong-interaction phases δ_{1} and δ_{2}. All branching ratios are given in units of 10^{-6}

Observable	No mixing	With mixing			Data	
		$\theta=0.2$	$\theta=0.17$	$\theta=0.2$		
		$\delta_{1}=0^{\circ}$	$\delta_{1}=-10^{\circ}$	$\delta_{1}=10^{\circ}$		
		$\delta_{2}=0^{\circ}$	$\delta_{2}=-20^{\circ}$	$\delta_{2}=-40^{\circ}$		
\mathcal{C}_{+-}	± 0.00	-0.65	-0.66	-0.81	$-0.58 \pm 0.15 \pm 0.07$	(Belle [1])
					$-0.30 \pm 0.25 \pm 0.04$	(BaBar [17])
\mathcal{S}_{+-}	-0.60	-0.63	-0.55	-0.40	$-1.00 \pm 0.21 \pm 0.07$	(Belle [1])
					$+0.02 \pm 0.34 \pm 0.05$	(BaBar [17])
$\operatorname{Br}\left(B^{0} / \bar{B}^{0} \rightarrow \pi^{0} \pi^{0}\right)$	0.2	1.8	1.7	1.6	$1.7 \pm 0.6 \pm 0.2$	(Belle [4])
					$2.1 \pm 0.6 \pm 0.3$	(BaBar [3])
$\operatorname{Br}\left(B^{0} / \bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right)$	9.3	12.2	10.5	9.9	$4.4 \pm 0.6 \pm 0.3$	(Belle [18])
					$4.7 \pm 0.6 \pm 0.2$	(BaBar [17])
					$4.5_{-1.2-0.4}^{+1.4+0.5}$	(CLEO [19])
\mathcal{C}_{00}	± 0.00	$+0.48$	$+0.51$	$+0.56$		
\mathcal{S}_{00}	+0.73	-0.65	-0.78	-0.49		

interaction of the $\pi \pi$ system, as implemented in our model through $\pi \pi \leftrightarrow D \bar{D}$ mixing.

2. Branching ratio for $B^{0} \rightarrow \pi^{0} \pi^{0}$ and $B^{0} \rightarrow \pi^{+} \pi^{-}$

The branching ratios (averaged over B^{0} and \bar{B}^{0}) may be calculated in our model by taking the absolute square of the \bar{B}^{0} decay amplitudes in Eq. (12), and the corresponding amplitudes for B^{0} decay. The results are shown in Fig. 2. It is remarkable that the empirical branching ratio for $B^{0} / \bar{B}^{0} \rightarrow \pi^{0} \pi^{0}$ is accurately reproduced, using the same value $\theta \approx 0.2$ which accounts for the asymmetry parameter \mathcal{C}_{+-}. We also note that the branching ratio $B^{0} / \bar{B}^{0} \rightarrow$ $\pi^{+} \pi^{-}$remains close to its bare value, and can be lowered slightly with the introduction of phases δ_{1} and δ_{2}. Numerical results for $\operatorname{Br}\left(B^{0} / \bar{B}^{0} \rightarrow \pi^{0} \pi^{0}\right)$ and $\operatorname{Br}\left(B^{0} / \bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right)$are listed in Table 1.

3. Branching ratio for $B^{0} \rightarrow D^{0} \bar{D}^{0}$

Since our model treats the $\pi \pi$ and $D \bar{D}$ states with $I=0$ as a coupled system, it also produces predictions for branching ratios and asymmetry parameters in
$B^{0} \rightarrow D^{+} D^{-}$and $B^{0} \rightarrow D^{0} \bar{D}^{0}$. The amplitudes after mixing are

$$
\begin{align*}
A_{D^{+} D^{-}}=\frac{1}{2} & {[}
\end{aligned} \quad \begin{aligned}
& \sin \theta \sqrt{\frac{2}{3}}\left(\sqrt{2} \tilde{A}_{\pi^{+} \pi^{-}}-\tilde{A}_{\pi^{0} \pi^{0}}\right) \\
& +(\cos \theta+1) \tilde{A}_{D^{+} D^{-}} \\
& \left.+(\cos \theta-1) \tilde{A}_{D^{0} \bar{D}^{0}}\right], \\
A_{D^{0} \bar{D}^{0}}=\frac{1}{2}[& i \sin \theta \sqrt{\frac{2}{3}}\left(\sqrt{2} \tilde{A}_{\pi^{+} \pi^{-}}-\tilde{A}_{\pi^{0} \pi^{0}}\right) \\
& +(\cos \theta-1) \tilde{A}_{D^{+} D^{-}} \\
& \left.+(\cos \theta+1) \tilde{A}_{D^{0} \bar{D}^{0}}\right] . \tag{20}
\end{align*}
$$

Of particular interest is the branching ratio for $B^{0} / \bar{B}^{0} \rightarrow D^{0} \bar{D}^{0}$, since it vanishes at the level of the bare amplitude ($\tilde{A}_{D^{0} \bar{D}^{0}}=0$), and is induced by mixing with the $\pi \pi$ system. For $\theta=0.2$, ignoring the phases δ_{1}, δ_{2}, our model predicts
$\operatorname{Br}\left(B^{0} / \bar{B}^{0} \rightarrow D^{0} \bar{D}^{0}\right)=1.45 \times 10^{-7}$.
(At this low level, one must assume that other sources of final-state interaction or a non-zero bare amplitude could raise this branching ratio further.) Direct $C P$ violation follows from $A_{D^{0} \bar{D}^{0}}$ in Eq. (20): $\mathcal{C}_{D^{0} \bar{D}^{0}}=$ -0.50 for $\theta=0.2$. Direct $C P$ violation in $D^{+} D^{-}$(and

Fig. 2. Average branching ratios for $B^{0} / \bar{B}^{0} \rightarrow \pi^{0} \pi^{0}$ and $B^{0} / \bar{B}^{0} \rightarrow \pi^{+} \pi^{-}$. Full line is for $\delta_{1}=\delta_{2}=0^{\circ}$, dotted line for $\delta_{1}=-10^{\circ}, \delta_{2}=-20^{\circ}$, dashed line for $\delta_{1}=10^{\circ}, \delta_{2}=-40^{\circ}$.
in $\pi^{-} \pi^{0}$) is small, because these decays are dominated by a single amplitude. There is little mixing in $A_{D^{+} D^{-}}$ in Eq. (20) (and none in the $I=2$ amplitude for $\pi^{-} \pi^{0}$).

To conclude, we have demonstrated a mechanism of final-state interactions among physical hadrons in $B^{0} \rightarrow \pi \pi$ decays which predicts a large direct $C P-$ violating parameter \mathcal{C}_{+-}. The same mechanism enhances the theoretical prediction for the branching ratio of $B^{0} / \bar{B}^{0} \rightarrow \pi^{0} \pi^{0}$ to the experimentally observed level. Predictions are made for the \mathcal{C} and \mathcal{S} parameters of $B^{0}\left(\bar{B}^{0}\right) \rightarrow \pi^{0} \pi^{0}$ decays, and for the branching ratio of $B^{0} / \bar{B}^{0} \rightarrow D^{0} \bar{D}^{0}$. The model makes essential use of the large empirical ratio $\Gamma\left(B^{0} / \bar{B}^{0} \rightarrow\right.$ $\left.D^{+} D^{-}\right) / \Gamma\left(B^{0} / \bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right) \approx 50$. Its success in the present context leads to the expectation that sizable direct $C P$ violation could be observed in other charmless B decays, in which an amplitude of order λ_{u} receives a dynamical contribution proportional to λ_{c}, through mixing with a channel possessing a large branching ratio. The resulting amplitude contains two pieces which are comparable in magnitude and have different weak-interaction and strong-interaction phases. We have treated earlier [15] the chargedparticle decays $B^{ \pm} \rightarrow \eta \pi^{ \pm}$(and $B^{ \pm} \rightarrow \eta^{\prime} \pi^{ \pm}$), which are influenced by mixing with the channel $B^{ \pm} \rightarrow$ $\eta_{c} \pi^{ \pm}$, and have predicted significant direct $C P$ violation. Evidence for a sizable violation in $B^{ \pm} \rightarrow \eta \pi^{ \pm}$ has indeed been reported in one experiment [16], the first ever seen in a charged-particle decay.

References

[1] Belle Collaboration, K. Abe, et al., hep-ex/0401029.
[2] Belle Collaboration, K. Abe, et al., Phys. Rev. D 68 (2003) 012001.
[3] BaBar Collaboration, B. Aubert, et al., Phys. Rev. Lett. 91 (2003) 241801.
[4] Belle Collaboration, S.H. Lee, et al., Phys. Rev. Lett. 91 (2003) 261801.
[5] M. Bauer, B. Stech, M. Wirbel, Z. Phys. C 34 (1987) 103.
[6] M. Neubert, B. Stech, in: A.J. Buras, M. Lindner (Eds.), Heavy Flavours, second ed., World Scientific, Singapore, hepph/9705292.
[7] M. Beneke, M. Neubert, hep-ph/0308039, and references therein.
[8] M. Wanninger, L.M. Sehgal, Z. Phys. C 50 (1991) 47; See also A.N. Kamal, Int. J. Mod. Phys. A 7 (1992) 3515.
[9] Particle Data Group, K. Hagiwara, et al., Phys. Rev. D 66 (2002) 010001.
[10] M. Gronau, D. London, Phys. Rev. Lett. 65 (1990) 3381.
[11] Belle Collaboration, T. Browder, talk at Lepton-Photon Symposium, Fermilab, August 2003.
[12] J.F. Donoghue, et al., Phys. Rev. Lett. 77 (1996) 2178.
[13] M. Suzuki, L. Wolfenstein, Phys. Rev. D 60 (1999) 074019.
[14] A.N. Kamal, C.W. Luo, hep-ph/9702289.
[15] S. Barshay, D. Rein, L.M. Sehgal, Phys. Lett. B 259 (1991) 475.
[16] BaBar Collaboration, B. Aubert, et al., hep-ex/0311016.
[17] BaBar Collaboration, B. Aubert, et al., Phys. Rev. Lett. 89 (2002) 281802.
[18] Belle Collaboration, Y. Chao, et al., hep-ex/0311061.
[19] CLEO Collaboration, A. Bornheim, et al., Phys. Rev. D 68 (2003) 052002.

[^0]: E-mail address: sehgal@physik.rwth-aachen.de (L.M. Sehgal).

[^1]: ${ }^{1}$ The two-channel S-matrix has been discussed, in particular in $[12,13]$. The $S^{\frac{1}{2}}$ prescription is given in [6,12]. An alternative prescription, using $\frac{1}{2}[\mathbf{1}+S]$ in place of $S^{\frac{1}{2}}$, has been discussed by Kamal [14], and was used in Ref. [8].

