

Available online at www.sciencedirect.com

PHYSICS LETTERS B

Physics Letters B 591 (2004) 97-103

www.elsevier.com/locate/physletb

Large direct *CP* violation in $B^0 \rightarrow \pi^+\pi^-$ and an enhanced branching ratio for $B^0 \rightarrow \pi^0\pi^0$

S. Barshay^a, L.M. Sehgal^b, J. van Leusen^b

^a III. Physikalisches Institut, RWTH Aachen, Germany ^b Institut für Theoretische Physik, RWTH Aachen, D-52056 Aachen, Germany

Received 10 March 2004; accepted 4 April 2004

Available online 11 May 2004

Editor: H. Georgi

Abstract

Recent measurements of $B^0 \to \pi\pi$ decays reveal two features that are in conflict with conventional calculations: the channel $B^0(\bar{B}^0) \to \pi^+\pi^-$ shows a large direct *CP*-violating asymmetry, and the channel $B^0(\bar{B}^0) \to \pi^0\pi^0$ has an unexpectedly high branching ratio. We show that both features can be understood in terms of strong-interaction mixing of $\pi\pi$ and $D\bar{D}$ channels in the isospin-zero state, an effect that is important because of the large experimentally observed ratio $\Gamma(B^0/\bar{B}^0 \to D^+D^-)/\Gamma(B^0/\bar{B}^0 \to \pi^+\pi^-) \approx 50$. Our dynamical model correlates the branching ratios and the *CP*-violating parameters C and S, for the decays $B^0(\bar{B}^0) \to \pi^+\pi^-$, $B^0(\bar{B}^0) \to \pi^0\pi^0$, $B^0(\bar{B}^0) \to D^+D^-$ and $B^0(\bar{B}^0) \to D^0\bar{D}^0$. \otimes 2004 Elsevier B.V. Open access under CC BY license.

The Belle Collaboration has presented new data [1] which support their original evidence [2] for large direct *CP* violation in the decays $B^0(\bar{B}^0) \rightarrow \pi^+\pi^-$, the asymmetry parameter C (= -A) being measured to be $C = -0.58 \pm 0.15 \pm 0.07$. In a related development, both the BaBar [3] and Belle [4] Collaborations have reported a sizable branching ratio for the decay $B^0(\bar{B}^0) \rightarrow \pi^0\pi^0$, with an average value $Br(B^0/\bar{B}^0 \rightarrow \pi^0\pi^0) = (1.9 \pm 0.6) \times 10^{-6}$. Both of these observations are unexpectedly large from the standpoint of conventional calculations [5–7] based on a short-distance, effective weak Hamiltonian and the assumption of factorization of products of currents in

matrix elements for physical hadron states. In this paper, we carry out a calculation based upon the idea [8] of final-state interactions involving the mixing of $\pi\pi$ and $D\bar{D}$ channels. This dynamics provides a natural, correlated explanation of the new experimental facts, and leads to several further predictions.

To fix notation, we write the three $\bar{B} \to \pi \pi$ amplitudes as

$$A(\bar{B}^0 \to \pi^+ \pi^-) = N(\lambda_u a_1 + \lambda_c a_p),$$

$$A(\bar{B}^0 \to \pi^0 \pi^0) = N(\lambda_u a_2 - \lambda_c a_p)/\sqrt{2},$$

$$A(B^- \to \pi^- \pi^0) = N\lambda_u (a_1 + a_2)/\sqrt{2}.$$
 (1)

Here a_1 , a_2 , a_p are, in general, complex numbers and N is a positive normalization factor. The parameters λ_u and λ_c are CKM factors, defined as $\lambda_u = V_{ub}V_{ud}^*$,

E-mail address: sehgal@physik.rwth-aachen.de (L.M. Sehgal).

^{0370-2693 © 2004} Elsevier B.V. Open access under CC BY license. doi:10.1016/j.physletb.2004.04.014

 $\lambda_c = V_{cb}V_{cd}^*$, with magnitudes $|\lambda_u| \cong 3.6 \times 10^{-3}$, $|\lambda_c| \cong 8.8 \times 10^{-3}$ and phases given by $\lambda_u = |\lambda_u|e^{-i\gamma}$, $\lambda_c = -|\lambda_c|$, with $\gamma \approx 60^\circ$ [9]. The amplitudes in Eq. (1) are defined so that their absolute square gives the branching ratio, and they satisfy the isospin relation [10]

$$\frac{1}{\sqrt{2}}A(\bar{B}^0 \to \pi^+\pi^-) + A(\bar{B}^0 \to \pi^0\pi^0)$$

= $A(B^- \to \pi^-\pi^0).$ (2)

From the results of the models discussed in [5–7], the parameters appearing in Eq. (1) have the following rough representation. The constants a_1 , a_2 , a_p are approximately real (to within a few degrees), with magnitudes $a_1 \approx 1.0$, $a_2 \approx 0.2$, $a_p \approx -0.1$. The normalization factor is $N \approx 0.75$; it is here fixed by the empirical branching ratio for $B^- \rightarrow \pi^- \pi^0$. The fact that the parameters a_1 , a_2 , a_p are nearly real implies immediately that there is very little direct *CP*-violating asymmetry between $\bar{B}^0 \rightarrow \pi^+ \pi^-$ and $B^0 \rightarrow \pi^+ \pi^-$, as well as in the channels $\pi^0 \pi^0$ and $\pi^{\pm} \pi^0$. Furthermore, the absolute branching ratios following from the above parametrization are as follows (with experimental values given in parentheses):

$$Br(B^{\pm} \to \pi^{\pm}\pi^{0}) = 5.3 \times 10^{-6}$$
[exp. (5.3 ± 0.8) × 10⁻⁶],

$$Br(B^{0}/\bar{B}^{0} \to \pi^{+}\pi^{-}) = 9.3 \times 10^{-6}$$
[exp. (4.6 ± 0.4) × 10⁻⁶],

$$Br(B^{0}/\bar{B}^{0} \to \pi^{0}\pi^{0}) = 0.2 \times 10^{-6}$$
[exp. (1.9 ± 0.6) × 10⁻⁶]. (3)

The most striking feature is the strong enhancement of the $\pi^0 \pi^0$ rate compared to this model expectation.

It was pointed out in Ref. [8] that the *CP*-violating asymmetries and branching ratios in the $B \rightarrow \pi\pi$ system would be strongly affected by final-state interactions involving the mixing of the $\pi\pi$ and $D\bar{D}$ channels in the isospin I = 0 state, as a consequence of the large ratio of partial decay widths $\Gamma(B^0 \rightarrow D^+D^-)/\Gamma(B^0 \rightarrow \pi^+\pi^-) \approx \frac{3}{14}|V_{cb}|^2/|V_{ub}|^2 \approx 26$ expected in the Bauer–Stech–Wirbel model [5]. A large ratio has now been confirmed by the Belle measurement [11] of the branching ratio Br $(B^0/\bar{B}^0 \rightarrow D^+D^-) = 2.5 \times 10^{-4}$, which is about 50 times larger than $\operatorname{Br}(B^0/\bar{B}^0 \to \pi^+\pi^-)$. This fact gives new urgency to an investigation of $\pi\pi \leftrightarrow D\bar{D}$ mixing as a way of resolving the puzzling observations in $B \to \pi\pi$ decays.

The $\pi\pi$ system exists in the states I = 0 or I = 2, while the $D\bar{D}$ system has I = 0 or I = 1. Mixing can occur between the isospin-zero states

$$|\pi\pi\rangle_{0} = \sqrt{\frac{2}{3}} |\pi^{+}\pi^{-}\rangle - \sqrt{\frac{1}{3}} |\pi^{0}\pi^{0}\rangle,$$

$$|D\bar{D}\rangle_{0} = \sqrt{\frac{1}{2}} [|D^{+}D^{-}\rangle + |D^{0}\bar{D}^{0}\rangle].$$
(4)

By contrast, the $I = 2 \pi \pi$ state and the $I = 1 D\overline{D}$ state, given by

$$|\pi\pi\rangle_{2} = \sqrt{\frac{1}{3}} |\pi^{+}\pi^{-}\rangle + \sqrt{\frac{2}{3}} |\pi^{0}\pi^{0}\rangle,$$

$$|D\bar{D}\rangle_{1} = \sqrt{\frac{1}{2}} [|D^{+}D^{-}\rangle - |D^{0}\bar{D}^{0}\rangle]$$
(5)

are unaffected by mixing. The physical decay amplitudes of \bar{B}^0 to the above four states are

$$A_{\pi\pi}^{(0)} = \sqrt{\frac{2}{3}} A_{\pi^{+}\pi^{-}} - \sqrt{\frac{1}{3}} A_{\pi^{0}\pi^{0}},$$

$$A_{\pi\pi}^{(2)} = \sqrt{\frac{1}{3}} A_{\pi^{+}\pi^{-}} + \sqrt{\frac{2}{3}} A_{\pi^{0}\pi^{0}},$$

$$A_{D\bar{D}}^{(0)} = \sqrt{\frac{1}{2}} [A_{D^{+}D^{-}} + A_{D^{0}\bar{D}^{0}}],$$

$$A_{D\bar{D}}^{(1)} = \sqrt{\frac{1}{2}} [A_{D^{+}D^{-}} - A_{D^{0}\bar{D}^{0}}].$$
(6)

These physical decay amplitudes are related to the "bare" amplitudes calculated in the absence of finalstate interactions, i.e., with no mixing, which we denote by \tilde{A} :

$$\begin{pmatrix} A_{\pi\pi}^{(0)} \\ A_{D\bar{D}}^{(0)} \end{pmatrix} = S^{\frac{1}{2}} \begin{pmatrix} \tilde{A}_{\pi\pi}^{(0)} \\ \tilde{A}_{D\bar{D}}^{(0)} \end{pmatrix}, A_{\pi\pi}^{(2)} = \tilde{A}_{\pi\pi}^{(2)}, \qquad A_{D\bar{D}}^{(1)} = \tilde{A}_{D\bar{D}}^{(1)}.$$
(7)

Here S denotes the strong-interaction S matrix connecting the isospin-zero states $|\pi\pi\rangle_0$ and $|D\bar{D}\rangle_0$ which can be written generally as¹

$$S = \begin{pmatrix} \cos 2\theta e^{i2\delta_1} & i\sin 2\theta e^{i(\delta_1 + \delta_2)} \\ i\sin 2\theta e^{i(\delta_1 + \delta_2)} & \cos 2\theta e^{i2\delta_2} \end{pmatrix},$$
(8)

where θ is a mixing angle, and δ_1 and δ_2 are the stronginteraction phase shifts for the elastic scattering of $\pi\pi$ and $D\bar{D}$ systems in the I = 0 state, at $\sqrt{s} = M_B$. For any choice of these three parameters, the matrix $S^{\frac{1}{2}}$ can be calculated numerically, and the set of four equations (7) solved to obtain the physical amplitudes $A_{\pi^+\pi^-}$, $A_{\pi^0\pi^0}$, $A_{D^+D^-}$ and $A_{D^0\bar{D}^0}$ in terms of the bare amplitudes. The bare amplitudes are identified with those calculated in the factorization model [5–7], which we list below

$$\tilde{A}_{\pi^{+}\pi^{-}} = N(\lambda_{u}a_{1} + \lambda_{c}a_{p}),
\tilde{A}_{\pi^{0}\pi^{0}} = N(\lambda_{u}a_{2} - \lambda_{c}a_{p})/\sqrt{2},
\tilde{A}_{D^{+}D^{-}} = N'\lambda_{c}a_{1}, \qquad \tilde{A}_{D^{0}\bar{D}^{0}} = 0,$$
(9)

where the first two equations are as in Eq. (1), and the factor N' is determined from the empirical [11] branching ratio $\text{Br}(B^0/\bar{B}^0 \to D^+D^-) =$ $N'^2 |\lambda_c|^2 a_1^2 = 2.5 \times 10^{-4}$ to be N' = 1.79.

In order to show, in a transparent way, how the mixing mechanism gives rise to large direct *CP* violation in $B^0 \rightarrow \pi^+\pi^-$, as well as an enhanced branching ratio for $B^0 \rightarrow \pi^0\pi^0$, we consider, for illustration, the case where the elastic phases δ_1 and δ_2 in the *S* matrix (Eq. (8)) are neglected, so that $S^{\frac{1}{2}}$ may be written as

$$S^{\frac{1}{2}} = \begin{pmatrix} \cos\theta & i\sin\theta\\ i\sin\theta & \cos\theta \end{pmatrix}.$$
 (10)

The amplitudes $A_{\pi^+\pi^-}$ and $A_{\pi^0\pi^0}$ for \bar{B}^0 decay are then given by

$$A_{\pi^{+}\pi^{-}} = \frac{1+2\cos\theta}{3}\tilde{A}_{\pi^{+}\pi^{-}} + \sqrt{2}\frac{1-\cos\theta}{3}\tilde{A}_{\pi^{0}\pi^{0}} + i\sin\theta\frac{1}{\sqrt{3}}(\tilde{A}_{D^{+}D^{-}} + \tilde{A}_{D^{0}\bar{D}^{0}}),$$

$$A_{\pi^{0}\pi^{0}} = \sqrt{2} \frac{1 - \cos\theta}{3} \tilde{A}_{\pi^{+}\pi^{-}} + \frac{2 + \cos\theta}{3} \tilde{A}_{\pi^{0}\pi^{0}} - i \sin\theta \frac{1}{\sqrt{6}} (\tilde{A}_{D^{+}D^{-}} + \tilde{A}_{D^{0}\bar{D}^{0}}).$$
(11)

Clearly for $\theta = 0$, the physical amplitudes reduce to the bare amplitudes. Inserting the bare amplitudes from Eq. (9), we can rewrite $A_{\pi^+\pi^-}$ and $A_{\pi^0\pi^0}$ as linear combinations of λ_u and λ_c :

$$A_{\pi^{+}\pi^{-}} = N \bigg[\lambda_{u} \bigg\{ \frac{1 + 2\cos\theta}{3} a_{1} + \frac{1 - \cos\theta}{3} a_{2} \bigg\} + \lambda_{c} (a_{p}\cos\theta + a_{m}) \bigg], A_{\pi^{0}\pi^{0}} = \frac{N}{\sqrt{2}} \bigg[\lambda_{u} \bigg\{ \frac{2(1 - \cos\theta)}{3} a_{1} + \frac{2 + \cos\theta}{3} a_{2} \bigg\} - \lambda_{c} (a_{p}\cos\theta + a_{m}) \bigg],$$
(12)

where

$$a_m = i \frac{1}{\sqrt{3}} \sin \theta \frac{N'}{N} a_1. \tag{13}$$

Note that the isospin relation in Eq. (2) continues to be fulfilled. The important new feature of the amplitudes in Eq. (12) is the appearance of the *imaginary* term a_m in the coefficient of λ_c , in striking contrast to the real term a_p . The imaginary nature of this dynamical term is an inescapable consequence of *S*-matrix unitarity, which enforces the factor *i* in the off-diagonal matrix element in Eq. (10). The term a_m , given in Eq. (13), has a magnitude $|a_m| \approx 1.39 \sin\theta$, and dominates the term $a_p \cos\theta$ even for a modest mixing angle ~ 0.1 . We will now show that the mixing term a_m has profound consequences for direct *CP* violation in the decays $B^0 \rightarrow \pi^+\pi^-$, and for the branching ratio of the channel $B^0 \rightarrow \pi^0\pi^0$.

1. *C* and *S* parameters for $B^0 \to \pi^+\pi^-$ and $B^0 \to \pi^0\pi^0$

The C and S parameters derived from the timedependent asymmetry between \bar{B}^0 and B^0 decays into $\pi^+\pi^-$ are defined as

$$C_{+-} = \frac{1 - |\lambda_{+-}|^2}{1 + |\lambda_{+-}|^2},$$

$$S_{+-} = \frac{2 \operatorname{Im} \lambda_{+-}}{1 + |\lambda_{+-}|^2},$$
(14)

¹ The two-channel *S*-matrix has been discussed, in particular in [12,13]. The $S^{\frac{1}{2}}$ prescription is given in [6,12]. An alternative prescription, using $\frac{1}{2}$ [1 + *S*] in place of $S^{\frac{1}{2}}$, has been discussed by Kamal [14], and was used in Ref. [8].

where

$$\lambda_{+-} = \frac{q}{p} \frac{A(\bar{B}^0 \to \pi^+ \pi^-)}{A(B^0 \to \pi^+ \pi^-)}$$
(15)

with

$$\frac{q}{p} = e^{-i2\beta}, \quad 2\beta \approx 45^{\circ}. \tag{16}$$

 C_{+-} is the parameter for direct *CP* violation (i.e., $|A(\bar{B}^0 \to \pi^+\pi^-)/A(B^0 \to \pi^+\pi^-)| \neq 1$). Using the amplitude $A_{\pi^+\pi^-}$ in Eq. (12), we obtain

$$\lambda_{+-} = e^{-i2\beta} \left[\lambda_u \left(\frac{1+2\cos\theta}{3} a_1 + \frac{1-\cos\theta}{3} a_2 \right) + \lambda_c (a_p\cos\theta + a_m) \right] \\ \times \left\{ \lambda_u^* \left(\frac{1+2\cos\theta}{3} a_1 + \frac{1-\cos\theta}{3} a_2 \right) + \lambda_c^* (a_p\cos\theta + a_m) \right\}^{-1}.$$
(17)

The asymmetry parameters C_{+-} and S_{+-} calculated from the above expression are plotted as functions of θ in Fig. 1. Good approximate agreement with data is obtained for $\theta \approx 0.2$ (see Table 1, where we also list C_{00} and S_{00}). We note that the amplitudes in Eq. (12) have been derived from the matrix $S^{\frac{1}{2}}$ in Eq. (10), which was obtained from (8) by neglecting the phase shifts δ_1 and δ_2 . We have also explored numerically *S* matrices with non-zero phases, and indicate in Figs. 1 and 2 two examples, obtained with the values $\delta_1 = \pm 10^\circ$, $\delta_1 + \delta_2 = -30^\circ$. Table 1 gives numerical values for a few choices of parameters. In all cases, there is a large direct *CP* violation.

Discussions of the direct *CP*-violating parameter C_{+-} are often based on an amplitude for $\bar{B}^0 \to \pi^+\pi^-$ written in the form

$$A_{\pi^+\pi^-} \sim \left[e^{-i\gamma} + \frac{P_{\pi\pi}}{T_{\pi\pi}} \right].$$
 (18)

The parametrization in Eq. (1), based on the models [5–7], gives $|P_{\pi\pi}/T_{\pi\pi}| \approx 0.24$, and $\arg(P_{\pi\pi}/T_{\pi\pi}) \approx 0$. The small phase of the "penguin-to-tree" ratio $P_{\pi\pi}/T_{\pi\pi}$ is a generic feature of these models, and is responsible for the prediction $C_{+-} \approx 0$, which is now contradicted by data [1]. In our approach, the role of $P_{\pi\pi}/T_{\pi\pi}$ is played by the ratio

$$"P/T" = -\frac{|\lambda_c|(a_p \cos\theta + a_m)}{|\lambda_u|(\frac{1+2\cos\theta}{3}a_1 + \frac{1-\cos\theta}{3}a_2)}.$$
 (19)

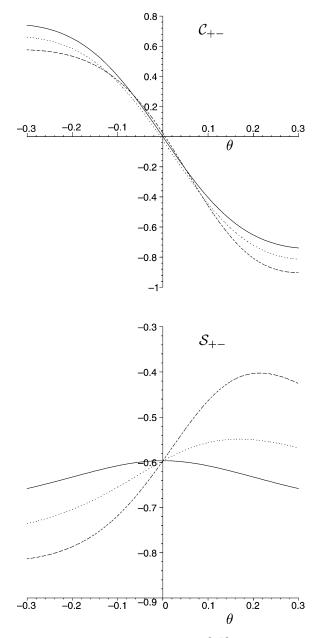


Fig. 1. C and S parameters for the decay $B^0(\bar{B}^0) \rightarrow \pi^+\pi^-$. Full line is for $\delta_1 = \delta_2 = 0^\circ$, dotted line for $\delta_1 = -10^\circ$, $\delta_2 = -20^\circ$, dashed line for $\delta_1 = 10^\circ$, $\delta_2 = -40^\circ$.

For a typical value $\theta = 0.2$, this ratio has the modulus $|"P/T"| \approx 0.77$, and a phase $\arg("P/T") \approx -70^{\circ}$. The difference is a consequence of the term a_m in Eq. (19), which reflects the physical final-state

100

Observable No mixing With mixing Data $\theta = 0.2$ $\theta = 0.17$ $\theta = 0.2$ $\delta_1 = 0^\circ$ $\delta_1 = -10^{\circ}$ $\delta_1 = 10^\circ$ $\delta_2 = 0^\circ$ $\delta_2 = -20^{\circ}$ $\delta_2 = -40^{\circ}$ C_{+-} ± 0.00 -0.66 $-0.58 \pm 0.15 \pm 0.07$ -0.65-0.81(Belle [1]) $-0.30 \pm 0.25 \pm 0.04$ (BaBar [17]) S_{+-} -0.63-0.55-0.40-0.60 $-1.00 \pm 0.21 \pm 0.07$ (Belle [1]) $+0.02\pm0.34\pm0.05$ (BaBar [17]) $\operatorname{Br}(B^0/\bar{B}^0 \to \pi^0\pi^0)$ 0.2 1.8 1.7 1.6 $1.7\pm0.6\pm0.2$ (Belle [4]) $2.1\pm0.6\pm0.3$ (BaBar [3]) $\operatorname{Br}(B^0/\bar{B}^0 \to \pi^+\pi^-)$ $4.4 \pm 0.6 \pm 0.3$ 9.3 12.2 10.5 9.9 (Belle [18]) $4.7 \pm 0.6 \pm 0.2$ (BaBar [17]) $4.5^{+1.4+0.5}_{-1.2-0.4}$ (CLEO [19]) ± 0.00 \mathcal{C}_{00} +0.48+0.51+0.56+0.73-0.65-0.78-0.49 S_{00}

Table 1

Observables for different mixing angles θ and strong-interaction phases δ_1 and δ_2 . All branching ratios are given in units of 10^{-6}

interaction of the $\pi\pi$ system, as implemented in our model through $\pi\pi \leftrightarrow D\bar{D}$ mixing.

2. Branching ratio for $B^0 \rightarrow \pi^0 \pi^0$ and $B^0 \rightarrow \pi^+\pi^-$

The branching ratios (averaged over B^0 and \overline{B}^0) may be calculated in our model by taking the absolute square of the \bar{B}^0 decay amplitudes in Eq. (12), and the corresponding amplitudes for B^0 decay. The results are shown in Fig. 2. It is remarkable that the empirical branching ratio for $B^0/\bar{B}^0 \to \pi^0\pi^0$ is accurately reproduced, using the same value $\theta \approx 0.2$ which accounts for the asymmetry parameter C_{+-} . We also note that the branching ratio $B^0/\bar{B}^0 \rightarrow$ $\pi^+\pi^-$ remains close to its bare value, and can be lowered slightly with the introduction of phases δ_1 and δ_2 . Numerical results for Br $(B^0/\bar{B}^0 \to \pi^0\pi^0)$ and $Br(B^0/\bar{B}^0 \to \pi^+\pi^-)$ are listed in Table 1.

3. Branching ratio for $B^0 \to D^0 \bar{D}^0$

Since our model treats the $\pi\pi$ and $D\bar{D}$ states with I = 0 as a coupled system, it also produces predictions for branching ratios and asymmetry parameters in

 $B^0 \rightarrow D^+ D^-$ and $B^0 \rightarrow D^0 \bar{D}^0$. The amplitudes after mixing are

$$A_{D^{+}D^{-}} = \frac{1}{2} \bigg[i \sin \theta \sqrt{\frac{2}{3}} (\sqrt{2} \tilde{A}_{\pi^{+}\pi^{-}} - \tilde{A}_{\pi^{0}\pi^{0}}) \\ + (\cos \theta + 1) \tilde{A}_{D^{+}D^{-}} \\ + (\cos \theta - 1) \tilde{A}_{D^{0}\bar{D}^{0}} \bigg],$$

$$A_{D^{0}\bar{D}^{0}} = \frac{1}{2} \bigg[i \sin \theta \sqrt{\frac{2}{3}} (\sqrt{2} \tilde{A}_{\pi^{+}\pi^{-}} - \tilde{A}_{\pi^{0}\pi^{0}}) \\ + (\cos \theta - 1) \tilde{A}_{D^{+}D^{-}} \\ + (\cos \theta + 1) \tilde{A}_{D^{0}\bar{D}^{0}} \bigg].$$
(20)

Of particular interest is the branching ratio for $B^0/\bar{B}^0 \to D^0\bar{D}^0$, since it vanishes at the level of the bare amplitude ($\tilde{A}_{D^0\bar{D}^0} = 0$), and is induced by mixing with the $\pi\pi$ system. For $\theta = 0.2$, ignoring the phases δ_1, δ_2 , our model predicts

$$\operatorname{Br}(B^0/\bar{B}^0 \to D^0\bar{D}^0) = 1.45 \times 10^{-7}.$$
 (21)

(At this low level, one must assume that other sources of final-state interaction or a non-zero bare amplitude could raise this branching ratio further.) Direct CP violation follows from $A_{D^0\bar{D}^0}$ in Eq. (20): $\mathcal{C}_{D^0\bar{D}^0} =$ -0.50 for $\theta = 0.2$. Direct *CP* violation in D^+D^- (and

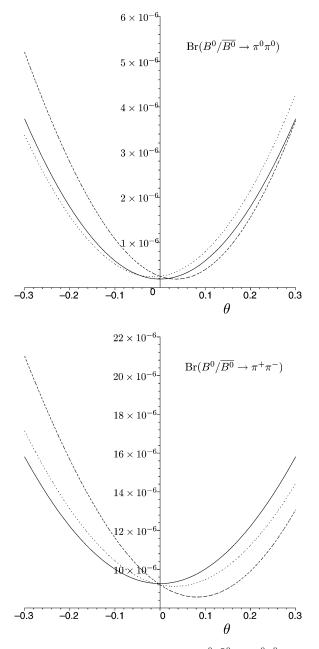


Fig. 2. Average branching ratios for $B^0/\bar{B}^0 \to \pi^0\pi^0$ and $B^0/\bar{B}^0 \to \pi^+\pi^-$. Full line is for $\delta_1 = \delta_2 = 0^\circ$, dotted line for $\delta_1 = -10^\circ$, $\delta_2 = -20^\circ$, dashed line for $\delta_1 = 10^\circ$, $\delta_2 = -40^\circ$.

in $\pi^{-}\pi^{0}$) is small, because these decays are dominated by a single amplitude. There is little mixing in $A_{D^{+}D^{-}}$ in Eq. (20) (and none in the I = 2 amplitude for $\pi^{-}\pi^{0}$).

To conclude, we have demonstrated a mechanism of final-state interactions among physical hadrons in $B^0 \rightarrow \pi \pi$ decays which predicts a large direct CPviolating parameter \mathcal{C}_{+-} . The same mechanism enhances the theoretical prediction for the branching ratio of $B^0/\bar{B}^0 \to \pi^0 \pi^0$ to the experimentally observed level. Predictions are made for the C and S parameters of $B^0(\bar{B}^0) \to \pi^0 \pi^0$ decays, and for the branching ratio of $B^0/\bar{B}^0 \to D^0\bar{D}^0$. The model makes essential use of the large empirical ratio $\Gamma(B^0/\bar{B}^0 \rightarrow$ $(D^+D^-)/\Gamma(B^0/\bar{B}^0 \to \pi^+\pi^-) \approx 50$. Its success in the present context leads to the expectation that sizable direct CP violation could be observed in other charmless B decays, in which an amplitude of order λ_u receives a dynamical contribution proportional to λ_c , through mixing with a channel possessing a large branching ratio. The resulting amplitude contains two pieces which are comparable in magnitude and have different weak-interaction and strong-interaction phases. We have treated earlier [15] the chargedparticle decays $B^{\pm} \rightarrow \eta \pi^{\pm}$ (and $B^{\pm} \rightarrow \eta' \pi^{\pm}$), which are influenced by mixing with the channel $B^{\pm} \rightarrow$ $\eta_c \pi^{\pm}$, and have predicted significant direct *CP* violation. Evidence for a sizable violation in $B^{\pm} \rightarrow \eta \pi^{\pm}$ has indeed been reported in one experiment [16], the first ever seen in a charged-particle decay.

References

- [1] Belle Collaboration, K. Abe, et al., hep-ex/0401029.
- [2] Belle Collaboration, K. Abe, et al., Phys. Rev. D 68 (2003) 012001.
- [3] BaBar Collaboration, B. Aubert, et al., Phys. Rev. Lett. 91 (2003) 241801.
- [4] Belle Collaboration, S.H. Lee, et al., Phys. Rev. Lett. 91 (2003) 261801.
- [5] M. Bauer, B. Stech, M. Wirbel, Z. Phys. C 34 (1987) 103.
- [6] M. Neubert, B. Stech, in: A.J. Buras, M. Lindner (Eds.), Heavy Flavours, second ed., World Scientific, Singapore, hepph/9705292.
- [7] M. Beneke, M. Neubert, hep-ph/0308039, and references therein.
- [8] M. Wanninger, L.M. Sehgal, Z. Phys. C 50 (1991) 47; See also A.N. Kamal, Int. J. Mod. Phys. A 7 (1992) 3515.
- [9] Particle Data Group, K. Hagiwara, et al., Phys. Rev. D 66 (2002) 010001.
- [10] M. Gronau, D. London, Phys. Rev. Lett. 65 (1990) 3381.
- [11] Belle Collaboration, T. Browder, talk at Lepton–Photon Symposium, Fermilab, August 2003.
- [12] J.F. Donoghue, et al., Phys. Rev. Lett. 77 (1996) 2178.

- [13] M. Suzuki, L. Wolfenstein, Phys. Rev. D 60 (1999) 074019.
- [14] A.N. Kamal, C.W. Luo, hep-ph/9702289.
- [15] S. Barshay, D. Rein, L.M. Sehgal, Phys. Lett. B 259 (1991) 475.
- [16] BaBar Collaboration, B. Aubert, et al., hep-ex/0311016.
- [17] BaBar Collaboration, B. Aubert, et al., Phys. Rev. Lett. 89 (2002) 281802.
- [18] Belle Collaboration, Y. Chao, et al., hep-ex/0311061.
- [19] CLEO Collaboration, A. Bornheim, et al., Phys. Rev. D 68 (2003) 052002.