
Topology and its Applications 156 (2009) 616–623

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Partition relations for Hurewicz-type selection hypotheses

Nadav Samet a,1, Marion Scheepers b, Boaz Tsaban a,c,∗
a Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
b Department of Mathematics, Boise State University, Boise, ID 83725, USA
c Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 March 2008
Received in revised form 9 August 2008

MSC:
05C55
05D10
54D20

Keywords:
Ramsey theory of open covers
Selection principles
Hurewicz covering property
τ -covers

We give a general method to reduce Hurewicz-type selection hypotheses into standard
ones. The method covers the known results of this kind and gives some new ones.
Building on that, we show how to derive Ramsey theoretic characterizations for these
selection hypotheses.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In [6], Menger introduced a hypothesis which generalizes σ -compactness of topological spaces. Hurewicz [3] proved that
Menger’s property is equivalent to a property of the following type.

Sfin(A ,B): For each sequence {Un}n∈N of members of A , there exist finite subsets Fn ⊆ Un , n ∈ N, such that
⋃

n Fn ∈ B.

Indeed, Hurewicz observed that X has Menger’s property if, and only if, X satisfies Sfin(O, O), where O is the collection of
all open covers of X . Motivated by a conjecture of Menger, Hurewicz [3] introduced a hypothesis of the following type.

Ufin(A ,B): For each sequence {Un}n∈N of elements of A which do not contain a finite subcover, there exist finite (possibly
empty) subsets Fn ⊆ Un , n ∈ N, such that {⋃ Fn: n ∈ N} ∈ B.

Hurewicz was interested in Ufin(O,Γ ), where Γ is the collection of all open γ -covers of X . (U is a γ -cover of X if it is
infinite, and each x ∈ X is an element in all but finitely many members of U .)

While the Hurewicz-type selection hypotheses Ufin(A ,B) are standard notions in the field of selection principles, they
are less standard in the more general field of infinitary combinatorics. The reason for that is that the finite subsets are
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“glued” before considering the resulting object. Moreover, the definition of Ufin(A ,B) is somewhat less elegant than that
of Sfin(A ,B), and consequently is less convenient to work with.

U is an ω-cover of X if X /∈ U , but for each finite F ⊆ X , there is U ∈ U such that F ⊆ U . One of the main results of
[5] is the result that Ufin(O,Γ ) is equivalent to Sfin(Ω,B) for an appropriate modification B of Γ . A similar result was
established in [1] for Ufin(O,Ω). In these papers, these reductions were used to obtain Ramsey theoretic characterizations
of Ufin(O,Γ ) and of Ufin(O,Ω), respectively.

We generalize these results. As applications, we reproduce the main results of [5], strengthen the main results of [1],
and obtain standard and Ramsey theoretic equivalents for a property introduced in [10].

As each cover of a type considered in our Ramsey theoretic results is infinite, each of our Ramsey theoretic results
implies Ramsey’s classical theorem and can therefore be viewed as a structural extension of Ramsey’s theorem.

2. Reduction of selection hypotheses

Convention. To simplify the presentation, by cover of X we always mean a countable collection U of open subsets of X ,
such that

⋃
U = X and X /∈ U . Also, A and B always denote families of (such) covers of the underlying space X .

Definition 1. A is Ramseyan if for each U ∈ A and each partition of U into finitely many (equivalently, two) pieces, one of
these pieces belongs to A .

Lemma 2. (See [7].) Assume that A is Ramseyan. Then A ⊆ Ω .

Proof. Assume that A is Ramseyan, and A � Ω. Fix U ∈ A \ Ω , and a finite subset F ⊆ X such that F is not contained
in any U ∈ U . Since U is a cover of X , |F | � 2. For each C � F , let UC = {U ∈ U : U ∩ F = C}. Then U = ⋃

C∈P (F )\{F } UC is a
partition of U into finitely many pieces.

As A is Ramseyan, there is C � F such that UC ∈ A . But then the elements of F \ C are not covered by any member
of UC . A contradiction. �

Examples of Ramseyan collections of covers are Ω and Γ , defined in the introduction. We will give one more example
in Section 5.

A cover U of X is multifinite [11] if there exists a partition of U into infinitely many finite covers of X .

Definition 3 (The Gimel operator on families of covers). Let A be a family of covers of X . A)ג ) is the family of all covers U
of X such that: Either U is multifinite, or there exists a partition P of U into finite sets such that {⋃ F : F ∈ P } \ {X} ∈ A .

Remark 4. For each A , A ⊆ A)ג ).

An element of A)ג ) will be called A -glueable. This explains our choice of the Hebrew letter Gimel .(ג)

Definition 5. A cover V is a finite-to-one derefinement of a cover U , if there exists a finite-to-one surjection f : U → V such
that for each U ∈ U , U ⊆ f (U ).

A is finite-to-one derefinable if for each U ∈ A and each finite-to-one derefinement V ∈ O of U , V ∈ A .

A useful tool in the study of selection principles and their relation to Ramsey theory is the game Gfin(A ,B). This game
is played by two players, ONE and TWO, with an inning per each natural number n. At the nth inning ONE chooses a cover
Un ∈ A and TWO chooses a finite subset Fn of Un . TWO wins if

⋃
n∈N

Fn ∈ B. Otherwise, ONE wins.
Our goal in this section is proving the following.

Theorem 6. Let B be Ramseyan and finite-to-one derefinable. The following are equivalent:

1. Ufin(O,B).
2. Sfin(O, O) and Λ = .(B)ג
3. ONE has no winning strategy in Gfin(Ω, .((B)ג
4. Sfin(Ω, .((B)ג

Moreover, in (3) and (4), Ω can be replaced by any of Λ or Γ .

We prove this theorem in a sequence of lemmas. As it may be of independent interest, some of these lemmas use weaker
(or no) requirements on B than those posed in Theorem 6.

U is a large cover of X if each point x ∈ X belongs to infinitely many U ∈ U . Let Λ be the collection of all countable large
covers of X .
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The following proof is similar to that of [5, Lemma 8].

Lemma 7. Assume that B is Ramseyan and finite-to-one derefinable. Then Ufin(O,B) implies Λ = .(B)ג

Proof. By Lemma 2, B ⊆ Ω . Thus, each U ∈ (B)ג is large. Let U be a large cover of X . If U is multifinite, then U ∈ ,(B)ג
and we are done.

We now treat the remaining two cases.

Case 1. U has no finite subcover. Let {Un: n ∈ N} bijectively enumerate a large cover U of X . We may assume that no finite
subset of U covers X : If U contains infinitely many disjoint finite subcovers then it is multifinite.

For m,n ∈ N, we use the convenient notation

U [m,n) =
⋃

m�i<n

Ui,

with the convention that U [m,n) = ∅ whenever n � m. For each n, define Un = {U [n,m): m ∈ N}. Each Un is a γ -cover of X ,
and in particular a cover of X .

Applying Ufin(O,B), choose for each n a finite Fn ⊆ Un such that {⋃ Fn: n ∈ N} ∈ B. For each n, there is mn � n such
that

⋃
Fn = U [n,mn) .

Let k1 = 1, and k2 = m1 + 1. Having defined kn−1 and kn , choose kn+1 such that:

(1) kn+1 > m1,m2, . . . ,mkn ;
(2) there is i such that kn � i < kn+1 and U [i,mi) �= ∅; and
(3) U [kn−1,kn+1) /∈ {U [ki−1,ki+1): i < n}.

(3) is possible since U [1,kn) �= X .
For each n, let Vn = {U [i,mi): kn � i < kn+1}. As

⋃
n

V2n−1 ∪
⋃

n

V2n = {
U [i,mi): i ∈ N

} ∈ B

and B is Ramseyan, there is j ∈ {0,1} such that
⋃

n V2n− j ∈ B. We consider the case j = 0 (the other case can be treated
similarly).

For each n, each element of V2n has the form U [i,mi) with k2n � i < k2n+1. By (1), U [i,mi) ⊆ U [k2n,k2n+2) . Thus,
{U [k2n,k2n+2): n ∈ N} is a finite-to-one derefinement of

⋃
n V2n , and is therefore a member of B. As B is finite-to-one dere-

finable, {U [1,k4)}∪ {U [k2n,k2n+2): n > 1} ∈ B, either, and this witnesses that the partition of U into the pieces {Ui: 1 � i < k4}
and {Ui: k2n � i < k2n+2}, n > 1, is as required in the statement U ∈ .(B)ג

Case 2. U has only finitely many disjoint finite subcovers. Let F be the family of all elements in these finite subcovers.
U \ F is a large cover of X not containing any finite subcover. By what we have just proved, U \ F ∈ .(B)ג As U \ F is
not multifinite, there is a partition P of U \ F into finite pieces, such that {⋃ V : V ∈ P } ∈ B. Fix V0 ∈ P . P ′ = {V0 ∪
F } ∪ P \ {V0} is a partition of U into finite pieces. Define f : {⋃ V : V ∈ P } → {⋃ V : V ∈ P ′} by f (

⋃
V ) = ⋃

(V ∪ F ) if⋃
V = ⋃

V0, and f (
⋃

V ) = ⋃
V otherwise. As f is finite-to-one and B is finite-to-one derefinable, {⋃ V : V ∈ P ′} ∈ B,

and thus U ∈ .(B)ג �
Note that for each family of covers B, Ufin(O,B) implies Ufin(O, O). Clearly, Ufin(O, O) = Sfin(O, O). Thus, Lemma 7

shows that the implication (1) ⇒ (2) of Theorem 6 holds for each Ramseyan and bijectively derefinable family of covers B.
The following will be used often.

Lemma 8. (See [8].) Sfin(O, O) = Sfin(Λ,Λ) = Sfin(Ω,Λ) = Sfin(Γ,Λ).

Lemma 9. The following are equivalent:

(1) Sfin(O, O).
(2) ONE has no winning strategy in Gfin(Λ,Λ).
(3) ONE has no winning strategy in Gfin(Ω,Λ).
(4) ONE has no winning strategy in Gfin(Γ,Λ).

Proof. Recall that Sfin(O, O) = Sfin(Λ,Λ). Sfin(Λ,Λ) is equivalent to (2) [9, Theorem 5].
As Γ ⊆ Ω ⊆ Λ, (2) ⇒ (3) ⇒ (4). But (4) implies Sfin(Γ,Λ), which is the same as (1) [8]. �
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Corollary 10. The conjunction of Sfin(O, O) and Λ = (B)ג implies that ONE has no winning strategy in any of the games
Gfin(Λ, ,((B)ג Gfin(Ω, ,((B)ג or Gfin(Γ, .((B)ג

Proof. Lemma 9 and the assumption Λ = .(B)ג �
This gives (2) ⇒ (3) of Theorem 6. (3) ⇒ (4) in that theorem is clear. It remains to show that (4) ⇒ (1). As Γ ⊆ Ω ⊆ Λ,

it suffices to prove the following.

Lemma 11. Assume that B is finite-to-one derefinable. Then Sfin(Γ, ((B)ג implies Ufin(O,B).

Proof. Assume that X satisfies Sfin(Γ, .((B)ג As Ufin(O,B) = Ufin(Γ,B) [8], it suffices to prove that X satisfies Ufin(Γ,B).
Let Un , n ∈ N, be disjoint open γ -covers of X which do not contain a finite subcover. Enumerate each Un bijectively as

{Un
k : k ∈ N}. For each n, let

Vn = {
U 1

m ∩ U 2
m ∩ · · · ∩ Un

m: m ∈ N
}
.

For each n, Vn is an open γ -cover of X . Apply Sfin(Γ, ((B)ג to obtain for each n a finite subset Fn ⊆ Vn such that⋃
n Fn ∈ .(B)ג Each U ∈ ⋃

n Fn is a subset of some element of U1, hence for each finite subset F ⊆ ⋃
n Fn ,

⋃
F �= X .

Therefore
⋃

n Fn is not multifinite.
Let {Xm: m ∈ N} be a partition of

⋃
n Fn into finite pieces such that {⋃ Xm: m ∈ N} ∈ B. Let

f (m) = min{k: Xm ∩ Fk �= ∅},
and put

Yn =
⋃

m∈ f −1(n)

Xm.

The sets { f −1(n): n ∈ N} form a partition of N. Since each Fk is finite and the Xm ’s are disjoint, f −1(n) is finite for all n. It
follows that each Yn is a finite set. Each member of Yn belong to some Fk ⊆ Vk for some k � n.

For each n, choose ψ(n) ∈ N such that:

(1) If Un
k ∈ Un appear as term in the sets of Yn then ψ(n) � k.

(2) The sets
⋃

k�ψ(n) Un
k are distinct for different values of n.

This is possible since {⋃k�m Un
k : m ∈ N}, n ∈ N, are γ -covers.

Define Zn = {Un
k : k � ψ(n)}. The sets Zn are finite and disjoint. For each n ∈ N,

⋃
Yn ⊆ ⋃

Zn �= X . Hence {⋃ Zn: n ∈ N}
is a finite derefinement of {⋃ Xn: n ∈ N}. Therefore {⋃ Zn: n ∈ N} ∈ B and the sequence {Zn}n∈N witnesses that X has the
property Ufin(Γ,B). �

This completes the proof of Theorem 6.

3. Partition relations for glueable covers

The symbol [A]n denotes the set of n-element subsets of A. For a positive integer k, the Baumgartner–Taylor partition
relation [2]

A → �B2
k

denotes the following statement: For each A in A and each f : [A]2 → {1, . . . ,k}, there are

(1) B ⊆ A such that B ∈ B;
(2) a partition of B into finite pieces B = ⋃

n∈N
Bn; and

(3) j ∈ {1, . . . ,k},

such that f ({U , V }) = j for all U , V ∈ B which do not belong to the same Bn .
The Baumgartner–Taylor partition relation is one of the most important partition relations in the studies of open covers

and their combinatorial properties—see [4] for a survey of this field.

Lemma 12. (See [7].) If each member of B is infinite and A → �B2
2 holds, then A ⊆ Ω .

Together with Theorem 6, the following gives a Ramsey theoretic characterization of properties of the form Ufin(O,B).
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Theorem 13. Assume that B is Ramseyan and finite-to-one derefinable. The following are equivalent:

(1) Sfin(Ω, .((B)ג
(2) For each k, Ω → 2(B)ג�

k holds.

(3) Ω → 2(B)ג�
2 .

Proof. (1) ⇒ (2) This follows from Theorem 6 and the following.

Lemma 14. (See [5].) Assume that A is Ramseyan. If ONE has no winning strategy in the game Gfin(A ,B), then for each k, A →
�B2

k holds.

(3) ⇒ (1) Assume that X satisfies Ω → 2(B)ג�
2. By Theorem 6, it suffices to show that X satisfies Ufin(Γ,B).

Let Un , n ∈ N, be open γ -covers of X which do not contain a finite subcover. Enumerate each Un bijectively as {Un
k :

k ∈ N}. For each n, define

Vn = {
U 1

k ∩ U 2
k ∩ · · · ∩ Un

k : k ∈ N
}
,

and let V = ⋃
n∈N

Vn . Then, V is an ω-cover of X . For each element of V fix a representation of the form U 1
k ∩ U 2

k ∩ · · ·∩ Un
k .

Define a function f : [V ]2 → {1,2} by

f
({V 1, V 2}

) =
{

1 if V 1 and V 2 are from the same Vn,

2 otherwise.

Choose W ⊆ V such that W ∈ ,(B)ג a partition W = ⋃
k Wk into finite pieces, and a color j ∈ {1,2}, such that for A

and B from distinct Wk ’s, f ({A, B}) = j. Consider the possible values of j.
j = 1: Then there is an n such that for all A ∈ W we have A ⊆ U 1

n �= X . Hence W is not a cover. Contradiction.
j = 2: Let Fn = W ∩ Vn . Then each Fn is finite. From this point, the proof continues as in the proof of Lemma 11. �

4. Selecting one element from each cover

We now consider the following selection principle.

S1(A ,B): For each sequence {Un}n∈N of elements of A , there exist Un ∈ Un , n ∈ N, such that {Un: n ∈ N} ∈ B.

The corresponding game G1(A ,B), is defined as follows: At the nth inning ONE chooses a cover Un ∈ A and TWO
chooses Un ∈ Un . TWO wins if {Un: n ∈ N} ∈ B. Otherwise, ONE wins.

The corresponding partition relation, called the ordinary partition relation, is defined as follows. For positive integers n
and k,

A → (B)n
k

means: For each A ∈ A and each f : [A]n → {1, . . . ,k}, there is B ⊆ A such that B ∈ B, and f |[B]n is constant.
The following theorem was proved in [5] for B = Γ , and in [1] for B = Ω .

Theorem 15. Let B be Ramseyan and finite-to-one derefinable. The following are equivalent:

(1) S1(O, O) and Ufin(O,B).
(2) S1(Λ, .((B)ג
(3) S1(Ω, .((B)ג
(4) ONE has no winning strategy in the game G1(Ω, .((B)ג
(5) Ω → 2((B)ג)

2 .
(6) Ω → 2((B)ג)

k for all k.

Proof. (1) ⇒ (2) S1(O, O) = S1(Λ,Λ). By Lemma 7, Λ = (B)ג for X . Thus, X satisfies S1(Λ, .((B)ג
(2) ⇒ (3) Ω ⊆ Λ.
(3) ⇒ (1) As S1(Ω, ((B)ג implies Sfin(Ω, ,((B)ג we have by Lemma 11 that Ufin(O,B) holds, and that (B)ג = Λ. Thus,

X satisfies S1(Ω,Λ), which is the same as S1(O, O) [8].
(1) ⇒ (4) By [9, Theorem 3], S1(O, O) implies that ONE does not have a strategy in G1(Λ,Λ), and in particular in

G1(Ω,Λ). Again, use Theorem 6 to get that Λ = .(B)ג
(4) ⇒ (6) Follows from [5, Theorem 1].
(6) ⇒ (5) is immediate.



N. Samet et al. / Topology and its Applications 156 (2009) 616–623 621
(5) ⇒ (3) As B is Ramseyan, B ⊆ Ω , and therefore (B)ג ⊆ Λ. Thus, (5) implies Ω → (Λ)2
k . Using the methods of [5],

one can prove that Ω → (Λ)2
k implies S1(Ω,Λ) [7]. Clearly, (5) also implies Ω → 2(B)ג�

2, and by Theorem 13, we get
Λ = .(B)ג �
5. Applications

5.1. γ -covers

As every infinite subset of a γ -cover is again a γ -cover of the same space, Γ is Ramseyan.

Lemma 16. Γ is finite-to-one derefinable.

Proof. Assume that U ∈ Γ and f : U → V is finite-to-one and surjective. As f is finite-to-one and U is infinite, V is infinite.
Assume that x ∈ X and W = {V ∈ V : x /∈ V } is infinite. For each V ∈ W and each U ∈ f −1(V ), U ⊆ V and thus x /∈ U . As f
is surjective,

⋃
V ∈W f −1(V ) is infinite. A contradiction. �

Thus, we can directly apply Theorems 6, 13, and 15, and obtain the following.

Theorem 17. (See [5].) The following are equivalent:

(1) Ufin(O,Γ ).
(2) Sfin(O, O) and Λ = Γ)ג ).
(3) ONE has no winning strategy in Gfin(Ω, Γ)ג )).
(4) Sfin(Ω, Γ)ג )).
(5) For each k, Ω → Γ)ג� )2

k holds.
(6) Ω → Γ)ג� )2

2 .

Theorem 18. (See [5].) The following are equivalent:

(1) S1(O, O) and Ufin(O,Γ ).
(2) S1(Λ, Γ)ג )).
(3) S1(Ω, Γ)ג )).
(4) ONE has no winning strategy in the game G1(Ω, Γ)ג )).
(5) Ω → Γ)ג) ))2

2 .
(6) Ω → Γ)ג) ))2

k for all k.

5.2. ω-covers

Definition 19. A cover V is a derefinement of a cover U if U refines V . A is derefinable if for each U ∈ A and each
derefinement V ∈ O of U , V ∈ A .

Ω is derefinable, and in particular finite-to-one derefinable.

Lemma 20 (Folklore). Ω is Ramseyan.

Proof. Assume that U ∈ Ω and U = U1 ∪ · · · ∪ Un and no Ui ∈ Ω . For each i, choose a finite subset Fi of X witnessing
Ui /∈ Ω . Then F = F1 ∪ · · · ∪ Fn is not covered by any element of U . A contradiction. �

In the forthcoming Theorem 21, we reproduce the statements of Theorems 2 and 3 of [1]. One direction in the proof of
Theorem 3 in [1] uses Theorem 4 of [5], which in turn requires that (Ω)ג is derefinable. Unfortunately, by Theorem 2 of [1],
spaces dealt with in this theorem only have Λ = .(Ω)ג But Λ is not derefinable: Fix distinct a,b, xn ∈ X , n ∈ N. Then the
large cover {X \ {a, xn}, X \ {b, xn}: n ∈ N} refines {X \ {a}, X \ {b}}. Our results give a corrected proof of this direction.

Theorem 21. The following are equivalent:

(1) Ufin(O,Ω).
(2) Sfin(O, O) and Λ = .(Ω)ג
(3) ONE has no winning strategy in Gfin(Ω, .((Ω)ג
(4) Sfin(Ω, .((Ω)ג
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(5) For each k, Ω → 2(Ω)ג�
k holds.

(6) Ω → 2(Ω)ג�
2 .

Proof. Ω is derefinable and Ramseyan (Lemma 20). Apply Theorems 6 and 13. �
As in the previous theorem, the following Theorem 22 reproduces Theorem 5 of [1] and fixes a problem similar to the

above-mentioned one in the original proof of the implication (5) ⇒ (3) below.

Theorem 22. The following are equivalent.

(1) S1(O, O) and Ufin(O,Ω).
(2) S1(Λ, .((Ω)ג
(3) S1(Ω, .((Ω)ג
(4) ONE has no winning strategy in the game G1(Ω, .((Ω)ג
(5) Ω → 2((Ω)ג)

2 .
(6) Ω → 2((Ω)ג)

k for all k.

Proof. Apply Theorem 15. �
5.3. τ ∗-covers

Let [N]ℵ0 = {A ⊆ N: |A| = ℵ0}. For A, B ∈ [N]ℵ0 , A ⊆∗ B means that A \ B is finite. A family Y ⊆ [N]ℵ0 is linearly refinable
if for each y ∈ Y there exists an infinite subset ŷ ⊆ y such that the family Ŷ = { ŷ: y ∈ Y } is linearly ordered by ⊆∗ .

A countable cover U = {Un: n ∈ N} of X is a τ ∗-cover of X if {{n: x ∈ Un}: x ∈ X} is linearly refinable. T∗ is the collection
of all τ ∗-covers. Γ ⊆ T∗ ⊆ Ω .

T∗ is derefinable [10]. In particular, T∗ is finite-to-one derefinable. (This latter assertion is easier to see.)

Proposition 23. T∗ is Ramseyan.

Proof. Let {Un: n ∈ N} be a bijective enumeration of a τ ∗-cover U of X . For each x ∈ X , let xU = {n: x ∈ Un}, and let x̂U be
an infinite subset of xU such that the sets x̂U are linearly ordered by ⊆∗ .

Consider a partition U = V ∪ (U \ V ). Define A = {n: Un ∈ V }. We may assume that both A and its complement are
infinite.

For each x ∈ X , define x̂V = x̂U ∩ A and x̂U \V = x̂U ∩ Ac . If {x̂V : x ∈ X} ⊆ [N]ℵ0 or {x̂U \V : x ∈ X} ⊆ [N]ℵ0 then we are
done. If this is not the case, then there are some x, y ∈ X such that x̂V and ŷU \V are finite. Without loss of generality,
assume that ŷU ⊆∗ x̂U . Thus,

ŷV = ŷU ∩ A ⊆∗ x̂U ∩ A = x̂V

but ŷV is infinite and x̂V is finite. A contradiction. �
By Theorems 6 and 13, we have the following.

Theorem 24. The following are equivalent:

(1) Ufin(O,T∗).
(2) Sfin(O, O) and Λ = .(∗T)ג
(3) ONE has no winning strategy in Gfin(Ω, .((∗T)ג
(4) Sfin(Ω, .((∗T)ג
(5) For each k, Ω → 2(∗T)ג�

k holds.

(6) Ω → 2(∗T)ג�
2 .

By Theorem 15, we have the following.

Theorem 25. The following are equivalent:

(1) S1(O, O) and Ufin(O,T∗).
(2) S1(Λ, .((∗T)ג
(3) S1(Ω, .((∗T)ג
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(4) ONE has no winning strategy in the game G1(Ω, .((∗T)ג
(5) Ω → 2((∗T)ג)

2 .
(6) Ω → 2((∗T)ג)

k for all k.
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