The product of a Fréchet space and a metrizable space

Eric K. van Douwen*

Abstract

We give a simple example of a Fréchet space and a metrizable space whose product is not sequential. A consequence of our example is that the product of the sequential fan and a first countable space Y is sequential iff Y is locally countably compact.

Keywords: Fréchet space, sequential space, product.

The purpose of this paper is to give a particularly simple description of the following example, first given by Franklin [4], and Dudley [2].

Example 1. There are a Fréchet space and a metrizable space whose product is not sequential.

The join of two topologies \mathcal{F} and \mathcal{T} on a set is denoted $\mathcal{F} \vee \mathcal{T}$. We need the following known fact, which is useful to study both joins and products:

Lemma. If \mathcal{F} and \mathcal{T} are topologies on a set X, then $\langle X, \mathcal{F} \rangle \times \langle X, \mathcal{T} \rangle$ has a subspace homeomorphic to $\langle X, \mathcal{F} \vee \mathcal{T} \rangle$; this subspace is closed if the topology $\mathcal{F} \cap \mathcal{T}$ on X is Hausdorff.

Proof. Let Δ denote the diagonal $\{(x, x) : x \in X\}$ of the set X. The function $x \mapsto (x, x)$ $(x \in X)$, is easily seen to be a homeomorphism of $\langle X, \mathcal{F} \rangle$ onto the subspace Δ of the space $\langle X, \mathcal{F} \rangle \times \langle X, \mathcal{T} \rangle$ [5, 81].

Since if \mathcal{U} is a topology on X then Δ is closed in $\langle X, \mathcal{U} \rangle \times \langle X, \mathcal{U} \rangle$ if (and only if) \mathcal{U} is Hausdorff, Δ is closed in $\langle X, \mathcal{F} \rangle \times \langle X, \mathcal{T} \rangle$ if $\mathcal{F} \cap \mathcal{T}$ is Hausdorff.

* Partially supported by an NSF Grant.
(However, \(\Delta \) can be closed in \((X, \mathcal{F}) \times (X, \mathcal{F}) \) without \(\mathcal{F} \cap \mathcal{F} \) being Hausdorff. Let \(\mathcal{F} \) be any non-Hausdorff \(T_1 \)-topology and let \(\mathcal{F} \) be the discrete topology.)

Since the property of being sequential is closed hereditary, this implies that Example 1 follows from:

Example 2. There are a Fréchet topology \(\mathcal{F} \) and a metrizable topology \(\mathcal{T} \) on a set \(X \) such that \(\mathcal{F} \cap \mathcal{T} \) is Hausdorff and \(\mathcal{F} \cup \mathcal{T} \) is not sequential.

Proof. Let \(X = \omega \times \omega \cup \{\infty\} \), where \(\infty \notin \omega \times \omega \). In both \(\mathcal{F} \) and \(\mathcal{T} \) all points of \(\omega \times \omega \) are isolated.

In \(\mathcal{F} \) neighborhoods of \(\infty \) contain all but finitely many points of every column \(\{k\} \times \omega \). Of course \((X, \mathcal{F}) \) is Fréchet. \((X, \mathcal{F}) \) is well known: it is the sequential fan.

In \(\mathcal{T} \) neighborhoods of \(\infty \) include all but finitely many columns \(\{k\} \times \omega \), i.e., basic neighborhoods of \(\infty \) have the form \(\{\infty\} \cup \{k, \omega\} \times \omega \), where \(k \in \omega \). This space also is well known: A first countable space \(S \) is not locally countably compact at \(p \) iff there is a closed embedding \(e : (X, \mathcal{T}) \to S \) such that \(e(\infty) = p \).

\(\mathcal{F} \cap \mathcal{T} \) is regular, hence Hausdorff, since all points of \(\omega \times \omega \) are clopen in both \(\mathcal{F} \) and \(\mathcal{T} \), hence in \(\mathcal{F} \cap \mathcal{T} \). (Note that \(\mathcal{F} \cap \mathcal{T} \) is the one-point compactification of discrete \(\omega \times \omega \).)

\((X, \mathcal{F} \cup \mathcal{T}) \) is not sequential since it is Arens's space \[1\]: Points of \(\omega \times \omega \) are isolated and neighborhoods of \(\infty \) contain all but finitely many points of all but finitely many columns, and so \((X, \mathcal{F} \cup \mathcal{T}) \) is badly non-Fréchet: it is not discrete but it does not have nontrivial convergent sequences. \(\square \)

Corollary to Proof. Let \(\mathcal{F} \) denote the sequential fan, i.e., \(\mathcal{F} = (X, \mathcal{F}) \). If \(Y \) is first countable, then \(\mathcal{F} \times \mathcal{Y} \) is Fréchet iff \(X \) is locally countably compact.

Proof. If \(Y \) is locally countably compact, then \(\mathcal{F} \times \mathcal{Y} \) is sequential since the product of a sequential space and a locally countably compact sequential space is sequential, \[3, 3.10.1.(b)\].

If \(Y \) is not locally compact, then, as pointed out above, there is a closed embedding of \((X, \mathcal{F}) \) into \(\mathcal{Y} \), hence then \(\mathcal{F} \times \mathcal{Y} \) is not sequential since it has \(\mathcal{F} \times (X, \mathcal{F}) \) as closed nonsequential subspace. \(\square \)

This has further consequences, e.g. since \(\mathcal{F} \) embeds as a closed subspace in every nonmetrizable closed image of a metrizable space. We leave these to the reader.

References