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Metabolic engineering approaches to increase plant oil levels can generally be divided into catego-
ries which increase fatty acid biosynthesis (‘Push’), are involved in TAG assembly (‘Pull’) or increase
TAG storage/decrease breakdown (‘Accumulation’). In this study, we describe the surprising synergy
when Push (WRI1) and Pull (DGAT1) approaches are combined. Co-expression of these genes in the
Nicotiana benthamiana transient leaf expression system resulted in TAG levels exceeding those
expected from an additive effect and biochemical tracer studies confirmed increased flux of carbon
through fatty acid and TAG synthesis pathways. Leaf fatty acid profile also synergistically shifts from
polyunsaturated to monounsaturated fatty acids.
Crown Copyright � 2013 Published by Elsevier B.V. on behalf of Federation of European Biochemical

society. Open access under CC BY-NC-ND license.
1. Introduction

Biosynthesis of triacylglycerols (TAG) mainly occurs via the
Kennedy or glycerol-3-phosphate (G3P) pathway in which three
acyl chains are esterified to a glycerol backbone [1]. The first acyl-
ation step is catalyzed by the glycerol-3-phosphate acyltransferase
(GPAT) using acyl-CoA esters as acyl-donor and G3P as acyl-
acceptor. Lysophosphatidic acid is subsequently acylated by the
lysophosphatidic acid acyltransferase (LPAAT). The product, phos-
phatidic acid, is further dephosphorylated to diacylglycerol (DAG)
by the phosphatidic acid phosphatase (PAP). Finally, diacylglycerol
acyltransferase (DGAT) esterifies a third acyl chain to DAG to form
TAG. Since DAG can also serve as a precursor for membrane phos-
pholipids, the reaction catalysed by DGAT is the only step within
the Kennedy pathway that is solely committed to the biosynthesis
of storage lipids. A second enzymatic reaction catalyzed by the
phosphatidyl glycerol acyltransferase (PDAT) also results in the
conversion of DAG to TAG but uses phospholipids instead of
acyl-CoA as acyl-donor. A number of recent studies in different
plants, however, have uncovered an intricate flux network be-
tween neutral lipid intermediates of the Kennedy pathway and
membrane phospholipids thus complicating metabolic engineering
efforts for increased storage lipid accumulation [2–4].

Current metabolic engineering strategies for increasing plant
lipids can be broadly categorized as either upregulation of fatty
acid biosynthesis (a ‘Push’ approach), increasing TAG assembly (a
‘Pull’ approach) and optimizing TAG storage/preventing TAG
breakdown (the ‘Accumulation’ approach). Examples of these ap-
proaches include the overexpression of DGAT1 in leaf [5,6] and
seed tissue [7,8], use of monoacylglycerol as a substrate for TAG
biosynthesis in Nicotiana benthamiana leaves by heterologous
expression of a mammalian MGAT acyltransferase [9], overexpres-
sion of acetyl-CoA carboxylase (ACCase) in potato tubers and to-
bacco chloroplasts [10,11], blocking lipid breakdown by targeting
TAG lipases and b-oxidation [12,13], mutation of the TGD1 chloro-
plast lipid transporter [14], heterologous expression of transcrip-
tion factors (LEC1, LEC2, WRI1) that drive seed development and
maturation [15–21] as well as diverting the flow of carbon from
starch biosynthesis to lipids by silencing of the ADP-glucose-pyro-
phosphorylase (AGPase) [17]. Top-down metabolic control analy-
ses have revealed that both the Push and Pull side can control
the overall flux of carbon into lipids with the relative importance
of each depending on the oilseed species and tissue [7,22,23].

Few reports describe combinations of various oil increase tech-
nologies, especially those comprising the simultaneous optimiza-
tion of both Push and Pull aspects of TAG metabolism. One
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notable exception is a study which reports the overexpression of
WRI1 and silencing of AGPase in Arabidopsis thaliana [17]. It is
likely that TAG increases significantly greater than those achieved
in the above studies will require a metabolic engineering approach
which simultaneously addresses limitations on both push and pull
sides of storage oil biosynthesis. In this study we use the transient
N. benthamiana leaf assay system to show that combining Push and
Pull approaches can yield surprisingly synergistic relationships and
result in a larger than expected increase in TAG levels in plant tis-
sues. We also describe the large shifts in fatty acid profile that oc-
cur under such a synergistic relationship.
2. Materials and methods

2.1. Genes and expression vectors

The construction of a binary vector containing the A. thaliana
DGAT1 gene expressed by the constitutive CaMV-35S promoter
with duplication enhancer region is described elsewhere in detail
[9]. A second binary vector containing the A. thaliana WRI1 gene
expressed by the CaMV-35S promoter was constructed by cloning
a codon optimised version of the gene as an EcoRI fragment into
the EcoRI site of a binary vector already containing a 35S promoter
with duplicated enhancer region and Agrobacterium tumefaciens
NOS terminator. Both constructs were transformed in A. tumefac-
iens AGL1. A chimeric construct containing the tomato bushy stunt
virus p19 viral silencing suppressor gene under the control of the
35S promoter and transformed into A. tumefaciens GV3101 was ob-
tained from Dr. Peter Waterhouse (CSIRO Plant Industry).

2.2. Transient expression in N. benthamiana

Transient expression in N. benthamiana leaves was performed as
described [24,25] with some minor modifications. A. tumefaciens
cultures containing the gene coding for the p19 viral suppressor
protein and the chimeric gene(s) of interest were mixed such that
the final OD600 of each culture was equal to 0.125 prior to infiltra-
tion. For lipid analyses, a total of 18 leaves from 6 plants were infil-
trated with the different gene combinations. Samples being
compared were randomly located on the same leaf. After infiltra-
tions, N. benthamiana plants were grown for a further five days be-
fore leaf discs were harvested, pooled across the three leaves from
the same plant, freeze-dried, weighed and stored at �80 �C.
2.3. [14C] acetate radiolabeling

A radiolabel biochemical tracer study was performed with two
leaves infiltrated on the same plant. Three leaf discs of each infil-
tration were pooled randomly across the two leaves for each feed-
ing time point. The assay was performed using [14C] acetate
(56 mci/mmol from American Radiolabeled Chemicals) as a sub-
strate at a concentration of 0.4 mM in potassium phosphate buffer
(0.1 M pH 7.2). After incubation, total lipids were extracted from
each time point as described by [9]. Lipid samples were loaded
on a thin layer chromatography (TLC) plate (20 � 20 cm, Silica
gel 60, Merck) and developed in two-step solvent system. Samples
were first run to 12 cm in chloroform:methanol:acetic acid:water
(68:22:6:4 v/v/v/v), followed by a second separation in hex-
ane:diethyl ether:acetic acid (70:30:1 v/v/v). The TLC plate was ex-
posed to phosphor imaging screens overnight and analysed by a
Fujifilm FLA-5000 phosphorimager. Radiolabelled lipid spots were
measured using a Beckman-Coulter Ready Safe liquid scintillation
cocktail and Beckman-Coulter LS 6500 Multipurpose Scintillation
Counter.
2.4. Neutral and polar lipid quantification and fatty acid profiling by
TLC and gas chromatography (GC)

Total lipids were extracted from leaf tissues using chloro-
form:methanol:0.1 M KCl (2:1:1 v/v/v). Freeze dried leaf tissues
were first homogenized in chloroform:methanol in a microcentri-
fuge tube containing a metallic ball using Reicht tissue lyser (Qia-
gen) for 3 min at 20 frequency/s. After mixing homogenate at
2000 rpm (Vibramax 10, Heidolph) for 10 min, KCl was added
and mixed for a further 5 min. Finally, the mixture was centrifuged
for 5 min at 10 000�g and the lower lipid phase collected. The
remaining phase was washed once with CHCl3 and lipid phase
pooled to the earlier extract. Solvent of lipid phase was evaporated
completely using N2 flow and a known volume of CHCl3 was added
for per mg leaf dry weight.

TAG and polar lipids were fractionated by TLC (Silica gel 60,
MERCK) in hexane:diethylether:acetic acid (70:30:1 v/v/v) and
visualized by spraying Primuline (Sigma, 5 mg/100 ml ace-
tone:water (80:20 v/v)) and exposing plate under UV. Fatty acid
methyl esters (FAME) of TAG and PL (polar lipids) were produced
by incubating corresponding bands in 1 N methanolic–HCl (Supe-
lco, Bellefonte, PA) at 80 �C for 2 h together with known amount
of heptadecanoin (Nu-Chek PREP, Inc. USA) as internal standard
to quantify TAG. To quantify total fatty acids in total lipids, known
amount of heptadecanoic acid (Nu-Chek PREP, Inc. USA) was used
as internal standard. FAME were analyzed by GC-FID (7890A GC,
Agilent Technologies, Palo Alto, CA) equipped with a 30 m
BPX70 column (0.25 mm inner diameter, 0.25 mm film thickness,
SGE, Austin, Tx) as described previously [9]. Peaks were integrated
with Agilent Technologies ChemStation software (Rev B.04.03
(16)).

TAG content in leaf was calculated as the sum of glycerol and
fatty acyl moieties using the relation: % TAG by weight = 100 �
((41 � total mol FAME/3) + (total g FAME-(15 � total mol FAME)))/
g leaf dry weight, where 41 and 15 are molecular weights of
glycerol moiety and methyl group, respectively.

2.5. Statistical analysis

TAG levels were transformed using the cube-root equation
(X = Y1/3) to achieve approximate variance heterogeneity on the
transformed scale. The transformed data were analyzed as a ran-
domized complete block design using the R statistical software
(version 2.15.1). To investigate the significance of a synergistic ef-
fect on the original scale of the data, a 95% confidence interval for
the interaction contrast (representing the size of the synergistic ef-
fect) was obtained on the original scale using a Bayesian bootstrap
approach [26]. This interval (1.302–1.617) did not include zero,
confirming a statistically significant synergistic effect on TAG lev-
els at the 5% level of significance.

In the case of 18:1D9 levels, data were first transformed (log10)
to achieve approximate variance heterogeneity. The transformed
values were then analyzed and a 95% confidence interval for the
synergistic effect was derived as described for the TAG quantifica-
tion data. Similarly, this interval (8.336–14.197) did not include
zero, confirming a significant synergistic effect on 18:1D9 levels
at the 5% level of significance.
3. Results

3.1. Synergistic effect of WRI and DGAT1 expression in N. benthamiana

During seed development, expression of several enzymes in-
volved in the glycolysis and de novo fatty acid biosynthesis path-
ways is controlled by the WRI1 transcription factor [27,28]. We
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therefore first tested the effect of expression of the A. thaliana
WRI1 transcription factor on TAG levels and fatty acid profiles in
N. benthamiana leaves. Under these assay conditions TAG levels
were found to be increased 22-fold compared to the p19 negative
control and corresponded to 0.57% on a dry weight basis (Fig. 1).
Next we compared this with the effect of expressing the A. thaliana
DGAT1 gene which had previously been shown to increase TAG
levels in N. benthamiana leaf tissue [9]. Expression of this acyltrans-
ferase was found to yield similar TAG levels (0.45%, Fig. 1). When
both the A. thaliana WRI1 and DGAT1 genes were co-infiltrated, a
significant synergistic effect on leaf oil accumulation was observed
with TAG levels increasing almost 100-fold and making up 2.48% of
the leaf dry weight (Fig. 1). A mere additive rather than synergistic
effect between the two genes would account for only 1.02% on a
dry weight basis (Fig. 1). As a result, 59% of the total TAG yield ob-
tained upon the coexpression of the WRI1 and DGAT1 genes can be
attributed to a synergistic effect between the two genes. Interest-
ingly, no significant differences were observed when polar lipids
were quantified.

3.2. Changes to fatty acid profile

The fatty acid profile of the TAG fraction of each infiltration was
determined by GC (Table 1). Analysis of the TAG profile revealed a
similar significant synergistic effect on 18:1D9 levels. This increase
came mostly at the expense of 18:3D9,12,15. Expression of WRI1
seemed to result in decreased levels of 18:0 while expression of
DGAT1 positively affected 18:2D9,12 levels. Similar although less
outspoken changes in both 18:1D9 and 18:3D9,12,15 were also de-
tected in the polar lipid fraction (Table 1).

3.3. [14C] acetate labelling

In order to investigate the biochemical nature of the TAG accu-
mulation response further we performed labelling studies with
[14C] acetate substrate [2]. In particular, we wanted to determine
the likely involvement of PC in TAG synthesis as a series of papers
by Bates et al. [2–4,29] have shown that, depending on the plant
Fig. 1. Polar lipid and TAG levels in transiently-transformed N. benthamiana leaf
tissue as a percentage of dry tissue weight. All genes were constitutively expressed
by the CaMV 35S promoter with gene identities being tomato bushy stunt virus p19
viral silencing suppressor gene (negative control, common to all samples), A.
thaliana WRI1, A. thaliana DGAT1 and a combination (Comb.) of A. thaliana WRI1
and DGAT1. Error bars denote standard deviation with n = 6 for all samples.
species, DAG is formed either de novo from PA or derived from
PC. However, no such biochemical data is available for the N. benth-
amiana model system. As shown in Fig. 2 and Supplementary Fig-
ure the label was readily incorporated into newly synthesised fatty
acids within 10 min after feeding. The flux of radiolabelled carbon
was observed to increase through both fatty acid synthesis and
TAG assembly pathways in both the WRI1 and DGAT1 samples.
Incorporation of the label into TAG in the leaf co-expressing
WRI1 and DGAT1 was greatest (42 pmol) with less label incorpo-
rated in either the WRI1 (7 pmol) or DGAT1 (24 pmol) samples
(Fig. 2). Conversely, incorporation of the label into phosphatidyl-
choline (PC) in DGAT1 infiltrated leaves increased sevenfold
(16.5 pmol of PC) when compared to the control p19 sample
(2.4 pmol). Unlike the TAG response, accumulation of the label in
PC upon the co-expression of WRI1 and DGAT1 was only slightly
higher compared to DGAT1 alone (Fig. 2). Interestingly, no further
increase of the label in DAG was observed when both wri1 and
dgat1 genes were co-expressed. In plants, DAG forms a minor
and transient neutral lipid class while a possible signalling role
has also been proposed [30,31]. As a result, accumulation of this
neutral lipid might be tightly regulated and rapid conversion to
PC and TAG might be two mechanisms to achieve this.
4. Discussion

We selected WRI1 and DGAT1 as representative Push and Pull
genes. The effects of these genes on lipid synthesis in seed and
vegetative tissues have been well documented. A. thaliana DGAT1
mutants accumulate less oil in leaves [12] and seeds [32]. Overex-
pression of DGAT1 increased both TAG and total fatty acid levels in
tobacco leaves [5,6] and seed oil content in A. thaliana [7,8]. Simi-
larly, constitutive overexpression of the WRI1 gene in A. thaliana
and maize yielded higher TAG levels in vegetative tissues [17]
and seed [19–21] while an A. thaliana wri1 knockout mutant exhi-
bit reduced seed oil content [28,33]. In addition, this transcription
factor has been suggested to play a major role in the accumulation
of high levels of storage lipids in the oil palm mesocarp [34]. Unlike
other master transcription factors (LEC1, LEC2) that regulate the
synthesis of seed storage compounds, ectopic overexpression of
WRI1 is not associated with negative phenotypic effects such as
impaired growth, reduced germination, somatic embryogenesis
or other abnormal morphologies [15,20,35,36]. Hence WRI1 has
become a target of significant interest to increase oil content in
both seeds and vegetative tissues.

Despite the central roles of WRI1 and DGAT1 in lipid biosynthe-
sis the authors are not aware of any studies reporting the
co-expression of both genes. We observed a significant synergistic
effect on TAG accumulation when both DGAT1 and WRI1 were
co-infiltrated in N. benthamiana leaves. This is likely due to the
combined upregulation of both the late glycolysis and fatty acid
biosynthesis pathways by WRI1 overexpression (Push) and an in-
creased demand for the resulting acyl and G3P building blocks
for TAG biosynthesis by DGAT1 overexpression (Pull). Co-expres-
sion of WRI1 and DGAT1 also resulted in a significant shift in fatty
acid profile with 18:1D9 increasing markedly at the expense of
polyunsaturated fatty acids. A similar (but less outspoken) change
in the fatty acid profile has been observed in tobacco leaves
expressing the A. thaliana DGAT1 gene [6] and seed fatty acid pro-
files of A. thaliana wri1 mutants are typically enriched in the poly-
unsaturated 18:3D9,12,15 whilst 18:1D9 levels are reduced [28,33].
We observed an increase in radiolabel accumulation in PC under
all treatments including DGAT1 [6]. Interestingly, the polar lipid le-
vel did not significantly change under any treatment in the tran-
sient expression system. It will be interesting to observe this
further in stable transformants.



Table 1
Fatty acid profile of both the TAG and polar lipid fractions of leaf discs expressing the tomato bushy stunt virus p19 viral silencing suppressor gene (negative control, common to
all samples), A. thaliana WRI1, A. thaliana DGAT1 and a combination (Comb.) of A. thaliana WRI1 and DGAT1. Errors denote standard deviation with n = 6 for all samples.

TAG Polar

p19 WRI1 DGAT1 Comb. p19 WRI1 DGAT1 Comb.

14:0 0.8 ± 0.3 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 – – – –
16:0 30.4 ± 1.7 33.9 ± 1.1 26.4 ± 1.3 27.8 ± 1.7 13.6 ± 0.3 17.3 ± 0.8 13.6 ± 0.3 16.4 ± 0.4
16:1D3t – – – – 3.1 ± 0.2 1.6 ± 0.2 3.1 ± 0.1 2.0 ± 0.1
16:1D9 0.4 ± 0.1 0.9 ± 0.1 0.1 ± 0.0 0.3 ± 0.0 0.2 ± 0.0 0.3 ± 0.0 0.1 ± 0.1 0.2 ± 0.0
16:3D7,10,13 1.1 ± 0.5 0.5 ± 0.0 0.5 ± 0.1 0.2 ± 0.0 8.9 ± 0.3 7.6 ± 0.3 8.8 ± 0.3 7.6 ± 0.1
18:0 10.4 ± 1.5 3.8 ± 0.2 9.7 ± 0.9 5.7 ± 0.1 2.4 ± 0.1 2.1 ± 0.1 2.3 ± 0.1 1.9 ± 0.0
18:1D9 3.9 ± 0.5 6.8 ± 1.1 6.3 ± 3.4 21.1 ± 2.5 1.9 ± 0.2 2.7 ± 0.4 2.8 ± 0.4 7.0 ± 0.8
18:1D11 0.3 ± 0.0 0.7 ± 0.1 0.2 ± 0.1 0.7 ± 0.0 0.3 ± 0.0 0.6 ± 0.1 0.4 ± 0.0 0.5 ± 0.0
18:2D9,12 20.4 ± 1.1 18.5 ± 0.7 27.1 ± 0.5 25.9 ± 0.6 11.5 ± 0.5 11.9 ± 0.5 14.0 ± 0.4 14.3 ± 0.5
18:3D9,12,15 29.5 ± 4.0 33.3 ± 1.4 21.7 ± 2.2 13.8 ± 0.5 57.3 ± 0.7 55.2 ± 1.4 53.8 ± 0.9 48.9 ± 0.7
20:0 1.4 ± 0.1 0.8 ± 0.1 3.7 ± 0.4 2.0 ± 0.2 0.3 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 0.3 ± 0.0
20:1D11 – 0.1 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 – – – –
20:2D11,14 – 0.1 ± 0.0 0.2 ± 0.0 0.1 ± 0.0 – – – –
20:3D11,14,17 – 0.1 ± 0.0 0.1 ± 0.0 – 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0
22:0 0.6 ± 0.4 0.3 ± 0.0 2.1 ± 0.3 1.3 ± 0.1 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.3 ± 0.0
24:0 0.8 ± 0.1 0.2 ± 0.0 1.5 ± 0.3 0.8 ± 0.1 0.2 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 0.3 ± 0.0

Fig. 2. Amount of radiolabelled product in pmol (LPA, lysophosphatidic acid; PA, phosphatidic acid; DAG, diacylglycerol; TAG, triacylglycerol; PC, phosphatidylcholine)
appearing 10 min after [14C] acetate feeding to leaf discs expressing the tomato bushy stunt virus p19 viral silencing suppressor gene (negative control, common to all
samples), A. thaliana WRI1, A. thaliana DGAT1 and a combination (Comb.) of A. thaliana WRI1 and DGAT1. Error bars denote standard deviation with n = 3 for all samples.
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More work is required to understand the synergistic relation-
ship between WRI1 and DGAT1. It will be interesting to determine
how feedback inhibition of the plastidial ACCase [37] is being af-
fected by this gene combination and whether the route taken by
18:1D9-CoA exported from the plastid to TAG is altered under these
high fatty acid and TAG synthesis conditions. Once exported from
the plastids, the majority of acyl chains are usually incorporated
into membrane phospholipids of the endoplasmic reticulum mem-
brane first where they can undergo further desaturation prior to
entering or re-entering the Kennedy pathway [2,3]. Upregulation
of both fatty acid and TAG biosynthesis pathways may result in
more 18:1D9-CoA entering the Kennedy pathway directly and, as
a result, being largely inaccessible for further modification such
as desaturation by the endogenous FAD2/FAD3 D12- and D15-
desaturases. Alternatively, there could be limitations on desatura-
tion activity under these conditions. The combined expression of
WRI1 and DGAT1 might also lead to changes in other enzymatic
activities involved in acyl transfer between different lipid pools
which influence the availability of acyl substrates to PC-type desat-
urases: examples of this could include upregulation of phospholi-
pase D which releases DAG from PC, downregulation of PDCT
which converts DAG back to PC or reduced LPCAT activity involved
in acyl editing.

Most biotechnological approaches directed at increasing stor-
age lipids in both seeds and non-seed tissues have focused on sin-
gle genes involved either directly or indirectly in fatty acid
biosynthesis (Push), TAG biosynthesis (Pull) or TAG storage/pre-
vention of breakdown (Accumulation). One reason for this is the
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practical difficulties associated with generating numerous trans-
genic events containing gene combinations. Assessing the com-
bined effect of multiple genes on TAG accumulation requires a
fast screening platform as a first selection tier that can replace
the necessity of generating a large number of stable transformants.
Recently, Tjellstrom et al. [38] proposed A. thaliana cell suspension
cultures as a model system for studying and engineering lipid syn-
thesis in vegetative tissues. However, authors noted significant dif-
ferences in lipid and fatty acid compositions between cell cultures
and A. thaliana leaf tissue especially regarding TAG levels and fatty
acid composition. We opted for the N. benthamiana transient leaf
expression system as a rapid combinatorial gene screening plat-
form due to the ease of the assay and the close relationship we
have previously observed between transient and stable expression
results [9,24,39–41].

In conclusion, we have described the significant synergistic ef-
fect on TAG biosynthesis and accumulation, as well as on 18:1D9

accumulation, when WRI1 and DGAT1 are co-expressed in plant
tissue. This illustrates the great potential of simultaneously upreg-
ulating both fatty acid and TAG biosynthesis pathways. Further
work is required to determine the extent of this synergy in plants
stably-transformed with constitutive, tissue-specific and inducible
expression systems. The authors expect that the longer expression
window associated with stable transformation will result in TAG
accumulation levels that significantly exceed currently-described
levels and that these could be further enhanced by the addition
or downregulation of other genes including oil body proteins
(e.g. oleosin) and TAG lipases.
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Appendix A. Supplementary data

Supplementary data (TLC plate showing radiolabelled products
described in Fig. 2. LPA, lysophosphatidic acid; PA, phosphatidic
acid; DAG, diacylglycerol; TAG, triacylglycerol; PC, phosphatidyl-
choline; MAG, monoacylglycerol; FFA, free fatty acids) associated
with this article can be found, in the online version, at http://
dx.doi.org/10.1016/j.febslet.2012.12.018.
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