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Abstract-The geometry and physics of three symmetric bilinear forms on the descrip- 
tion space, which in our phenomenological calculus underlies the representation of 
complex systems, are discussed. These three bilinear forms represent dissipation, Lor- 
entz metric and information, and their mathematical connections model a variety of 
physical and biological concepts, such as space and time, communication, causality, 
aging, discrimination and measurement. The phenomenological calculus of bilinear 
forms thus provides a unified theory of thermodynamics, relativity and quantum 
mechanics. 

1. INTRODUCTION 

This paper continues our epistemological exploration of the phenomenological calculus. 
Previous papers in the sequence are [l-6]. The phenomenological calculus is, in essence, 
an algorithm for the synthesis of mathematical representations of complex and highly 
interacting systems. The metric structure inherent in the algorithm provides relationship 
connecting representations. 

The mathematical object of the phenomenological calculus is the description space D, 
a subspace of the space Ti (H) of type-( 1,l) tensors over a real Hilbert space H. Members 
of D are dyadics of the form I? = a’Fi (Einstein’s summation convention), where u’ E 
H* and Fi E H, and are called response tensors. Along the way we shall review enough 
concepts from [l-6] to make the present paper self-contained. The phenomenological 
calculus has proven to be extremely versatile in its applicability to various biological, 
physical and chemical topics, and the reader is referred to [l-6] and also [7] for details. 

In the following we study three special bilinear forms on a description space and their 
interpretations in physical terms. The theory of bilinear forms has a long and rich history, 
highlighted by the work of Legendre, Gauss, Minkowski and Hasse. We shall investigate 
the implications of this theory in connection with our own phenomenological calculus. 

The principal interpretations of the mathematics of bilinear forms in this paper are 
conveyed through the theory of relativity. Thus this is an attempt to apply our phenom- 
enological calculus to the information concerning the geometric structure of the world, 
i.e. the structure of spacetime. In so doing, we pass freely between, indeed identify, 
physical and geometric concepts, hence agreeing implicitly with J. A. Wheeler’s celebrated 
slogan: “Physics is geometry.” 
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2. DYADICS 

Let H be a real Hilbert space of dimension n (finite or infinite) with inner product (., a). 
Let H* be its dual space, i.e. the space of all continuous linear functionals on H, with 
corresponding dual inner product (v, .)*. A type-(l) 1) tensor on H is a map from H* X 
H to R which is bilinear, i.e. linear in each of its two arguments. The linear space of type- 
(1, 1) tensors on H is denoted T:(H). 

A dyad aF, where a E H* and F E H, is a special type-(1, 1) tensor, the action of 
which is defined by 

aF(b, G) = (a, b)*(F, G) (1) 

for b E H*, G E H. Given dyads aF and bG, their double inner product is defined via 
(l), i.e. 

aF:bG = (a, b)*(F, G). (2) 

A dyadic is a finite sum of dyads, hence 

R = U’Fi. (3) 

(The Einstein summation convention is used throughout this paper.) Clearly R E 
T;(H), and the definition of the double inner product can be extended to dyadics. 

Given a basis {e’} for H*, every type-(1, 1) tensor R can be represented in terms of a 
dyadic 

R = eiFi (4) 

for some F,, F2, . . . E H. Thus T;(H) can be considered as the collection of dyadics 
with ei E H* as “coordinates” and Fi E H as “components”. This in fact is simply an 
alternative way of saying T:(H) = H @ H*. Then the double inner product is defined on 
all of T](H)-and indeed making T:(H) a Hilbert space[3]. 

If {ej} is the basis for H dual to {e’}, then every R E T;(H) can be represented by an 
II X n real matrix 

R = (Rj) = (R(e’, ej)). (5) 

Thus, in particular, T;(H) has dimension n2, and can therefore be identified as the real 
vector space R”‘, in which the dyadic (5) is identified with the vector 

R = (R;,R:,.. . ,R;,R:,.. . ,R;,. ..,R:,.. . ,R3. (6) 

Further, the double inner product : of dyadics in T;(H) is identified with the standard dot 
product . of vectors in R”’ under the (5) and (6) correspondence. So R E T;(H) admits 
two alternate descriptions at different hierarchical levels as 

REH@H*=:“@J[W” (7) 

and 

R E 1w”‘. (8) 
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Henceforth we shall make the (isopmorphism) identification (T;(H), :) = (R?, -) with 
(4) = (5) = (6). 

3. BILINEAR FORMS ON DESCRIPTION SPACE 

The description space D determined by a set of constitive parameters a’, a’, . . . , am 
E H* is 

D = {R = a’Fi : F1, Fz, . . . , F,,, E H} C T;(H). (9) 

Members R of D are called response tensors. So response tensors are simply dyadics 
having a specified form 

R = aiFi, (10) 

and belonging to a specified subspace D of T;(H). 
If {a’} spans a subspace of H* of dimension k 6 n, then D had dimension kn [2]. In 

the following we shall assume for convenience k = n, i.e. D = T;(H). For “proper” 
subspaces D C T;(H), the term “restricted to D” can be applied to all the operators and 
forms and the mathematics will remain valid with trivial modifications. 

A bilinear form (i.e. a (0, 2)-form) on D is a function f, which assigns to each ordered 
pair of response tensors R, S in D a scalar f(R, S) in [w, and which is linear as a function 
of either of its arguments when the other is fixed. The set of all continuous bilinear forms 
on D is a linear subspace of the space RDxD of all functions from D x D to R, and is 
denoted by E(D) (= D* @ D*). 

Using the (T;(H), :) = (IV*, a) isomorphism, we can make use of all the results of 
bilinear forms on vector spaces. (See [S], Chap. 10, for a review.) In particular, f E 
c(D) can be represented by the n2 x n2 matrix 

LflA = (fbk, 4) (11) 

where A = {(Ye} is an ordered basis for T;(H) = R”‘. For example, {ok} can be the 
“standard basis” {Ej = eiej} [defined in eqn (7) of [2]: E$ is an n x it matrix with 1 at 
position (i, j) and 0 elsewhere]. Thus, in fact, 

c(D) C T!#Y’). (12) 

Furthermore, matrices representing the same bilinear form in different bases are con- 
gruent. In other words, if P is the transition matrix from the basis A to the basis B, then 

LflB = PWM. (13) 

4. THREE SPECIAL BILINEAR FORMS 

A bilinear form f on D is symmetric if for all response tensors R, S in D, 

f(R, S) = f(S, RI. (14) 

The main object of this paper is the study of the following three symmetric bilinear forms 
on D. 
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(4 6(R, S) = R:S = tr(RS’), 

(b) X(R, S) = RT:S = tr(RS), 

(c) L(R, S) = tr(R) tr(S), 

(15) 

(16) 

(17) 

where tr denotes the trace function and T denotes the transpose function [of the matrix 
representation (5) of the respective response tensors]. Since these functions are invariant 
with respect to a change of bases, we can safely speak of the matrix representation (5), 
independent of the bases {e’}, {ej}, and the bilinear forms are well defined. It is easy to 
verify that 6, A and L are indeed symmetric, using the properties of tr and T. Further, 
these properties also ensure that 6, X and L are the only three distinct “binary” combi- 
nations of R and S under tr and T (e.g. tr(R%) = 6, tr(RTS7) = A, etc.). 

Associated with each symmetric bilinear form f is a quadraticform, a function q from 
D to [w defined by 

q(R) = f(R, R). (18) 

A symmetric bilinear form f E C(D) is completely determined by its associated quadratic 
form, according to the polarization identity 

f(R, S) = +q(R + S) - $q(R - S) = 2[q(R + S) - q(R) - q(S)]. (19) 

The quadratic forms associated with 6, X and L are 

(4 6(R) = R:R = 11 R (I’, 

(b) h(R) = RT: R = tr(R*), 

(c) L(R) = [tr( R)12. 

(20) 

(21) 

(22) 

We use the same symbols: 6, A and L- it is evident from the number of arguments whether 
the bilinear or the quadratic form is meant. 

It is clear that 6( R, S) is just the double inner product on D, while S(R) is the squared 
norm. In irreversible thermodynamics 6 is the dissipation function [l-6], and in quantum 
mechanics 8 is interpreted as the probability of events[6]. The interpretations of A and L 
will follow. 

5. MATRIX REPRESENTATIONS OF BILINEAR FORMS 

Let {e’} and {ci} be a set of dual bases for H* and H, and let response tensors be 
represented by the vector forms (6) in [w”‘. Then an ordered basis for ([WnZ, *) is 

E = {El, E:, . . . , E:, E:, . . . , E:, . . . , E;, . . . , Et}. (23) 

The matrix representations of our three special symmetric bilinear forms in the ordered 
basis E are the following three n* x rz* matrices: 

(4 [SIE = l,z,,z (identity matrix) (24) 

(25) 
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(where each Ej forms an n x n submatrix of the rz2 x rz2 matrix) 

Cc) [LIE = 

E; * * * E; 

(26) 

Note that [A]& = I,z, ,2, hence (the matrix representation of) A is a duality[41, and that 
[Xl, and [L]~ are mutual “transposes” if we consider them “n x n matrices with n x 12 

matrices as entries. ” 
As a running example, let us consider the case n = 2. Then 

rl 0 0 01 

(27) 

(28) 

(2% 

The rank r(f) of a bilinear form f is the rank of its matrix representation in any ordered 
basis. It is well defined because congruent matrices (13) have the same rank. In particular, 
we have 

(4 

(b) 

(c) 

r(6) = n2, 

r(A) = n2, 

r(L) = 1. 

(30) 

(31) 

(32) 

Thus both 6 and A have full rank-i.e. they are nondegenerate ( = nonsingular), and hence 
for every nonzero R E D there exists an S E D (and for every nonzero S E D there exists 
an R E D) such that 

6(R, S) # 0; (33) 

and similarly for A. The bilinear form L, on the other hand, is highly singular. 

6. DIAGONALIZATION AND SIGNATURE 

Let f be a symmetric bilinear form with rank r on a real vector space. Then there is 
an ordered basis {Pk} in which the matrix off is diagonal, and such that 

fmc, Pk) = 2 1, k= l,...,r. (34) 

Further, the number f + of basis vectors Pk for which f(&, Pk) = 1 (hence also the 
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number f - of basis vectors Pk for which f(Pk, &) = - 1) is independent of the choice 
of basis. The difference 

s(f) = f’ - f- (35) 

is thus an invariant off, and is called the signature off. (Note also that Y = f’ + f- .) 
The above is known as the Jacobi-Sylvester Inertia Theorem[8] (Section 10.2). 

For our three special bilinear forms, we have 

(a) 6: 6+ = n2, 6- = 0, s(6) = n*, 

(b) A: A+ = &z(n + l), A- = &n(n - l), s(X) = n, 

(c) I,: L+ = 1, L- = 0, S(L) = 1. 

An inner product is a symmetric bilinear form f which satisfies 

(36) 

(37) 

(38) 

4(R) = f(R, R) > 0 ifR#O. (39) 

A bilinear form satisfying (39) is called positive definite. In other words an inner product 
is a positive definite, symmetric bilinear form. This condition (39) is equivalent to s(f) 

dimension of base space (which necessarily implies nondegeneracy, r = full rank). SO 
(56) further verifies that : = 6 is indeed an inner product on D (original proof in [21 and 
also [3]). 

A bilinear form f is nonnegative semidefinite if for all R 

q(R) = f(R, RI 3 0, 

which is implied by (39) but not vice versa. Condition (40) is equivalent to 

(40) 

s(f) = r(f), (41) 

whence the form I, is nonnegative semidefinite. 
A metric tensor is a nondegenerate symmetric bilinear form. Both 6 and A are metric 

tensors. A, however, does not satisfy (40); therefore it is not an inner product. In particular, 
the quadratic form A can take on negative values. 

The n = 2 example will prove illuminating. In this case the diagonal forms of the 
matrices are [i.e. matrices (27)-(29) are congruent to] 

0 
1 
0 
0 

0 
1 
0 
0 

0 
0 
0 
0 

0 
0 
1 
0 

0 
0 
1 
0 

0 
0 
0 
0 

0 

0 1 

0 ’ (42) 

1 

0 

0 1 0 ’ (43) 

,l 

0 

0 1 0 * 
(44) 

0 
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The reader will have recognized that expression (43) is the Lorentz metric on Minkowski 
space. Note that this Lorentz metric is on the four-dimensional “description spacetime” 
D, constructed from the underlying Euclidean space R2. Since A is the Lorentz metric 
when n = 2, we shall borrow the terminology and call A the Lorentz metric for all values 
n. The signature of the base space H is passed on directly to the Lorentz metric-on an 
n*-dimensional spacetime D, the base space H = R” has signature n and so does A (37). 

A note on terminology is in order. In four-dimensional spacetime, the metric diag( + 1, 
+ 1, + 1, - 1) is more commonly referred to as the Minkowski metric. A Minkowski 
metric, however, always denotes diag( + 1, . . . , + 1, - 1) with only one - 1; hence for 
n*-dimensional spacetime, signature = (n* - 1) - 1 = n* - 2. Since 

A = diag(+l,. . . , +I, -1,. . . , -I), (45) 

with &n(n + 1) +1’s and &n(n - 1) -l’s, has signature s(X) = n, it is not quite the 
“Minkowski metric” for n # 2. So we choose the name “Lorentz metric” for A. Note 
that the Lorentz metric A allows the interesting prospect of hz(n - I)-dimensional time. 
This points to the possibility that in alternative universes of higher-dimensional spacetime, 
one may have space of more than three dimensions and time of more than one dimensions. 

Our own four-dimensional spacetime, according to the phenomenological calculus, is 
thus not fundamental. The “boosting” from 2 to 2* dimensions leads to interesting ques- 
tions in symmetry and duality, and the metaphysical implications seem very rich. In 
particular, the 3 + 1 splitting of space and time dimensions is a natural consequence of 
the theory. We shall, however, not speculate here. 

That A(R) can take positive, negative, or zero values for nonzero R allows us to classify 
the response tensors in D into three corresponding types. Again borrowing the language 
from relativity theory, we call all response tensors (i.e. “world lines”) R for which h(R) 
is negative timelike. Similarly response tensors R for which h(R) is positive are called 
spacelike, while those for which A(R) = 0 are called null. 

Since the 2*-dimensional description space D equipped with the Lorentz metric A is 
isomorphic to Minkowski spacetime, the results from the mathematical theory of special 
relativity are transferable to the metric space (D, A). In particular, given any timelike R, 
we can always find an ordered basis {(Y,, a2, a3, 1) for T!(H) = KY**, in which R has only 
a T-component. This shows that our “proper time” (discussed in [3] and [6]) and “quantum 
mechanical time”[6] are indeed valid analogues to time in relativity-they are 6 = R : R, 
6ti = (R ( AR) (where A is the Hamiltonian operator), and A = RT: R, respectively. This 
analogy also further illustrates the apparent universality of the phenomenological calculus, 
which in this case yields a definition of time, that time is an invariant along world lines, 
defined via a bilinear form on response tensors. The various manifestations of time result 
from different metrics on the same description space. 

If two response tensors R and S (i.e. “events” in the language of relativity theory) are 
such that R - S is timelike, then the fact that there is a coordinate system for D in which 
R - S has only a “time-coordinate” means that there is some observer who sees the 
two events happening in turn-i.e. he has enough time to get from one event to the other. 
But if the “spatial” separation of the points becomes too great, then R - S becomes null 
and then spacelike, and an observer cannot be present at both in succession. Points whose 
separation is timelike are thus in communication, in the sense that there is a possibility 
of information transfer from one to the other. This is not so for points that are spacelike 
separated, in which case the response tensors R and S can have no direct causal influence 
on each other. 
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8. INFORMATION 

The concept of information leads us to our third bilinear form, L(R, S) = tr(R) tr(S). 
First, let us digress to the paper [9] (which, in turn, is based on [IO]), in which a model 
of enzyme-substrate recognition, discrimination, and catalysis is formulated. A substrate 
F is considered as an element of the space C(X) of continuous functions on a real interval 
X, and an enzyme a is considered as an element of the dual space /WV(X) of normalized 
functions of bounded variation. Recognition is defined as the evaluation of the Stieltjes 
integral (a bilinear functional) 

(F, a) = lx F da. (46) 

A proper ordering of function spaces and their duals (discussed in Section 12 of [3]) 
leads to a formulation of the enzyme-substrate problem over the base Hilbert space H = 
L’(m), where m is the Lesbegue measure on X. In other words, enzymes and substrates 
can be considered as elements of the self-dual Hilbert space L2(m), the space of all square- 
integrable functions on the measure space X. Under such formulation, a system of enzymes 
and substrates can be represented by the response tensor R = a’Fi E T:(L2(m>), and 
recognition is defined by 

Z = (Fi, a’) (sum over i). (47) 

Further, the quantities R and Z are related mathematically, precisely by the relation 

Z = tr(R), (48) 

where R is the matrix representation (5). In fact, in the language of tensor theory, Z is an 
invariant of the dyadic R, known as the scalar of R. Thus, recognition is the scalar of 
response. 

Let J = tr(S), then 

L(R, S) = tr(R) tr(S) = Z.J (49) 

and 

L(R) = tr(R)2 = Z* 5 0. (50) 

The quadratic form L(R), which conveys the magnitude of recognition, is a natural can- 
didate for the definition of information. Again we generalize and call L the information 
for all response tensors, not just those relating to enzyme-substrate systems. This ter- 
minology will be further justified in Section 13. 

It is interesting to consider the three measures of “distance” between response tensors 
R and S: 6(R - S), X(R - S) and L(R - S). 6 is dissipation, and 6(R - S) measures 
the difference in aging between systems R and S [3]. A is the Lorentz metric, and h(R 
- S) is related to causality (Section 7). L is information, and L(R - S) is discrimination 
(i.e. difference in the magnitude of recognition; [9]). Thus these three important concepts 
are, as were the different measurements of time, simply the various manifestations of the 
metric derived from different bilinear forms on the same description space D. 
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The space Z’(D) of continuous bilinear forms f on the description space D can be 
made into a Hausdorff topological vector space by the topology of uniform convergence 
on bounded sets. Equivalently the topology of E (D) can be defined by means of the norm 

II f II = su~Lf(K 0 II R II s 1, II S II s 11. (51) 

On the other hand, the space End(D) of continuous linear mappings u: D + D (i.e. 
endomorphisms on D) also has a Hausdorff linear topology defined by uniform conver- 
gence on bounded sets; the topology of End(D) may be defined by means of the norm 

II u II = SUP{ll u(R) II: II R II G 1). (52) 

Using (51) and (52), one can show that the spaces z:(D) and End(D) are isometricdy 
isomorphic in a canonical way. Further, symmetric bilinear forms correspond to self- 
adjoint operators. (For detailed proof see a text on functional analysis; e.g. [ll].) The 
canonical isometric isomorphism is defined as follows: Given f E T?(D), for every R E 
D consider the map R* : S H _f( R, S). Clearly R* E D*, the space of continuous linear 
functionals on D. Hence by the Riesz representation theorem there exists fi E D such 
that R*(S) = 8: S. Define uf E End(D) by uf: R H 8; i.e. 

uf(R): S = f(R, S). (53) 

The mapping f * uf from T%“(D) to End(D) is the required isometric isomorphism. 
The equality 

II f II = II Uf II (54) 

allows us to compute the norms of our three symmetric bilinear forms 6, A and L by 
calculating those of the self-adjoint operators us, uA and u,. The case for 6 is trivial. The 
corresponding equation to (53) is 

R: S = 6(R, S), (55) 

whence ug = lo: R ++ R, and 116 II = II US II = 1. 
For A, the corresponding equation to (53) is 

RT: S = A(R, S). (56) 

Thus uA: R ++ RT and II X 11 = 1) u,, /I = 1. Further, (uh)’ = lo: R H RT H (RT)’ = R; 
so the self-adjoint operator uA corresponding to the Lorentz metric X is in fact a duality 
(cf. Section 5, where [A]& = l,sX,z). 

The case for L is slightly more complicated. We have 

L(R, S) = tr(R) tr(S) = u,(R): S, (57) 

where the matrix representation of u,(R) is the scalar matrix tr( R) 1, xn, i.e. an n X n 
diagonal matrix whose n diagonal entries are each tr(R). The norm 

II K II = SUP{II NV Lx, II: II R II c 1) (58) 
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can be calculated directly, but there is another method. Note that the function tr is in 
fact a continuous linear operator from the Hilbert space D to the Hilbert space Iw, and 
that L(R, S) = tr(R) tr(S) is the scalar product in Iw. Under these conditions, the norm 
of L in c’(D) is the square of that of tr as a bounded operator from D to [w (lemma 4.56 
in [ 111). That is, 

II u, II = II L II = II tr II* = [w{trW II R II =5 1H’. (59) 

For D with dimension n2 (i.e. for II x n matrices R), 11 tr II = r~“~, whence (I L 11 = I( u, (I 
= n = (dim D)“2. 

It is interesting to note that both 6 and A have full rank (= dim D) and norm 1. In fact 
they are linear isometries; i.e. for all R E D, 

II us(R) II = II UAW II = II R II. (60) 

On the other hand, L is highly 
pansion” operator with norm 
equation 

Thus the normalized operator 

whence 

has norm 

and is idempotent: 

singular (rank = 1); but, to “compensate,” it is an “ex- 
= (dim D)“2. Furthermore, the operator u, satisfies the 

uS = nu,. (61) 

1 
u, = - u,, (62) 

n 

EL(R)1 = i NV Lx,, (63 

IIQLII = $ll = 1, (64) 

-2 - - . 
u, - K, (65) 

so it is (by definition) aprojector (= projection operator[5]). We shall return to the physical 
interpretations of this projector in Section 13. 

10. RIEMANNIAN DESCRIPTION SPACE 

In [2] and [6] we mentioned the possibility of functional dependence of the constitutive 
parameters {a’} upon the forces {Fi}, i.e. ai = a’(F). This creates a “Riemannian de- 
scription space” M based on D as a tensor space (7), just as the transition from Euclidean 
to Riemannian geometry is accomplished by allowing the local coordinates {e’}, hence the 
metric tensor g, to depend on the components [i.e. g”(x) = e’(x).ej(x)]. 
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The corresponding commutative diagram is thus 

UXU 

DxD-DxD 

(72) 

It is a well-known theorem in linear algebra that in terms of n* x n2 matrix representations 
[*lE of the operators. 

[u x mE = [~laflE[~lE. (73) 

In particular, when u is nonsingular (i.e. invertible), u x (f) is congruent to f (cf. (13)), 
whence 

LflE = rup’lH[u x mE[u- llE 

and 

f = wl)x(UXm. (75) 

12. CATEGORY OF BILINEAR FORMS 

For f, g E z(D), let 

hom(f, g) = {u E End(D): g = ux (f)}. (76) 

Note that for specific f and g, hom(f, g) may be empty, and that when it is nonempty, 
it may not be a singleton set, because there is the possibility that for ul # u2. 

ur (f) = uz” (f) = 8. (77) 

The set hom(f, f) contains all bilinear operators u on D for which 

f(uR, US) = f(R, s> (78) 

for all R, S in D. An operator u satisfying (78) is said to preserve f, and u E hom(f, f) 
if and only if 

LflE = [~lmE[~3E (79) 

[cf. (73)l. If f is a symmetric bilinear form, then u preserves f if an only if u preserves 
the corresponding quadratic form q [defined by (18)], in the sense that for each R E D, 

q(uR) = q(R). (80) 

The identity operator lo clearly preserves every bilinear form. The collection of linear 
operators which preserve a given bilinear form is closed under the formation of (operator) 
products. Thus hom(f, f) is in fact a monoid. If f is nondegenerate, then every operator 
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u in hom(f, f) is invertible and U-’ is also in hom(f, f). Hence hom(f, f) is a group 
under the operation of composition[8] (Section 10.4). 

If u E hom(f, g) and v E hom(g, h), then clearly u 0 u E hom(f, h). Moreover, u E 
hom(f, g) is an isomorphism (i.e. invertible morphism) if and only if u E End(D) is 
invertible [cf. (75)]. 

The above leads to the inevitable conclusion that g(D) is a category, the objects of 
which are bilinear- forms f E e’(D) and the morphisms of which are linear operators u 
in the horn-sets hom(f, g). 

13. PHENOMENOLOGICAL CONNECTIONS 

In this final section we concentrate on the horn-sets hom(f, g) for f, g = 6, A, L, and 
thereby on the connections among our three special bilinear forms. 

Since [61E = l,zX,2 (24), the group horn@, 6) preserving the dissipation function 6 
corresponds to the matrices M for which 

1 = MTM, (81) 

i.e. orthogonal matrices. Thus the group horn@, F) is in fact the n2-dimensional orthog- 
onal (Euclidean) group. 

More generally, the group of matrices hom(f, f) preserving a nondegenerate, sym- 
metric bilinear form f on D is called a pseudo-orthogonal group. [When the signature 
s(f) = n* we obtain the orthogonal group as a particular type of pseudo-orthogonal group.] 
Hence the group horn@, A) preserving the Lorentz metric A is a pseudo-orthogonal group. 
Since for n = 2, A is the four-dimensional Minkowski metric (43), we shall again borrow 
the terminology and call, for all values of IZ, hom(A, A) the (n*-dimensional) Lorentz group 
and morphisms in hom(A, A) Lorentz transformations. 

As the bilinear form L is degenerate, hom(L, L) contains some singular operators and is 
therefore only a monoid. Because of the information-theoretic connections of L (Section 
8), we shall call hom(L, L) the Shannon monoid, the structure of which we shall explore 
in another paper. 

The horn-set horn@, g) corresponds to the matrices M for which 

[g]E = MTM. 032) 

But for a self-adjoint operator g, (82) is satisfied for some matrix M if and only if g is 
nonnegative semidefinite (Section 9.3). Thus we conclude that horn@, A) is an empty 
set, while horn@, L) is nonempty. For example, when I, is in its diagonal form, the operator 
fi!-projection onto the first coordinate-is in horn@, L). 

Similar algebraic arguments show that the horn-sets hom(A, 6), hom(L, 6) and hom(L, A) 
are all empty, while hom(A, L) is nonempty [again, &!, hom(A, L)]. 

That both horn@, A) and hom(A, 6) are empty, i.e. that there are no transformations 
between 6 and A, is not unexpected -the positive definite metric 6 induces a Euclidean 
geometry on D, while the indefinite metric A induces a non-Euclidean geometry (of space- 
time) on D. The two geometries are not transformable to each other. 

That horn@, L) and hom(A, L) are nonempty but hom(L, 6) and hom(L, A) are empty 
requires a bit more explanation. Why is it possible to map the description space D with 
either Euclidean or non-Euclidean geometry onto information, but not vice versa? A hint 
is given by the fact that the normalized operator U, (62) corresponding to information L is 
a projector -i.e. the extraction of information, or the measurement process, is a projec- 
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tion. This is in accordance with the axioms of quantum mehanics ([12], Chap. 3, fifth 
postulate): 

If the measurement of the physical quantity A on the system in the state 1 +) gives the result c,, 
the state of the system immediately after the measurement is the normalized projection, 

of 1 $) onto the eigensubspace associated with c,. 

Thus when the first measurement is performed, we extract only part of the information 
content of the original state 1 IJ). If we perform a second measurement of A immediately 
after the first one, we always find the same result c,, since the state of the system im- 
mediately before the second measurement is 1 IQ, and no longer 1 JI): (I IJJ) - I &)) has 
been “lost” in the first measurement. This is the concept of wave packet reductEon in 
quantum mechanics. 

The above is also consistent with the Shannon formulation of information and entropy, 
in which entropy H is defined as the expected value of a collection of individual pieces 
of information log2(l/pa), each with a probability of occurance pa: 

H = C Pi log* d_ . 
I 0 

The analogy is established if we identify 6 with H, and L with logz(l/p,). Then clearly 
dissipation 6 projects onto information L, but 6 cannot be reconstructed from a single L. 

We see that the process of measurement, or extraction of information, is a highly 
singular one. A morphism from 6 or A onto L reduces the rank (i.e. information content), 
and is hence not invertible. So there are no morphisms from L onto 6 or A. For a detailed 
discussion on projections as representations of phenomena, the reader is referred to [.51. 
For further quantum-mechanical connections of the phenomenological calculus, the reader 
is referred to [6]. 
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