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SUMMARY

The plant galactolipidsmonogalactosyldiacylglycerol
(MGDG) and digalactosyldiacylglycerol (DGDG) have
been linked to the anti-inflammatory and cancer ben-
efits of a green leafy vegetable diet in humans due to
their ability to regulate the levels of free radicals like
nitric oxide (NO). Here, we show that DGDG contrib-
utes to plant NO as well as salicylic acid biosynthesis
and is required for the induction of systemic acquired
resistance (SAR). In contrast, MGDG regulates the
biosynthesis of the SAR signals azelaic acid (AzA)
and glycerol-3-phosphate (G3P) that function down-
stream of NO. Interestingly, DGDG is also required
for AzA-induced SAR, but MGDG is not. Notably,
transgenic expression of a bacterial glucosyltransfer-
ase is unable to restore SAR in dgd1 plants even
though it does rescue their morphological and fatty
acid phenotypes. These results suggest that MGDG
and DGDG are required at distinct steps and function
exclusively in their individual roles during the induc-
tion of SAR.

INTRODUCTION

Systemic acquired resistance (SAR) is a form of defense

response that protects plants against a broad spectrum of sec-

ondary infections by related or unrelated pathogens (reviewed in

Shah and Zeier, 2013; Kachroo and Robin, 2013; Gao et al.,

2014; Wendehenne et al., 2014). SAR involves the generation

of a mobile signal in the primary leaves that, upon translocation

to the distal tissues, activates defense responses resulting in

broad-spectrum resistance. The production of the mobile signal

occurs within 6 hr of primary pathogen infection, and the signal is

then transferred to the distal uninfected tissues (Chanda et al.,

2011). A quest for the SAR-inducing long-distance signal has

led to the isolation of several factors that are required for SAR

and/or confer SAR when applied exogenously (reviewed in
Cell Re
Shah and Zeier, 2013; Kachroo and Robin, 2013; Gao et al.,

2014; Wendehenne et al., 2014). Components of SAR include

glycerol-3-phosphate (G3P; Chanda et al., 2011; Yu et al.,

2013; Wang et al., 2014), the dicarboxylic acid azelaic acid

(AzA; Jung et al., 2009), and the free radicals nitric oxide (NO)

and reactive oxygen species (ROS) (Wang et al., 2014). Recent

in vitro and in planta studies have shown that AzA is derived

from the oxidation of C18 unsaturated fatty acids (FAs) that

contain a double bond on C9 and that this process is facilitated

by ROS (Zoeller et al., 2012; Yu et al., 2013; Wang et al., 2014).

NO/ROS confer SAR in a concentration-dependent manner,

and although ROS functions downstream of NO, it is required

for pathogen-inducible NO accumulation (Wang et al., 2014).

Different ROS species function additively to generate the FA-

derived AzA, which in turn results in accumulation of the SAR

inducer G3P (Wang et al., 2014; Wendehenne et al., 2014).

Consequently, AzA is unable to confer SAR on mutants impaired

in GLY1-encoded G3P dehydrogenase (G3Pdh) or GLI1-en-

coded glycerol kinase (GK) activities (Yu et al., 2013). Notably,

the NO-ROS-AzA-G3P branch of SAR operates in parallel with

salicylic acid (SA), a well-known regulator of SAR. Both branches

are essential for the activation of SAR (Figure S1A). Consistent

with this scheme of function, neither AzA nor G3P induces SA

accumulation when applied alone or together with pathogen

(Yu et al., 2013; Wang et al., 2014).

Galactolipids and cuticle have also been associated with SAR

(Chaturvedi et al., 2008; Xia et al., 2010, 2012), although the un-

derlying mechanism remains unknown. The plant galactolipids

constitute�80% of total membrane lipids, and of these, monog-

alactosyldiacylglycerol (MGDG) is considered to be the most

abundant, accounting for�50%of the total thylakoid lipids (Kelly

and Dörmann, 2004). MGDG is synthesized by themonogalacto-

syl synthase 1 (MGD1)-mediated transfer of a galactose residue

to diacylglycerol (Awai et al., 2001). A partial or complete defect

in MGD1 reduces the MGDG level by �42% (mgd1-1; Jarvis

et al., 2000) or �98% (mgd1-2; Kobayashi et al., 2007), respec-

tively. Consistent with their MGDG level, mgd1-1 plants show

wild-type-like morphology, but the mgd1-2 mutants germinate

as albino (Kobayashi et al., 2007). MGDG is subsequently

converted to digalactosyldiacylglycerol (DGDG) via digalactosyl
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Figure 1. The dgd1 Mutant Is Compromised in SAR

(A) SAR response in indicated genotypes. Primary leaves were inoculated with

MgCl2 (gray bars) or Pst avrRpt2 (black bars), and the systemic leaves were

inoculated 48 hr later with a virulent strain of P. syringae.

(B) SAR response in indicated genotypes. Transgenic dgd1 plants constitu-

tively expressing a wild-type copy of DGD1 are designated dgd1::DGD1.

(C) SAR response in Col-0 and dgd1 plants infiltrated with exudates collected

from Col-0 or dgd1 plants that were pretreated with either MgCl2 (EXMgCl2) or

Pst avrRpt2 (EXavrRpt2).

(D) SAR response in Col-0 andmgd1 plants infiltrated with EXMgCl2 or EXavrRpt2

from Col-0 or mgd1 plants.

All experiments were repeated at least two times with similar results. Error bars

represent SD (n = 3 or 4). Asterisk denotes a significant difference (Student’s

t test).
synthase 1 (DGD1), which transfers another galactose residue to

MGDG (Dörmann et al., 1999; Froehlich et al., 2001). Notably,

wild-type-like levels of DGDG in mgd1-1 plants suggest that

either DGD1 can utilize other substrates in planta or the low

MGDG levels in mgd1-1 plants are sufficient for DGDG biosyn-

thesis in these plants.

To determine the biochemical basis underlying involvement of

galactolipids in SAR, we evaluated a role for MGDG and DGDG

galactolipids in various steps leading to the induction of systemic

immunity. We find that MGDG and DGDG regulate SAR at

distinct steps and function nonredundantly. DGDG functions in

SAR by contributing to pathogen-responsive NO biosynthesis.

In contrast, MGDG regulates SAR via its effect on AzA, which
1682 Cell Reports 9, 1681–1691, December 11, 2014 ª2014 The Aut
functions downstream of NO. Our study highlights the impor-

tance of the axial hydroxyl group at C4 of DGDG galactose in

NO biosynthesis and SAR. This study also highlights the similar

function of lipids in the regulation of NO in plants and animals.

RESULTS

The dgd1 Mutant Is Compromised in SAR
Consistent with an earlier report (Chaturvedi et al., 2008), we

found that mgd1 plants were compromised in SAR (Figure 1A).

To examine the biochemical basis of this defect in the context

of galactolipid pools, we analyzed SAR in dgd plants that accu-

mulate reduced levels of DGDG. In Arabidopsis, two genes

(DGD1 and DGD2) are involved in the synthesis of DGDG, of

which DGD1 is the major isoform impacting DGDG biosynthesis

(Kelly et al., 2003; Figures S1B and S1C). Wild-type (WT) and

dgd1 plants were first inoculated withMgCl2 or avirulent bacteria

(Pseudomonas syringae pv. tomato [Pst] expressing avrRpt2)

followed by a second inoculation with virulent bacteria on distal

tissues at 48 hr after primary inoculation. Growth of the virulent

bacteria was monitored at 0 and 3 days postinoculation (dpi)

(Figure 1A). As expected, MgCl2-infiltrated leaves of WT (Col-

0 ecotype) plants supported more growth of the secondary viru-

lent pathogen than the plants that were preinfected with avrRpt2,

indicating appropriate induction of SAR (Figure 1A). In compari-

son, the dgd1 mutant plants showed compromised SAR; plants

infiltrated with MgCl2 or avrRpt2 bacteria were equally suscepti-

ble to the secondary virulent bacteria in the distal tissues. Unlike

dgd1, the dgd2 plants showed normal SAR, and this correlated

with the detectable levels of DGDG in these plants (Figure S1B).

Together, these data suggested that DGD1 is required for the

proper induction of SAR and the compromised SAR in dgd1

plants correlated with the reduced DGDG levels (Kelly et al.,

2003; Figures S1B and S1C). Transgenic dgd1 plants expressing

a wild-type copy of DGD1 (dgd1::DGD1) showed normal SAR

(Figures 1B and S1D), suggesting that compromised SAR in

dgd1 plants was specifically associated with the dgd1mutation.

Next, we assessed whether DGDGwas required for production

orperceptionof theSARmobilesignal.Weevaluated the response

of WT and dgd1 plants to vascular exudates collected from path-

ogen-inoculated WT and dgd1 leaves. The WT or dgd1 leaves

were infiltrated with MgCl2 or avrRpt2 bacteria, and vascular exu-

dates (ExMgCl2/avrRpt2) collected fromthe inoculated leaveswere in-

jected into the leaves of a fresh set of WT or dgd1 plants. Distal

leavesof plants infiltratedwithExMgCl2/avrRpt2were then inoculated

with virulent bacteria and proliferation of virulent bacteria moni-

tored at 0 and 3 dpi (Figure 1C). As expected, ExavrRpt2 from WT

plantsconferredprotectionagainst virulentpathogen inWTplants,

as did ExavrRpt2 from dgd1 plants, suggesting that dgd1 mutant

plants were able to generate the SAR signals. In comparison,

neither WT ExavrRpt2 nor dgd1 ExavrRpt2 induced SAR in dgd1

plants, suggesting that dgd1 plants were unable to sense the

SAR signals. We tested this further by assaying ExavrRpt2-induced

SAR in mgd1 plants, since they accumulate WT-like levels of

DGDG (Figures S1B and S1C; Kelly et al., 2003). Interestingly, as

in dgd1, mgd1 ExavrRpt2 was able to confer SAR on WT plants,

but not on mgd1 plants (Figure 1D). Conversely, WT ExavrRpt2
was unable to confer SAR on mgd1 plants. Together, these data
hors



suggested that bothmgd1 and dgd1 plantswere able tomake the

SAR signal(s) but unable to respond to them.

The dgd1 Mutant Is Impaired in the SA Branch of SAR
Recently, we showed that induction of SAR is dependent on two

parallel pathways, one of which is regulated by SA (Figure S1A;

Wang et al., 2014). To test the effect of mgd1 and dgd1 muta-

tions on the SA pathway, we first evaluated the expression of

the SA marker gene, PR-1, in mock- and avrRpt2-infected

plants. Interestingly, compared to WT (Col-0) and mgd1 plants,

which showed comparable induction of PR-1 expression, the

dgd1 plants showed significantly lower levels of PR-1 in their

inoculated leaves (Figure 2A). Similar results were obtained

whenwe assayed PR-1 levels in Col-0 and dgd1 plants infiltrated

with ExMgCl2/avrRpt2 from Col-0 plants (Figure S2A). These results

suggested that dgd1 plants were impaired in either pathogen-

responsive SA accumulation or signaling. Therefore, we tested

the basal and pathogen-responsive SA levels in dgd1 plants.

Although the dgd1 plants accumulated WT-like levels of basal

free SA and the SA glucoside (SAG), they contained significantly

reduced free SA and SAG after pathogen infection (Figure 2B). In

contrast and as expected, WT leaves infected with avrRpt2

showed a significant increase in free SA and SAG (Figure 2B).

Although the distal tissues of dgd1 plants also showed a marked

reduction in free SA level, they accumulated slightly higher levels

of SAG compared to WT plants (Figure 2B), the biological signif-

icance of which remains unclear at this point. Congruent with

their inability to accumulate SA after avrRpt2 inoculation, the

dgd1 plants showed compromised local resistance to avrRpt2

Pst but displayed WT-like response to virulent bacteria (Fig-

ure 2C). Thus, the reduced pathogen-responsive PR-1 expres-

sion of dgd1 plants associated with their reduced SA levels

and local R-mediated resistance.

To determine if the reduced accumulation of SA in dgd1 plants

was responsible for their defective SAR, we assayed SAR after

SA treatment. Localized application of SA induced SAR in WT,

but not dgd1, plants (Figure 2D). Next, we tested whether addi-

tion of SA to ExavrRpt2 improved the SAR response ofdgd1plants.

ExMgCl2/avrRpt2 collected fromWT or dgd1 plants was mixed with

water or SA and injected into the leaves of a fresh set of WT and

dgd1 plants. Col-0 ExMgCl2 + SA induced SAR on Col-0 plants,

but not on dgd1 plants (Figure S2B). In comparison, dgd1

ExMgCl2 + SA was unable to confer SAR on either Col-0 or dgd1

plants. As seen above (Figure 1C), dgd1 ExavrRpt2 conferred

SAR on Col-0 plants, but not on dgd1 plants. Both Col-0 and

dgd1 ExavrRpt2 + SA induced better SAR on Col-0 plants than

ExavrRpt2 alone (p < 0.05), but not on dgd1. This suggested that

although addition of SA to WT/dgd1 ExavrRpt2 improved SAR in

Col-0 plants, SA was unable to restore the SAR response to

ExavrRpt2 in dgd1 plants. To determine if this was due to reduced

sensitivity to SA, we compared the expression of the SA-induc-

ible marker PR-1 in dgd1 and WT plants. Similar levels of PR-1

transcript were induced in response to SA in both Col-0 and

dgd1 plants (Figure S2C), suggesting that dgd1 plants are as

responsive to SA as WT plants. Together, these results sug-

gested that although DGDG is required for pathogen triggered

SA accumulation, the SAR defect in dgd1 could not be entirely

attributed to their inability to accumulate SA.
Cell Re
The dgd1 Mutant Accumulates Normal JA Levels
Since dgd1 plants are also impaired in photosynthesis (Klaus

et al., 2002), it was possible that the defective SA accumulation

was the consequence of a generalized defect in chloroplast

(site of SA synthesis) biogenesis. We assessed this by moni-

toring pathogen-inducible JA accumulation in the dgd1 plants,

since JA synthesis also begins in the chloroplasts. The dgd1

mutant plants accumulated JA in response to pathogen infec-

tion at levels comparable to those of WT plants (Figure 2E).

We next compared total and free FA levels in WT and dgd1

plants, because FAs not only are synthesized de novo in the

chloroplast but also serve as a precursor for JA synthesis.

The dgd1 plants accumulated reduced levels of 16:3 FA (Fig-

ure S2D), which is consistent with their reduced DGDG pool

(Figures S1B and S1C). In comparison, both dgd2 and

dgd::DGD1 showed WT-like 16:3 levels. Normal JA levels in

dgd1 plants were consistent with their total as well as free

18:3 FA levels; like wild-type plants, the dgd1 plants showed

increased accumulation of free 18:3 in response to pathogen

infection (Figure 2F). Together, these results suggested that

the defect in pathogen-induced SA accumulation of dgd1

plants was unlikely to be associated with a generalized defect

in chloroplast function.

Since dgd1 showed impaired import of nuclear proteins into

plastids (Chen and Li, 1998), it was possible that the reduced

SA accumulation in these plants was associated with altered

import of proteins involved in SA biosynthesis. We first assayed

the transcript levels of nuclear-encoded genes that were

induced in response to pathogen infection and contributed to

SA or JA levels. Notably, unlike WT and mgd1 plants, dgd1

mutant plants showed significantly reduced induction of EDS5

and SID2, which are involved in transport or biosynthesis of

SA, respectively (Figure 2G). Likewise, Pst avrRpt2-inoculated

dgd1 plants showed no induction of EDS1 and PAD4 genes,

which indirectly contribute to SA biosynthesis (Figure 2H). In

comparison, the induced levels of JA pathway genes LOX3

and OPR3 in dgd1 plants were comparable to the WT plants

(Figure 2G). Unlike dgd1, the mgd1 plants showed WT-like in-

duction of EDS5 and SID2 genes and higher-than-WT induction

of LOX3 and OPR3 (Figure 2G). Together, these results suggest

that reduced SA levels in dgd1 plants are likely due to their

inability to induce the transcription of genes involved in SA

biosynthesis.

The dgd1 and mgd1 Plants Are Compromised in
Pathogen-Induced G3P and AzA Levels
We next assayed if the SAR defect in dgd1 was associated with

deficiencies in other chemical signals of the NO-derived branch

of SAR (see Figure S1A). We first assayed G3P levels, since it

acts downstream of NO, ROS, and AzA (Figure S1A; Chanda

et al., 2011; Yu et al., 2013, Wang et al., 2014). As shown earlier

(Chanda et al., 2011; Yu et al., 2013; Wang et al., 2014), avrRpt2-

infected WT plants accumulated �3- to 4-fold higher levels of

G3P in their vascular exudates (Figure 3A). In comparison, path-

ogen-infected dgd1 plants did not accumulate higher- than-

basal levels of G3P. This was also the case for mgd1 plants

(Figure 3A). Together, these results suggested that the compro-

mised SAR in mgd1 and dgd1 plants might be associated with
ports 9, 1681–1691, December 11, 2014 ª2014 The Authors 1683
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Figure 2. The dgd1 Mutant Is Impaired in Pathogen-Induced SA Accumulation, but Not JA

(A) Quantitative RT-PCR analysis showing relative expression levels of PR-1 in mock (MgCl2)- and avrRpt2-inoculated local leaves from Col-0 (WT), mgd1, and

dgd1 plants.

(B) SA and SAG levels in Col-0 and dgd1 plants inoculated with MgCl2 or P. syringae expressing avrRpt2. FW indicates fresh weight.

(C) Local resistance response of Col-0 (WT),mgd1 and dgd1 plants to virulent (DC3000) and avirulent (avrRpt2) Pst bacteria (104 colony-forming units ml�1). NS

indicates not significant.

(D) SAR response in Col-0 and dgd1 plants locally infiltrated with MgCl2, Pst avrRpt2, or SA (500 mM). The virulent Pst DC3000 was inoculated 24 hr after local

treatments.

(E) JA levels in petiole exudates collected from Col-0 and dgd1 plants infiltrated with MgCl2 (EXMgCl2) or Pst expressing avrRpt2 (EXavrRpt2).

(F) Free 18:3 levels in indicated genotypes 24 hr postinfiltration of MgCl2 or avrRpt2.

(legend continued on next page)
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Figure 3. Exogenous G3P Complements

Defective SAR in mgd1 and dgd1 Plants

(A) G3P levels in wild-type (Col-0),mgd1, and dgd1

leaves at 24 hr after mock (MgCl2) or pathogen

(avrRpt2) infections.

(B) SAR response in Col-0, mgd1, or dgd1 plants

treated locally with MgCl2, avrRpt2, or avrRpt2 +

100 mm G3P.

(C) AzA levels in petiole exudates collected from

Col-0, mgd1, or dgd1 plants at 24 hr post-

infiltration with MgCl2 or Pst avrRpt2.

(D and E) Autoradiographs of TLC plates,

samples analyzed on silica TLC using hexane/

MTBE/acetic acid (80:20:1, by vol for D;

65:35:1, by vol for E solvent systems). Vertical

arrows indicate direction of the runs. (D) Methyl

esters of extracts from leaves infiltrated with
14C-18:1 were analyzed together with 14C-AzA

methyl ester (AzA-ME) as standard. 14C-con-

taining products in leaves at 24 hr posttreat-

ment are shown. (E) Comigration of 14C-18:1-

derived AzA with 14C-AzA standard. Products

corresponding to 14C-AzA in (D) were ex-

tracted, hydrolyzed, and analyzed together with
14C-AzA standard.

(F and G) Autoradiographs of TLC plates

showing 14C-AzA-derived products. Samples

were analyzed on silica TLC plates using

hexane/MTBE/acetic acid solvent systems

(80:20:1, by volume). Vertical arrows indicate

direction of the runs. Arrowheads indicate po-

sitions of the 14C-AA methyl ester (ME). (F) TLC

plate analysis of extracts prepared from 14C-

AzA-infiltrated (local) leaves sampled at 24 hr

posttreatment. (G) TLC plate analysis of extract

prepared from distal leaves of 14C-AzA-in-

filtrated plants shown in (F). Samples contain-

ing equal disintegrations per minute (quantified

using scintillation counts) from local and distal

leaves were loaded.

(H) SAR response in Col-0, mgd1, or dgd1 plants

treated locally with 0.01% methanol or AzA for

24 hr prior to inoculation of distal leaves with a

virulent strain of P. syringae.

(I–K) Real-time quantitative RT-PCR analysis

showing fold increase in expression levels ofGLY1

(I), GLI1 (J), or AZI1 (K) in AzA-treated (1 mM)

Col-0, mgd1, or dgd1 plants in relation to plants treated with 0.01% methanol. Leaves were sampled 24 hr posttreatments.

All experiments were repeated at least two times with similar results. Error bars in (A)–(C) and (H)–(K) represent SD (n = 4). Asterisk denotes a significant dif-

ference (Student’s t test).
their inability to accumulate G3P in response to pathogen infec-

tion. We tested this further by assaying SAR in G3P-treated

mgd1 and dgd1 plants. Interestingly, exogenous G3P restored

SAR in both mgd1 and dgd1 plants, suggesting that their

compromised SAR was indeed associated with the inability to

accumulate G3P and that these plants were defective in a step

upstream of G3P (Figure 3B).
(G) Quantitative RT-PCR analysis showing relative induction of indicated genes i

inoculated respective genotypes. Leaves were sampled 24 hr postinoculation.

(H) Quantitative RT-PCR analysis showing relative induction of EDS1 and PAD4

inoculated respective genotypes. Leaves were sampled 24 hr postinoculation.

All experiments were repeated at least two timeswith similar results. Error bars rep

Cell Re
Previously, we showed that AzA acts upstream of G3P and

confers SAR by increasingG3P levels (Yu et al., 2013). Therefore,

we analyzed pathogen-responsive AzA levels inmgd1 and dgd1

plants. The avrRpt2-infected mgd1 and dgd1 plants accumu-

lated significantly lower levels of AzA as compared to WT plants

(Figure 3C). Given that AzA is derived from C18 unsaturated FAs

containing a double bond at C9 (Zoeller et al., 2012; Yu et al.,
n avrRpt2 infected Col-0, mgd1, and dgd1 plants compared to MgCl2 (mock)-

genes in avrRpt2 infected Col-0 and dgd1 plants compared to MgCl2 (mock)-

resent SD (n = 3 or 4). Asterisk denotes a significant difference (Student’s t test).

ports 9, 1681–1691, December 11, 2014 ª2014 The Authors 1685
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Figure 4. The dgd1 Mutant Is Impaired in Pathogen-Induced NO Accumulation

(A) Confocal micrographs showing pathogen-induced NO accumulation in indicated genotypes at 12 hr postinoculation. The leaves were infiltrated with MgCl2
(mock) or avrRpt2 Pst, with or without c-PTIO (500 mM). Scale bar, 10 mm.

(B) Confocal micrographs showing NO accumulation in indicated genotypes postinoculation with petiole exudates collected from MgCl2 (EXMgCl2)- or avrRpt2

(EXavr)-infected Col-0, mgd1, or dgd1 plants. Scale bar, 10 mm. ‘‘R’’ indicates genotype that received the EX.

(C) Protein immunoblot showing NOA1 levels in total protein extracts from indicated genotypes. Ponceau-S staining of the immunoblot was used as the loading

control. Equal amount of total proteins were also loaded for noa1, which accumulates reduced levels of RUBISCO (Mandal et al., 2012).

(legend continued on next page)
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2013), and because mgd1 and dgd1 plants accumulate normal

levels of free 18:3 FA (Figure 2F), it was possible that these mu-

tants are unable to hydrolyze the C9 double bond that is required

for the conversion of FA to AzA. To test this, we monitored the in

planta conversion of 14C-18:1 to AzA in mgd1 and dgd1 plants.

We infiltrated 14C-labeled 18:1 (14C at C-1 position) into leaves

of WT, mgd1, and dgd1 plants and analyzed the methylated

leaf extracts by thin layer chromatography (TLC). The TLC anal-

ysis showed a band corresponding to 14C-AzA dimethyl ester

(ME) (Figure 3D). This band was extracted from the TLC plates,

demethylated to obtain the free acid form, and rerun on a new

TLC plate (Figure 3E). The band corresponding to AzA control

in the first TLC run comigrated with the AzA standard in the sec-

ond TLC run (Figure 3E), thus arguing thatmgd1 and dgd1 plants

were not affected in conversion of C18 unsaturated FAs to AzA.

This did not, however, rule out a possible defect in the uptake

and/or transport of AzA inmgd1 and dgd1 plants. To test this, we

infiltrated WT, mgd1, and dgd1 leaves with 14C-AzA, prepared

methylated leaf extracts at 24 hr postinfiltration, and analyzed

them on TLC. As shown earlier (Yu et al., 2013), a large portion

of the radiolabel was present as AzA in addition to several other

minor derivatives in WT plants (Figure 3F). The pattern and rela-

tive levels of AzA and its derivatives in mgd1 and dgd1 plants

were similar to WT plants (Figures 3F and S2E), suggesting

that mutations in MGD1 or DGD1 did not alter the uptake or

derivatization of AzA in the infiltrated leaves. Likewise, analysis

of distal tissues ofmgd1 and dgd1mutants showedWT-like pro-

file of AzA derivatives (Figure 3G) and WT-like levels of total 14C-

AzA (Figure S2E). Together, these results suggest thatmgd1 and

dgd1 plants are not altered in the uptake or transport of AzA or

conversion of C18 FA to AzA. Thus, reduced levels of AzA in

mgd1 and dgd1 plants were likely associated with their reduced

MGDG and DGDG levels, respectively. Notably, this was not

associated with a reduced free FA pool; both mgd1 and dgd1

plants accumulated WT-like levels of free 18:3 after pathogen

infection (Figure 2F).

Based on the above results, we expected that exogenous

treatment with AzA would compensate for the reduced AzA

and confer SAR in mgd1 and dgd1 plants. AzA was applied

locally, and the response to virulent bacteria was monitored in

distal tissues. As expected, AzA-induced SAR in the systemic

tissues of WT plants (Figure 3H). Intriguingly, although AzA also

induced SAR in mgd1 plants, it was unable to do so in dgd1

plants (Figure 3H). This, together with the fact that both mgd1

and dgd1 plants accumulated reduced levels of G3P and that

G3P was able to confer SAR in both these mutants, suggested

that DGD1-derived DGDG galactolipids were likely involved in

AzA-induced accumulation of G3P. To address this, we first as-

sayed AzA-mediated SAR in dgd1::DGD1 plants and found

these to respond normally to AzA; the dgd1::DGD1 plants

showed WT-like SAR to exogenous AzA (Figure 3H). Next,

we evaluated AzA-mediated transcriptional upregulation of the
(D) Electron spin resonance (ESR) spectrometry assay showing relative levels of

dgd1, and dgd1::DGD1 plants. The leaves were sampled at 12 hr postinoculatio

(E) ESR spectrometry spectra of carbon centered radical levels in mock- and av

For (A) and (B), at least six independent leaveswere stainedwithDAF-FMDAandan

in (C)–(E) were repeated at least two times with similar results. Error bars in (D) rep

Cell Re
G3P biosynthesis genes GLY1 and GLI1, which is associated

with an AzA-mediated increase in G3P levels (Yu et al., 2013).

Exogenous AzA application induced GLY1 and GLI1 expression

in WT and mgd1 plants, though GLI1 transcript levels in mgd1

were consistently lower compared to those inWT plants (Figures

3I and 3J). Notably, exogenous AzA was unable to induce

expression of GLY1 or GLI1 genes in dgd1 plants (Figures 3I

and 3J), which correlated with the inability of AzA to confer

SAR in dgd1 plants. To determine if dgd1 plants were able to

respond to AzA, we analyzed the expression of AzA-responsive

gene AZI1 in these plants (Jung et al., 2009). AzA-treated dgd1

plants showed high expression of AZI1 (Figure 3K), suggesting

that dgd1 plants were able to sense AzA but unable to induce

SAR in response to AzA. Together, these results suggest that

the inability of AzA to induce GLY1/GLI1 expression and confer

SAR on dgd1 mutant was likely associated with the reduced

pool of DGDG galactolipids in dgd1 plants.

DGDG Is Required for NO Biosynthesis and
Accumulation
We recently showed that NO and ROS act upstream of AzA to

confer SAR (Wang et al., 2014). This and reduced accumulation

of AzA in dgd1 and mgd1 mutants prompted us to analyze NO

and ROS levels in these plants. Analysis of NO levels was carried

out using the NO-sensitive dye 4-amino-5-methylamino-2,7-di-

fluorofluorescein diacetate (DAF-FM DA). Confocal microscopy

of Pst avrRpt2-infected leaves detected increased DAF-FM DA

staining 24 hr postinoculation (detected as green fluorescence)

of Col-0 leaves compared to mock-inoculated or NO scavenger

carboxy-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimida-

zoline-1-oxyl-3-oxide)-treated plants (Figure 4A). Unlike in WT

plants, NO could not be detected in pathogen-infected dgd1

plants (Figure 4A). However, NO accumulation was restored in

the dgd1::DGD1 complemented lines (Figure 4A), which were

also SAR competent (Figures 1B and 3H). Interestingly, unlike

dgd1, the pathogen infected mgd1 plants did accumulate NO

(Figure 4A). To test whether NO accumulation was primarily

associated with DGDG lipids, we evaluated NO levels in mgd1

dgd1 double-mutant plants. The double mutant, which shows

dgd1-like morphology (Figure S3A), did not show detectable

NO accumulation after pathogen infection like the dgd1 single

mutant (Figure 4A). This suggested that dgd1 was epistatic to

mgd1 and that DGDG was perhaps required for normal biosyn-

thesis and/or accumulation of NO. To determine if the defect

was associated with biosynthesis or accumulation, we assayed

NO accumulation in dgd1 plants treated with the NO donors so-

dium nitroprusside (SNP) or 2-(N,N-diethylamino)-diazenolate-

2-oxide (DETA-NONOate) or the nitrous oxide donor SULFO-

NONOate (negative control) (Figure S3B). Notably, dgd1 plants

showedWT-like NO staining after SNP or DETA-NONOate treat-

ments, suggesting that dgd1 plants were likely affected in

biosynthesis of NO, but not its accumulation.
4-POBN adduct in local tissues of mock and avrRpt2 inoculated Col-0, mgd1,

n.

rRpt2-inoculated leaves of Col-0, mgd1, and dgd1 plants.

alyzed in three independent experimentswith similar results. Experiments shown

resent SD (n = 3). Asterisk denotes a significant difference (Student’s t test).
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Intriguingly, even though dgd1 plants were impaired in the

biosynthesis of multiple SAR signals like NO, AzA, and G3P,

the ExavrRpt2 from dgd1 plants were fully capable of inducing

SAR on WT plants (Figure 1C). One possibility was that dgd1

ExavrRpt2 contained signals that act upstream of NO and can

induce NO biosynthesis in WT plants. To test this, we evaluated

NO levels in WT and dgd1 plants treated with ExMgCl2/avrRpt2

from WT and dgd1 plants. As an additional control, we also

included mgd1 plants in this analysis. As predicted, WT

ExavrRpt2 was able to induce NO biosynthesis in WT and mgd1

plants, but not dgd1 plants (Figure 4B). Likewise,mgd1 ExavrRpt2
induced NO accumulation in mgd1 and WT plants. Notably,

dgd1 ExavrRpt2 induced NO biosynthesis in WT, but not dgd1,

plants. Together, these results suggested that DGD1, and

thereby DGDG lipids, are essential for NO synthesis, but not

for generating the SAR signal(s). These results further suggest

that such a signal(s) from dgd1 is able to activate NO synthesis,

and thereby SAR, in a plant that contains normal DGDG levels.

One plausible reason for impaired NO accumulation in dgd1

plants could be that it is affected in the plastidal import and/or

stability of NOA1, which is an indirect major contributor of path-

ogen-responsive NO accumulation. However, comparison of

NOA1 levels in WT, mgd1, dgd1, and dgd1:DGD1 plants did

not detect significant differences in NOA1 levels in these plants

(Figure 4C).

SinceROS act downstreamof NO,wemonitored ROS levels in

the infected tissues of dgd1 and mgd1 mutants using electron

spin resonance spectrometry (ESRS). ESRS using a-(4-pyridyl

N-oxide)-N-tert-butylnitrone (POBN), which detects hydroxyl

and carbon-centered radicals, detected increased accumulation

of free radicals in the Pst avrRpt2-infected tissues of WT plants

(Figures 4D and 4E). Quantification of POBN trapped free radi-

cals in local tissues of dgd1 and mgd1 plants showed signifi-

cantly higher basal levels, which did not increase further after

Pst avrRpt2 inoculation (Figures 4D and 4E). In comparison,

dgd1::DGD1 plants showed WT-like basal and pathogen-

induced POBN trapped free radicals (Figure 4D). Higher basal

ROS levels in dgd1 plants were unexpected, since they are un-

able to accumulate NO that acts upstream of ROS (Wang

et al., 2014). To test if higher basal ROS inmgd1 and dgd1 plants

were due to their impaired photosynthesis, we assayed their

sensitivity to paraquat (methyl viologen), an agent that promotes

the formation of ROS by inhibiting electron transport during

photosynthesis. The plants were treated by placing a 10 ml

droplet of 10 to 20 mM paraquat on individual leaves, and the

lesion size was monitored 48 hr posttreatment. The dgd1 and

mgd1 plants developed larger lesions, suggesting that they are

defective in the regulation/sequestration of ROS derived from

photosynthetic electron transport (Figures S3C and S3D).

Consistent with this result, both mgd1 and dgd1 plants showed

increased expression of antioxidant genes (Figure S3E). This

result further suggests that increased expression of antioxidants

genes in mgd1 and dgd1 plants could be responsible for scav-

enging the excess ROS induced upon pathogen infection. In

contrast to paraquat, dgd1 and mgd1 plants showed WT-like

sensitivity to exogenous H2O2 (Figures S3F). Thus, the impaired

photosynthesis in mgd1 and dgd1 plants was likely responsible

for their higher basal ROS levels.
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Transgenic Expression of Bacterial Glucosyltransferase
Rescues Morphological and FA Phenotype, but Not SAR
Phenotype, of dgd1 Plants
To determine the importance of the galactose sugar moiety in

DGDG for SAR, we evaluated the response of transgenic

dgd1 plants expressing a glycosyltransferase (GT) gene from

the photosynthetic bacteria Chloroflexus aurantiacus. The

transgenic expression of GT introduces glucose instead of

galactose on the MGDG, resulting in formation of b-glucose-

b-galactose diacylglycerol (Hölzl et al., 2006; Figures 5A and

S1B). Notably, WT-like morphology could be restored in trans-

genic dgd1 plants expressing either the bacterial GT (dgd1::GT)

or native DGD1 (dgd1::DGD1) (Figure 5B; Hölzl et al., 2006).

Furthermore, transgenic expression of either GT or DGD1

was able to normalize 16:3 levels in dgd1 plants (Figure S2D).

Interestingly, unlike native DGD1, the bacterial GT was unable

to restore SAR in dgd1 plants (Figure 5C). Pathogen-infected

dgd1::GT plants accumulated nominal NO at levels significantly

lower than those in pathogen-infected WT or dgd1:DGD1

plants (Figure 5D). Similarly, compared to WT or dgd1:DGD1

plants, pathogen-induced PR-1 expression was only slightly

higher in dgd1::GT plants (Figure S3G). The small increase of

NO in dgd1::GT plants was insufficient to increase their AzA

levels; dgd1::DGD1 plants accumulated WT-like levels of AzA

in response to pathogen infection, whereas both dgd1 and

dgd1::GT plants contained much lower AzA levels (Figure 5E).

Furthermore, reduced accumulation of AzA did not associate

with free FA pool, since dgd1::GT plants accumulated WT-

like levels of free 18:3 (Figure 2F). Thus, even though dgd1::GT

plants did exhibit a nominal increase in NO levels and PR-1

expression in response to pathogen infection, this slight in-

crease was clearly insufficient to confer SAR. To reconfirm

this, we assayed SA-mediated SAR in dgd::GT plants, since

exogenous SA would require functional NO-ROS-AzA-G3P

branch to confer SAR (Wang et al., 2014). As predicted, exog-

enous SA was unable to confer SAR on dgd1::GT plants

(Figure 5F). Together, these results suggest that the a-galac-

tose-b-galactose head group is essential for normal induction

of the NO-ROS-AzA-G3P branch of the SAR pathway as well

as AzA-conferred SAR.

DISCUSSION

Galactolipids are one of the most abundant classes of lipids in

plants, constituting �80% of total membrane lipids in Arabidop-

sis. Although Arabidopsis leaves contain a higher proportion of

MGDG compared to DGDG, the total and relative levels of these

two galactolipids can vary in other plants (Christensen, 2009).

Notably, in addition to serving as important constituents of chlo-

roplastic membranes, galactolipids have also been shown to

have other unique functions and are often associated with the

medicinal and nutritional properties of vegetable plants (Chris-

tensen, 2009). For example, MGDG containing 18:3/18:3 or

16:3/18:3 FAs isolated from spinach leaves has antitumor

activity (Wang et al., 2002). In this regard, it is interesting to

note that MGDG and DGDG play a very specific role in plant de-

fense leading to the induction of SAR (Figure S4). This is based

on the specific phenotypes of mgd1 and dgd1 plants; mgd1
hors
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Figure 5. Transgenic Expression of

Bacterial Glucosyltransferase Restores

Morphology in dgd1 Plants but Not SAR

Phenotype

(A) Chemical structures and enzymatic steps

catalyzed by the bacterial glucosyltransferase (GT)

and DGD1 enzymes. Glu and gal indicate glucose

and galactose sugars, respectively.

(B) Typical morphological phenotype of 4-week-

old plants.

(C) SAR response in indicated genotypes treated

locally with MgCl2 (gray bars) or avrRpt2 Pst (black

bars).

(D) Confocal micrographs showing pathogen-

induced NO accumulation in indicated genotypes

at 12 hr postinoculation. The leaves were infiltrated

with MgCl2 (mock) or avrRpt2 Pst, and at least six

independent leaves were stained with DAF-FM DA

and analyzed in three independent experiments

with similar results. Scale bar, 10 mm.

(E) AzA levels in mock- (MgCl2) or avrRpt2 P.

syringae (Avr)-inoculated leaves of Col-0,mgd1, or

dgd1 plants at 24 hr postinoculation.

(F) SAR response in Col-0 or dgd1 plants treated

locally with water or 500 mM SA for 24 hr prior to

inoculation of distal leaves with virulent Pst.

All experiments were repeated at least two times

with similar results. Error bars in (C), (E), and (F)

represent SD (n = 3 or 4). Asterisk denotes a sig-

nificant difference (Student’s t test).
plants, which accumulate WT-like levels of DGDG, are impaired

in pathogen-induced ROS and AzA accumulation, but not NO

levels or induction of the SA signaling marker, PR-1. In compar-

ison, dgd1 plants, which are drastically reduced in DGDG and

contain WT levels of MGDG, are unable to accumulate NO or

SA after pathogen infection. Thus, DGDG is required at an early

step during SAR signaling and appears to link the NO- and SA-

derived branches of this pathway.

The inability of dgd1 plants to accumulate SA after pathogen

infection is associated with reduced induction of the nuclear

genes SID2 and EDS5, which regulate SA biosynthesis or its

export from the chloroplast, respectively. Notably, DGDG is

also required for AzA-mediated induction of GLY1 and GLI1

genes. Consequently, exogenous AzA, which induced high

expression of GLY1 and GLI1 genes and conferred SAR in

mgd1 plants, was unable to do so in dgd1 plants. Thus,
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DGDG, which is synthesized in the outer

envelope of plastids (Froehlich et al.,

2001), might be important for retrograde

signaling between the chloroplast and

nucleus, since it regulates the expres-

sion of nuclear genes. Conversely, it is

possible that impaired SA biosynthesis

in chloroplast might result in the feedback

suppression of nuclear genes directly or

indirectly responsible for maintaining the

pathogen-induced SA pool. Regardless,

these results show that pathogen-acti-

vated signaling resulting in induction of
the SA pathway is regulated by chloroplastic DGDG levels

(Figure S5A).

The critical role of DGDG in pathogen-induced NO and SA

production, and thereby SAR, is further reiterated by the SAR-

defective phenotype of the dgd1::GT, which express a bacterial

glucosyltransferase that adds a glucose sugar on MGDG. These

plants contain a WT-like proportion of dihexosyldiacylglycerol,

which is sufficient to rescue the morphological and FA defects

of the dgd1 mutant, but not SAR. Notably, unlike SAR, the

dgd1::GT plants are partially restored in their photosynthetic ef-

ficiency (Hölzl et al., 2006), suggesting that induction of SAR has

an absolute requirement for DGDG, and replacement of terminal

galactose with glucose is unable to complement this defect. The

significance of this result is further evident by the fact that galac-

tose and glucose sugars are stereoisomers and only differ in the

presence of an axial hydroxyl group at C4 of galactose. It is
cember 11, 2014 ª2014 The Authors 1689



possible that interaction involving this axial hydroxyl group of

galactose confers a structural feature that allows DGDG to asso-

ciate with membrane proteins, cofactors, or other FA/lipid

molecules.

Interestingly, even though mgd1 and dgd1 plants were

impaired in the biosynthesis of multiple SAR signals, the petiole

exudates obtained from these plants were fully capable of

inducing SAR on WT plants. This was especially true for dgd1

plants, which are impaired in the biosynthesis of all major signals

associated with SAR. These results suggest thatmgd1 and dgd1

are able to make the SAR signal(s) but unable to respond to

them. Thus, MGDG and DGDG lipids could play a role in the

perception of the SAR signals. An alternate possibility is that

mgd1 and dgd1 plants are able to make SAR signal(s) that act

upstream of the SA-NO branch point, which in turn are sufficient

to initiate SAR in the presence of WT-like levels of MGDG and

DGDG (Figure S4).

Clearly, both MGDG and DGDG are required to generate suf-

ficient AzA and in turn induce SAR, since mgd1 (containing WT

levels of DGDG) as well as dgd1 (containing WT levels of

MGDG) plants are defective for SAR. It is possible that a total

threshold level of these galactolipids is important to generate

AzA sufficient to induce SAR. This is supported by the fact

that both MGDG and DGDG lipids are able to generate AzA

and its precursor, 9-oxononanoic acid (ONA), when exposed

to superoxide radical under in vitro conditions (Figure S5B).

Notably, MGDG contained higher basal levels of ONA and

AzA compared to DGDG, but DGDG accumulated higher

proportion of AzA after treatment with superoxide radical (Fig-

ure S5B). These results, together with the cumulative observa-

tions that much of the cellular pool of AzA remains bound to

lipids (Yu et al., 2013), only a small portion of 18:1 FA is con-

verted to AzA (Yu et al., 2013 and this study), and the normal

release of free FA in SAR and AzA compromised mgd1,

dgd1, and dgd1::GT plants, suggest that pathogen-inducible

AzA synthesis might occur via the oxidation of C18 FAs on

MGDG and DGDG lipids rather than free FAs and that an

AzA-DGDG derivative might facilitate the induction of GLY1

and GLI1 genes. Indeed, AzA functions upstream of G3P, and

both mgd1 and dgd1 plants are compromised in pathogen-

responsive G3P accumulation. However, at this point, we are

unable to rule out a role for free FA in AzA biosynthesis, since

both mgd1 and dgd1 are impaired in pathogen-induced ROS

accumulation, which can generate AzA from FAs under

in vitro conditions (Figure S5B; Yu et al., 2013).

Consistent with the notion that SAR requires the concomi-

tant activation of both the SA and NO/ROS branches, exoge-

nous application of SA did not restore the defective SAR in

dgd1 plants. In contrast, G3P application did confer SAR in

dgd1 plants, likely because G3P-conferred SAR only requires

basal levels of SA and dgd1 plants are not affected in basal SA

levels. Notably, petiole exudates from both mgd1 and dgd1

plants were able to confer SAR on WT, though not on them-

selves, suggesting that these mutants are able to generate

signal(s) upstream of galactolipid-mediated NO production

(Figure S4). Identification of this signal(s) would help unravel

the role that DGDG plays in pathogen-induced SA and NO

accumulation.
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EXPERIMENTAL PROCEDURES

Plant Growth Conditions and Genotypes Used

Plants were grown in MTPS 144 Conviron walk-in chambers at 22�C, 65%
relative humidity, and 14 hr photoperiod. These chambers were equipped

with cool white fluorescent bulbs (Sylvania, FO96/841/XP/ECO). The mgd1-

1, dgd1-1, and transgenic plants expressing DGD1 or the bacterial enzyme

glycosyltransferase have been described before (Jarvis et al., 2000; Hölzl

et al., 2006; Aronsson et al., 2008). The mgd1 dgd1 double-mutant plants

were obtained by pollinating flowers of the mgd1 plant with pollen from

dgd1 plants. The double mutants were identified based on FA profile as well

as genotype analysis.

Detailed experimental procedures are included in the Supplemental Exper-

imental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and five figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2014.10.069.
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and Dörmann, P. (2002). Digalactosyldiacylglycerol synthesis in chloroplasts

of the Arabidopsis dgd1 mutant. Plant Physiol. 128, 885–895.
Cell Re
Kobayashi, K., Kondo,M., Fukuda, H., Nishimura, M., andOhta, H. (2007). Gal-

actolipid synthesis in chloroplast inner envelope is essential for proper thyla-

koid biogenesis, photosynthesis, and embryogenesis. Proc. Natl. Acad. Sci.

USA 104, 17216–17221.

Mandal, M.K., Chandra-Shekara, A.C., Jeong, R.-D., Yu, K., Zhu, S., Chanda,

B., Navarre, D., Kachroo, A., and Kachroo, P. (2012). Oleic acid-dependent

modulation of NITRIC OXIDE ASSOCIATED1 protein levels regulates nitric ox-

ide-mediated defense signaling in Arabidopsis. Plant Cell 24, 1654–1674.

Shah, J., and Zeier, J. (2013). Long-distance communication and signal ampli-

fication in systemic acquired resistance. Front Plant Sci 4, 30.

Wang, R., Furumoto, T., Motoyama, K., Okazaki, K., Kondo, A., and Fukui, H.

(2002). Possible antitumor promoters in Spinacia oleracea (spinach) and com-

parison of their contents among cultivars. Biosci. Biotechnol. Biochem. 66,

248–254.

Wang, C., El-Shetehy, M., Shine, M.B., Yu, K., Navarre, D., Wendehenne, D.,

Kachroo, A., and Kachroo, P. (2014). Free radicals mediate systemic acquired

resistance. Cell Rep 7, 348–355.

Wendehenne, D., Gao, Q.-M., Kachroo, A., and Kachroo, P. (2014). Free

radical-mediated systemic immunity in plants. Curr. Opin. Plant Biol. 20,

127–134.

Xia, Y., Yu, K., Navarre, D., Seebold, K., Kachroo, A., and Kachroo, P. (2010).

The glabra1 mutation affects cuticle formation and plant responses to mi-

crobes. Plant Physiol. 154, 833–846.

Xia, Y., Yu, K., Gao, Q.-M., Wilson, E.V., Navarre, D., Kachroo, P., and Kach-

roo, A. (2012). Acyl CoA binding proteins are required for cuticle formation and

plant responses to microbes. Front Plant Sci 3, 224–242.

Yu, K., Soares, J.M., Mandal, M.K., Wang, C., Chanda, B., Gifford, A.N.,

Fowler, J.S., Navarre, D., Kachroo, A., and Kachroo, P. (2013). A feedback reg-

ulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates

azelaic-acid-induced systemic immunity. Cell Rep 3, 1266–1278.

Zoeller, M., Stingl, N., Krischke, M., Fekete, A., Waller, F., Berger, S., and Mu-

eller, M.J. (2012). Lipid profiling of the Arabidopsis hypersensitive response re-

veals specific lipid peroxidation and fragmentation processes: biogenesis of

pimelic and azelaic acid. Plant Physiol. 160, 365–378.
ports 9, 1681–1691, December 11, 2014 ª2014 The Authors 1691


	Mono- and Digalactosyldiacylglycerol Lipids Function Nonredundantly to Regulate Systemic Acquired Resistance in Plants
	Introduction
	Results
	The dgd1 Mutant Is Compromised in SAR
	The dgd1 Mutant Is Impaired in the SA Branch of SAR
	The dgd1 Mutant Accumulates Normal JA Levels
	The dgd1 and mgd1 Plants Are Compromised in Pathogen-Induced G3P and AzA Levels
	DGDG Is Required for NO Biosynthesis and Accumulation
	Transgenic Expression of Bacterial Glucosyltransferase Rescues Morphological and FA Phenotype, but Not SAR Phenotype, of dg ...

	Discussion
	Experimental Procedures
	Plant Growth Conditions and Genotypes Used

	Supplemental Information
	Acknowledgments
	References




