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1. Introduction

It is a classroom observation that any orthogonal basis of a separable Hilbert space gives rise to
a corresponding (generalized) Fourier transform (establishing an isomorphism between the Hilbert
space and an l2 space over the basis indices). Of particular interest are in this context the Fourier
series corresponding to bases of classical (basic) hypergeometric orthogonal polynomials and their
generalizations given by Fourier-type transforms with kernels governed by non-polynomial (basic)
hypergeometric functions [10,12]. Remarkably, such (basic) hypergeometric Fourier transforms can be
fruitfully understood as generalized spherical transforms associated with double affine Hecke algebras
and their degenerations [4,9,11,15,17].
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In this paper we focus on a limiting situation with the Fourier basis given by one-dimensional
Hall–Littlewood polynomials. The corresponding Fourier transform is a well-known parameter-de-
formation associated with the affine Hecke algebra (of type A1) interpolating between spherical
transforms for rank-one p-adic symmetric spaces [2,16,21]. By extending the affine Hecke algebra to
a double affine Hecke algebra (at q = 1), we arrive at a finite-dimensional discrete Fourier transform
that may be seen as a natural periodic analog of this deformed p-adic spherical transform.

The material is organized as follows. Section 2 recalls the definition of the A1-type double affine
Hecke algebra (at q = 1) and outlines some of its key properties. Section 3 introduces two repre-
sentations of this double affine Hecke algebra on the space of complex functions over Z in terms of
difference-reflection operators and integral-reflection operators, respectively. In Section 4 an explicit
operator intertwining the difference-reflection representation and the integral-reflection representa-
tion is presented. The unitarity of the difference-reflection representation with respect to an appropri-
ate Hilbert space structure is studied in Section 5 and a discrete Laplacian corresponding to a central
element in the double affine Hecke algebra is introduced. The construction of a (generalized) spherical
function associated with the double affine Hecke algebra in Section 6 gives rise to a basis of eigen-
functions diagonalizing the discrete Laplacian. The eigenfunctions in question constitute the kernel
of a discrete Fourier transform associated with the affine Hecke algebra whose Plancherel formula is
determined in Section 7.

Our discrete Laplacian and its eigenfunctions turn out to be special instances of a quantum Hamil-
tonian and its Bethe–Ansatz eigenfunctions modeling an integrable n-particle system discretizing the
delta Bose gas on the circle [5] (cf. Remark 7.5 below for further details). From this perspective, our
results provide the first step towards the construction of an appropriate Hecke-algebraic framework
in the spirit of [7] for the discrete quantum model introduced in Ref. [5].

2. Double affine Hecke algebra

The double affine Hecke algebra H with parameter τ ∈ (0,1) (and q = 1) of type A1 is the complex
unital associative algebra generated by invertible elements T , U and X subject to the relations [15,
Ch. 6.1]

(T − τ )
(
T + τ−1) = 0, U 2 = 1, and U XU = X−1 = T −1 X T −1. (2.1)

The subalgebra H := 〈T , U 〉 ⊂ H is referred to as the (extended) affine Hecke algebra.
A convenient linear basis for H can be constructed by means of the underlying (extended) affine

Weyl group W := 〈s, u | s2 = 1, u2 = 1〉. Indeed, any group element w ∈ W can be written uniquely in
the form w = ui0 si1 · · · sir , where s1 := s, s0 := usu, i0, . . . , ir ∈ {0,1}, and r ∈ {0,1,2, . . .} is minimal.
Such a decomposition of w is called reduced expression and its length r defines the length �(w) of
the group element. Upon setting T w := U i0 Ti1 · · · Tir , with T1 := T and T0 := U T U , one has that the
algebra elements T w Xk , w ∈ W , k ∈ Z form a linear basis of H and that the algebra elements T w ,
w ∈ W form a linear basis of the subalgebra H . The quadratic relation for T in Eq. (2.1) implies the
following elementary multiplication rules in H

T w T = T ws + 1

2

(
1 − η(w)

)(
τ − τ−1)T w , (2.2a)

T T w = Tsw + 1

2

(
1 − η

(
w−1))(τ − τ−1)T w , (2.2b)

where η : W → {1,−1} is defined by

η(w) := �(ws) − �(w). (2.2c)
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For future reference we also exhibit the multiplicative action of the generators of H on the abelian
subalgebra 〈X〉 and vice versa. In the former situation only the action of T is nontrivial and given by
the following classical formula

T Xk = X−k T + (
τ − τ−1) Xk − X−k

1 − X−2
(k ∈ Z)

= X−k T + sign(k)
(
τ − τ−1) |k|−1∑

j=0

X |k|−2 j. (2.3)

For k = 1 and k = −1 this formula becomes T X = X−1T + (τ − τ−1)X and T X−1 = X T − (τ − τ−1)X ,
respectively, which are both manifest upon multiplying the relation T X−1T = X by T (from the left or
from the right, respectively) and successive elimination of the T 2 factor with the aid of the quadratic
relation for T . The general case then readily follows by induction in k.

The multiplicative action of X on the basis of H is more intricate. To give a precise description,
let us note that the affine Weyl group decomposes as W = Ω � W S , where Ω := 〈u〉 = {1, u} and
W S denotes the normal subgroup 〈s0, s1〉 ⊂ W . This decomposition gives rise to the following partial
Bruhat order on W :

w < w ′ ⇔ w−1 w ′ ∈ W S and �(w) < �
(

w ′). (2.4)

Proposition 2.1. Let w = ur w ′ with r ∈ {0,1} and w ′ ∈ W S , and let ε ∈ {−1,1}. Then one has that

T w Xε = Xε(−1)�(w)+r
T w

+ εη(w)Xη(w)(−1)�(w)+r ∑
v∈W
v<w

a
(
�(w) − �(v)

)
T v , (2.5a)

with η(w) given by Eq. (2.2c) and

a(k) :=
(

1 − τ 2

1 + τ 2

)(
τ−k + (−1)k+1τ k). (2.5b)

Proof. It is sufficient to consider the case that r = 0, ε = 1 and η(w) = 1:

T w X = X (−1)�(w)

(
T w +

∑
v∈W , v<w

a
(
�(w) − �(v)

)
T v

)
(2.6)

(for w ∈ W S with ws > w). Indeed, the cases r = 0 and r = 1 are related via the multiplication of
both sides from the left by U , and the formulas corresponding to the other three combinations of
signs (ε,η(w)) = (−1,1), (1,−1), (−1,−1) follow from the case (ε,η(w)) = (1,1) upon invoking the
relations T w X−1 = (X + X−1)T w − T w X (cf. Remark 2.2 below) and Tuwu X = U T w X−1U . (Notice
in this respect that η(uwu) = −η(w) for w ∈ W \ Ω .) We will now proceed to prove Eq. (2.6) by
induction on �(w) starting from the trivial case �(w) = 0. Let w ∈ W S with ws > w and let i =
�(w) mod 2 (i.e. i ∈ {0,1} is chosen such that si w > w (and η(si w) = 1)). Assuming that the relation
in Eq. (2.6) holds for w , one readily deduces that
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Tsi w X = Tsi X (−1)�(w)

(
T w +

∑
v∈W , v<w

a
(
�(w) − �(v)

)
T v

)

(i)= X (−1)�(si w)(
Tsi − (

τ − τ−1))(T w +
∑

v∈W , v<w

a
(
�(w) − �(v)

)
T v

)

(ii)= X (−1)�(si w)

(
Tsi w +

∑
v∈W , v<si w

si v<v

a
(
�(si w) − �(v)

)
T v

+
∑

v∈W , v<si w
si v>v

(
a
(
�(si w) − �(v) − 2

) − (
τ − τ−1)a

(
�(si w) − �(v) − 1

))
T v

)

(iii)= X (−1)�(si w)

(
Tsi w +

∑
v∈W , v<si w

a
(
�(si w) − �(v)

)
T v

)
.

Here we have used (i) the relation in Eq. (2.3) with k = −1 (upon conjugation by U if i = 0), (ii) the
property that Tsi T v = Tsi v if si v > v and Tsi T v = Tsi v + (τ − τ−1)T v if si v < v (cf. Eq. (2.2b)), and
(iii) the identity a(k − 2) − (τ − τ−1)a(k − 1) = a(k). �
Remark 2.2. It is immediate from the relation in Eq. (2.3) (for k = 1 and k = −1) in combination with
the commutation relation U X±1 = X∓1U that the element X + X−1 lies in the center Z(H) of the
double affine Hecke algebra.

3. Representations of HHH on C(ZZZ)

For any (fixed) positive integer M , the action sn := −n, un := M − n on n ∈ Z determines a faithful
representation of W on the space C(Z) of functions f : Z → C given by (w f )(n) := f (w−1n). A fun-
damental domain with respect to the action of W S ⊂ W on Z is given by ΛM := {0,1,2, . . . , M}. For
any n ∈ Z, let us denote by wn the unique shortest element in W S mapping n into ΛM , i.e.

wn =
{ · · · s0s1s0 with �(wn) = p if n = pM + r, p ∈ Z>0, 0 < r � M,

· · · s1s0s1 with �(wn) = p if n = −pM + r, p ∈ Z>0, 0 � r < M,

1 if 0 � n � M.

(3.1)

With the aid of this representation of W , we now introduce two explicit representations of the double
affine Hecke algebra H on C(Z). For convenience, we often employ the shorthand conventions fn for
f (n) and n+ for wnn, and it will moreover be assumed that M > 1 from now on.

3.1. Difference-reflection representation

Let T̂ : C(Z) → C(Z) be the operator

T̂ := τ + τ sign(s − 1), (3.2a)

where τ and τ sign act by multiplication, i.e. (τ f )n := τ fn and (τ sign f )n := τ sign(n) fn (with the con-
vention that sign(0) := 0). More specifically, one has that

(T̂ f )n =
{

τ f−n if n � 0,

τ−1 f−n + (τ − τ−1) fn if n < 0.
(3.2b)
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Similarly, let X̂ : C(Z) → C(Z) denote the operator characterized by

( X̂ f )n := τ (�(wn−1)−�(wn))(1+η(wun)) fn−1

+ sign(n)
∑

v∈W , v<wn

τ−(�(wn)−�(v))a
(
�(wn) − �(v)

)
f v(n−sign(n))+ , (3.3)

with a(·) taken from Eq. (2.5b).

Theorem 3.1. The assignment T → T̂ , U → u, X → X̂ extends (uniquely) to a representation of the double
affine Hecke algebra H on C(Z), i.e.

(T̂ − τ )
(
T̂ + τ−1) = 0 and u X̂u = X̂−1 = T̂ −1 X̂ T̂ −1. (3.4)

It is not hard to verify the quadratic relation for T̂ in Eq. (3.4) directly, however, to check this
way the validity of the commutation relations involving u, X̂ and T̂ , X̂ turns out to be very cumber-
some. Instead, Theorem 3.1 will follow below in Section 4 as a consequence of intertwining relations
connecting to a second representation of H in terms of integral-reflection operators.

3.2. Integral-reflection representation

Let I be a discrete integral-reflection operator on C(Z) of the form

I := τ s + (
τ − τ−1) J , (3.5a)

where

( J f )n :=
{− fn−2 − fn−4 − · · · − f−n if n > 0,

0 if n = 0,

fn + fn+2 + · · · + f−n−2 if n < 0
(3.5b)

(thus in essence integrating f from n to −n with step 2), and let D denote the translation operator
on lattice functions given by (D f )n := fn−1.

Theorem 3.2. The assignment T → I , U → u, X → D extends (uniquely) to a representation of the double
affine Hecke algebra H on C(Z), i.e.

(I − τ )
(

I + τ−1) = 0 and uDu = D−1 = I−1 D I−1. (3.6)

Proof. From the definition of I it is clear that

I2 − (
τ − τ−1)I − 1 = (

τ − τ−1)2(
J 2 − J

) + (
τ 2 − 1

)
(s J + J s − s + 1).

To verify the quadratic relation for I it is therefore sufficient to show that (a) J 2 = J and (b) s J + J s =
s − 1. The latter two relations follow from the following elementary observations: (i) if f is odd then

J f = f , (ii) J f is odd for any f , (iii) sf − f is odd for any f . Indeed, one has that J 2 f
(i),(ii)= J f and

(s J + J s) f
(ii)= J (s − 1) f

(i),(iii)= (s − 1) f for any f ∈ C(Z).
It is immediate from the definitions that uDu = D−1, and to infer the last relation involving I and

D it is convenient to first recast it in the form D−1 I = I−1 D . Upon remarking that I−1 = I − (τ −τ−1)

(by the quadratic relation for I), substitution of Eq. (3.5a), and invoking of the elementary property
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sDs = D−1, one ends up with the relation D = J D − D−1 J , which is readily verified by acting with
both sides on an arbitrary function f ∈ C(Z). �
Remark 3.3. The relation X̂−1 = u X̂u gives rise to the following explicit formula for the action of the
inverse operator X̂−1 on f ∈ C(Z):

(
X̂−1 f

)
n = τ (�(wn+1)−�(wn))(1+η(wn)) fn+1

− sign(n)
∑

v∈W , v<wn

τ−(�(wn)−�(v))a
(
�(wn) − �(v)

)
f v(n−sign(n))+ . (3.7)

4. Intertwining operator

For h ∈ H, we will denote by T̂ (h) and I(h) the images of h under the representations of Theo-
rems 3.1 and 3.2, respectively, and we will furthermore employ the shorthand notations T̂ w := T̂ (T w)

and I w := I(T w ) (w ∈ W ).
Let J : C(Z) → C(Z) be the operator of the form

(J f )n := τ−�(wn)(I wn f )n+
(

f ∈ C(Z), n ∈ Z
)
, (4.1)

where (recall) n+ := wnn.

Proposition 4.1. The operator J (4.1) constitutes a linear automorphism of the space C(Z).

Proposition 4.2. The operator J (4.1) satisfies the intertwining relations

T̂J = J I, uJ = J u, X̂J = J D. (4.2)

It is immediate from Propositions 4.1 and 4.2 that the double affine Hecke algebra relations in
Theorem 3.1 follow from those in Theorem 3.2. In other words, the operator J : C(Z) → C(Z) in
Eq. (4.1) provides an explicit intertwining operator between both representations of the double affine
Hecke algebra:

T̂ (h)J = J I(h) (∀h ∈H). (4.3)

4.1. Proof of Proposition 4.1

We need to show that J : C(Z) → C(Z) is a bijection, which is immediate from the following
triangularity property:

(I wn f )n+ = τ−�(wn) fn +
∑

k∈Z,k≺n

∗ fk
(

f ∈ C(Z), n ∈ Z
)
, (4.4)

with k ≺ n iff either (i) wk < wn or (ii) wk = wn and |k| < |n|. Here and below the star symbols ∗ refer
to the expansion coefficients of lower terms (with respect to the partial order ≺) whose precise values
are not relevant for the argument of the proof. Indeed, it is clear from the triangularity in Eq. (4.4)
that for any g ∈ C(Z) the linear equation (J f )n = gn (n ∈ Z) can be uniquely solved by induction in
n with respect to ≺. We will now prove the triangularity in question by induction on �(wn) starting
from the straightforward case that �(wn) � 1. (The case �(wn) = 0 is in fact trivial since then n ∈ ΛM

and (I wn f )n+ = fn .) To this end we first observe that for �(wn) = 1 the triangularity in Eq. (4.4) is a
direct consequence of the following lemma.
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Lemma 4.3. For i ∈ {0,1}, the action of Isi on f ∈ C(Z) is of the form

(Isi f )n =
⎧⎨
⎩

τ−1 f sin + ∑
k∈Z

wk<wsin

∗ fk + ∑
k∈Z, |k|<|sin|

wk=wsin

∗ fk if �(wsin) > �(wn),∑
k∈Z

wk<wn

∗ fk + ∑
k∈Z, |k|�|n|

wk=wn

∗ fk if �(wsin) � �(wn).

Proof. From the formula for the action in Eqs. (3.5a), (3.5b) and its conjugation with the action of u
one deduces that

(Is1 f )n = (I f )n =
{

τ−1 f−n − (τ − τ−1)
∑n−1

k=1 fn−2k if n > 0,

τ f−n + (τ − τ−1)
∑−n−1

k=0 fn+2k if n � 0,

and

(Is0 f )n = (uIu f )n =
{

τ−1 f2M−n − (τ − τ−1)
∑M−n−1

k=1 fn+2k if n < M,

τ f2M−n + (τ − τ−1)
∑n−M−1

k=0 fn−2k if n � M.

These explicit formulas are readily seen to imply the lemma (upon employing the formula in Eq. (3.1)
to determine the lengths of the relevant group elements wn−2k and wn+2k , together with the equiva-
lences n > 0 ⇔ �(ws1n) > �(wn) and n < M ⇔ �(ws0n) > �(wn)). �

Now let us assume that n ∈ Z with �(wn) � 1 is such that the triangularity in Eq. (4.4) holds for
all k ∈ Z with �(wk) � �(wn), and let m = sin with �(wm) = �(wn)+ 1 (so wm = wnsi ). Our induction
hypothesis guarantees that

(I wm f )m+ = (I wn Isi f )n+ = τ−�(wn)(Isi f )n +
∑
l∈Z

wl<wn

∗(Isi f )l +
∑

l∈Z, |l|<|n|
wl=wn

∗(Isi f )l. (4.5)

Application of Lemma 4.3 to all terms on the RHS of Eq. (4.5) shows that (I wm f )m+ is equal to
τ−�(wm) fm plus a linear combination of terms involving evaluations fk with k ≺ m, which completes
the induction step (and thus the proof of the proposition). Indeed, one has that (i) τ−�(wn)(Isi f )n =
τ−�(wn)−1 f sin + lower terms = τ−�(wm) fm + lower terms, (ii) if wl < wn then wsil � wlsi < wnsi =
wsin = wm , and (iii) if wl = wn with |l| < |n| then �(wlsi) = �(wl) + 1 and |sil| < |sin|, whence wsil =
wlsi = wnsi = wm and |sil| < |m|.

4.2. Proof of Proposition 4.2

Let f ∈ C(Z) and n ∈ Z.

4.2.1. Proof of the relation T̂J =J I
Straightforward manipulations reveal that

(T̂J f )n = τ (J f )n + τ sign(n)
(
(J f )−n − (J f )n

)
(i)= τ 1−�(wn)(I wn f )n+ + τ sign(n)

(
τ−�(wns)(I wns f )n+ − τ−�(wn)(I wn f )n+

)
(ii)= τ−�(wn)

(
(I wns f )n+ + 1

2

(
1 − η(wn)

)(
τ − τ−1)(I wn f )n+

)
(iii)= τ−�(wn)(I wn I f )n+ = (J I f )n
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(with η : W → {−1,1} as defined in Eq. (2.2c)). In steps (i) and (ii) we exploited that for n = 0:
w−n = wns and �(wns) = �(wn) + sign(n), whereas for n = 0: τ−�(wn)(I wn f )n+ = f0 = τ−1(I f )0 =
τ−�(wn s)(I wns f )n+ . Step (iii) hinges in turn on the Hecke algebra relation in Eq. (2.2a).

4.2.2. Proof of the relation uJ =J u
It is immediate from the definitions that

(uJ f )n = (J f )un = τ−�(wun)(I wun f )wunun

= τ−�(wn)(uI wn u f )un+ = τ−�(wn)(I wn u f )n+ = (J u f )n

(where it was used that wun = uwnu and Iuwu = uI w u).

4.2.3. Proof of the relation X̂J =J D
The proof hinges on the Hecke algebra relation of Proposition 2.1 (with r = 0 and ε = 1):

(J D f )n = τ−�(wn)(I wn D f )n+

= τ−�(wn)
(

D(−1)�(wn)

I wn f
)

n+

+ η(wn)τ
−�(wn)

∑
v∈W , v<wn

a
(
�(wn) − �(v)

)(
Dη(wn)(−1)�(wn)

I v f
)

n+

(i)= τ−�(wn)(I wn f )n+−(−1)�(wn)

+ sign(n)τ−�(wn)
∑

v∈W , v<wn

a
(
�(wn) − �(v)

)
(I v f )n+−sign(n)(−1)�(wn)

(ii)= τ (�(wn−1)−�(wn))(1+η(wun))(J f )n−1

+ sign(n)
∑

v∈W , v<wn

τ−(�(wn)−�(v))a
(
�(wn) − �(v)

)
(J f )v−1(n−sign(n))+

= ( X̂J f )n.

Here we used in step (i) that η(wn) = sign(n) for n = 0, and in step (ii) that

n+ − (−1)�(wn) = wn(n − 1)

=
{ s(n − 1)+ (= −1) if n ≡ 0 mod 2M with n � 0,

s0(n − 1)+ (= M + 1) if n ≡ M mod 2M with n < 0,

(n − 1)+ otherwise

and n+ − sign(n)(−1)�(wn) = wn(n − sign(n)) = (n − sign(n))+ . Notice in this connection that
�(wn−1) = �(wn) + 1 if n ≡ 0 mod M with n � 0, and that (for any f ∈ C(Z)): f−1 = τ (I f )1,
f M+1 = τ (Is0 f )M−1, and moreover τ−�(v)(I v f )vn = (J f )n for (any) v ∈ W with vn = n+ (since
τ−1(I f )0 = f0 and τ−1(Is0 f )M = f M ).

5. Unitarity and the Laplacian

The assignment T w → T ∗
w := T w−1 (w ∈ W ) extends to an antilinear anti-involution ∗ of the affine

Hecke algebra H ⊂ H turning it into a ∗-algebra. Let l2(Z, δ) be the Hilbert space inside C(Z) deter-
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mined by the inner product

〈 f , g〉δ :=
∑
n∈Z

fn ḡnδn, δn := τ 2�(wn) (5.1)

(where the bar refers to the complex conjugate).

Proposition 5.1. The difference-reflection representation h → T̂ (h) (h ∈ H) restricts to a unitary representa-
tion of the affine Hecke algebra H ⊂ H into the space of bounded operators on l2(Z, δ), i.e.

〈
T̂ (h) f , g

〉
δ
= 〈

f , T̂
(
h∗)g

〉
δ

(
h ∈ H, f , g ∈ l2(Z, δ)

)
. (5.2)

Proof. Clearly it is sufficient to prove the proposition for the generators u and T̂ = τ +τ sign(s−1). The
corresponding operators are bounded in l2(Z, δ) because 〈u f , u f 〉δ = 〈 f , f 〉δ as uδ = δ and 〈sf , sf 〉δ =
〈τ 2 sign f , f 〉δ as sδ = τ 2 signδ. (Notice in this connection also that 〈τ sign f , f 〉δ � τ−1〈 f , f 〉δ .) In an
analogous manner it is seen that 〈u f , g〉δ = 〈 f , ug〉δ and that 〈T̂ f , g〉δ = 〈(τ − τ sign) f + τ signsf , g〉δ =
〈 f , (τ − τ sign)g + δ−1sτ signδg〉δ = 〈 f , T̂ g〉δ (using also that sτ sign = τ−signs). �

Let us define the Laplacian on C(Z) associated with the (center of the) double affine Hecke algebra
H as the operator L : C(Z) → C(Z) of the form

L := T̂
(

X + X−1) = X̂ + X̂−1. (5.3)

It is immediate from the action of X̂ and X̂−1 in Eqs. (3.3) and (3.7), that the Laplacian L (5.3) is a
discrete difference operator whose explicit action on f ∈ C(Z) reads

(L f )n = τ (�(wn+1)−�(wn))(1+η(wn)) fn+1 + τ (�(wn−1)−�(wn))(1+η(wun)) fn−1 (5.4)

(n ∈ Z), or equivalently:

(L f )n = an fn+1 + bn fn−1 (n ∈ Z), (5.5a)

with

an =
{

τ 2 if n ∈ MZ>0,

1 otherwise,
bn =

{
τ 2 if n ∈ MZ�0,

1 otherwise.
(5.5b)

For τ → 1, the action of L (5.3) degenerates to the action of the standard (undeformed) discrete
Laplacian on C(Z) (shifted by an additive constant such that the diagonal terms vanish).

Proposition 5.2. The Laplacian L (5.3) constitutes a (bounded) self-adjoint operator on l2(Z, δ), i.e.

〈L f , g〉δ = 〈 f , Lg〉δ
(

f , g ∈ l2(Z, δ)
)
. (5.6)

Proof. It is manifest from Eqs. (5.5a), (5.5b) that the operator L is bounded on l2(Z, δ). Moreover, one
has that
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〈L f , g〉δ =
∑
n∈Z

(an fn+1 + bn fn−1)ḡnδn

=
∑
n∈Z

fn(an−1 ḡn−1δn−1 + bn+1 ḡn+1δn+1)

=
∑
n∈Z

fn(an ḡn+1 + bn ḡn−1)δn = 〈 f , Lg〉δ,

where it was used that anδn = bn+1δn+1 (∀n ∈ Z). �
6. Spherical function

It is well known that the eigenfunctions of the (standard) discrete Laplacian in C(Z) restricted
to the finite-dimensional invariant subspace of W S -symmetric functions are given by the elements
of the (appropriate) discrete Fourier-cosine basis [22] (cf. also Remark 7.4 below). For our deformed
Laplacian L (5.3), the role of the cosine function will be taken over by a spherical function associated
with the double affine Hecke algebra.

Parameterized by an auxiliary spectral variable ξ ∈ R, we define the spherical function in C(Z)

associated with H as

Φξ := J φξ with φξ := (1 + τ I)eiξ , (6.1)

where eiξ ∈ C(Z) represents the plane wave function eiξ (n) := eiξn , n ∈ Z. From the explicit action
of I (3.5a), (3.5b) on eiξ :

Ieiξ = τe−iξ + (
τ − τ−1)eiξ − e−iξ

1 − e2iξ
,

it is readily seen that φξ can be expressed as a linear combination of plane waves

φξ (n) = c(ξ)eiξn + c(−ξ)e−iξn, (6.2a)

with

c(ξ) := 1 − τ 2e−2iξ

1 − e−2iξ
. (6.2b)

This representation of φξ can be conveniently rewritten as a linear combination of two Chebyshev
polynomials of the second kind:

φξ (n) = Un
(
cos(ξ)

) + τ 2U−n
(
cos(ξ)

)
with Un

(
cos(ξ)

) = sin
(
(n + 1)ξ

)
/ sin(ξ),

whence it is a polynomial of degree |n| in cos(ξ). These trigonometric polynomials in the spectral
parameter are often referred to as the one-dimensional Hall–Littlewood polynomials. It is manifest
from the above explicit expressions that φξ and thus also Φξ are real-valued: φξ = φξ , Φξ = Φξ .

Let C(Z)W := { f ∈ C(Z) | w f = f , ∀w ∈ W } and C(Z)W S := { f ∈ C(Z) | w f = f , ∀w ∈ W S }.

Proposition 6.1. The spherical function Φξ (6.1) lies in the subspace C(Z)W S of W S -invariant functions if the
spectral parameter ξ ∈ R satisfies the equation

eiMξ = ε

(
1 − τ 2e2iξ

τ 2 − e2iξ

)
, ε ∈ {1,−1}, (6.3)

with the case ε = 1 corresponding to the situation that Φξ ∈ C(Z)W ⊂ C(Z)W S .



34 J.F. van Diejen, E. Emsiz / Advances in Applied Mathematics 49 (2012) 24–38
Proof. From the quadratic relation T (1 + τ T ) = τ (1 + τ T ) together with the intertwining relations in
Proposition 4.2, it is seen that T̂ Φξ = T̂J φξ =J Iφξ =J I(1 +τ I)eiξ =J τ (1 +τ I)eiξ = τΦξ , whence
sΦξ = Φξ (for any ξ ∈ R). Moreover, from Propositions 4.1, 4.2 it is clear that uΦξ = εΦξ if and only
if uφξ = εφξ (ε ∈ {1,−1}). The explicit expansion in Eqs. (6.2a), (6.2b) reveals that this relation for φξ

holds if eiMξ = εc(−ξ)/c(ξ) = ε(1 − τ 2e2iξ )/(τ 2 − e2iξ ). �
Eq. (6.3) for the spectral parameter turns out to be the simplest case of a Bethe–Ansatz equation

for the discrete Bose gas on the circle studied in Ref. [5] (cf. Remark 7.5 below). We will now describe
what the solutions of these Bethe–Ansatz equations in [5] amount to in the present situation (with
proofs included to keep the presentation self-contained). Let

V (ξ) := Mξ + θ(ξ), (6.4a)

with

θ(ξ) := (
1 − τ 4) 2ξ∫

0

dx

1 + τ 4 − 2τ 2 cos x
(6.4b)

= 2 arctan

(
1 + τ 2

1 − τ 2
tan ξ

)
= i log

(
1 − τ 2e2iξ

e2iξ − τ 2

)
. (6.4c)

Here the branches of arctan(·) and log(·) are assumed to be chosen such that θ is quasi-periodic:
θ(ξ + π) = θ(ξ) + 2π and θ(ξ) varies from −π to π as ξ varies from −π/2 to π/2 (which corre-
sponds to the principal branch). Our parameter regime τ ∈ (0,1) moreover guarantees that the odd
function θ is smooth and strictly monotonously increasing on R. The following proposition character-
izes those solutions of Eq. (6.3) that are relevant for our purposes.

Proposition 6.2.

(i) For any m ∈ ΛM , the equation V (ξ) = (m + 1)π has a unique real-valued solution ξm.
(ii) We have that 0 < ξ0 < ξ1 < · · · < ξM < π and that ξum = ξM−m = π − ξm.

(iii) The spectral value ξm solves Eq. (6.3) with ε = 1 if m ∈ Λe
M := 2Z∩ ΛM and with ε = −1 if m ∈ Λo

M :=
(2Z+ 1) ∩ ΛM .

Proof. Part (i) follows from the fact that V : R → R is bijective. Indeed, the function V (ξ) is strictly
monotonously increasing on R with V (ξ) → −∞ as ξ → −∞ and V (ξ) → +∞ as ξ → +∞.

The first statement of part (ii) is clear from the strict monotonicity of V (ξ) and the fact that
V (0) = 0 and V (π) = (M + 2)π ; the second statement is manifest from the equality V (ξM−m) =
(M − m + 1)π = V (π − ξm).

By definition, one has that Mξm + θ(ξm) = (m + 1)π . Upon multiplication by i and exponentiating
both sides of the equation one deduces that eiMξm = (−1)m(1 − τ 2e2iξm )/(τ 2 − e2iξm ), which implies
part (iii). �

For the spectral values ξm , m ∈ ΛM the spherical function Φξ (6.1) can now be written explicitly
in terms of the one-dimensional Hall–Littlewood polynomials:

Φξm (n) = c(ξm)eiξmn+ + c(−ξm)e−iξmn+ (m ∈ ΛM , n ∈ Z). (6.5)

Indeed, for any f ∈ C(Z) and n ∈ ΛM one has that (J f )n = fn (by definition). Hence, Eq. (6.5) is
immediate from Eqs. (6.2a), (6.2b), first for n ∈ ΛM and then (trivially) extended to arbitrary n ∈ Z

using the W S -invariance of Φξm , m ∈ ΛM (following from Propositions 6.1 and 6.2).
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7. Discrete Fourier transform

Since ΛM is a fundamental domain for the action of W S on Z, the W S -invariant subspace
l2(Z, δ)W S := l2(Z, δ)∩C(Z)W S can be identified with the finite-dimensional space l2(ΛM ,�) of func-
tions f : ΛM → C endowed with the inner product

〈 f , g〉� :=
∑

n∈ΛM

fn ḡn�n
(

f , g ∈ l2(ΛM ,�)
)
, (7.1a)

with respect to a (suitably normalized) symmetrized weight function � : ΛM → (0,∞) of the form

�n := 1

W S(τ 2)

∑
m∈W S n

δm =
{

(1 + τ 2)−1 if n = 0, M,

1 if 0 < n < M.
(7.1b)

Here we have employed the shorthand notation

W S
(
τ 2) :=

∑
w∈W S

τ 2�(w) = 1 + 2
∞∑

k=1

τ 2k = (
1 + τ 2)/(1 − τ 2).

The computation of �n (7.1b) hinges on the following elementary identity:

∑
m∈W S n

δm =
∑

m∈W Sn

τ 2�(wm)

=
{∑∞

k=0 τ 2k = 1/(1 − τ 2) if n = 0, M,

(1 + τ 2)
∑∞

k=0 τ 2k = (1 + τ 2)/(1 − τ 2) if 0 < n < M.

Since X + X−1 is a central element in H (cf. Remark 2.2 above), it is clear that LT̂ = T̂ L and
Lu = uL, which implies that L maps the invariant subspace C(Z)W S = { f ∈ C(Z) | sf = f , u f = ± f } =
{ f ∈ C(Z) | T̂ f = τ f , u f = ± f } into itself. Indeed, with the aid of Proposition 5.2 and Eqs. (5.5a),
(5.5b) one infers that L restricts to a self-adjoint in operator in l2(ΛM ,�) whose explicit action on
f ∈ l2(ΛM ,�) is given by

(L f )n =
⎧⎨
⎩

(1 + τ 2) f1 if n = 0,

fn+1 + fn−1 if 0 < n < M,

(1 + τ 2) f M−1 if n = M.

(7.2)

Theorem 7.1. The spherical functions Φξm : ΛM → R, m ∈ ΛM are eigenfunctions of the Laplacian L in
l2(ΛM ,�):

LΦξm = 2 cos(ξm)Φξm (m ∈ ΛM).

Proof. Elementary manipulations involving the explicit expansion in Eq. (6.5) reveal that LΦξm = ( X̂ +
X̂−1)J φξm =J (D + D−1)(c(ξm)eiξm + c(−ξm)e−iξm ) = 2 cos(iξm)Φξm , since (D + D−1)eiξ = 2 cos(ξ)eiξ .
To verify that Φξm = 0, it suffices to compute its value at the origin: Φξm (0) = c(ξm) + c(−ξm) =
1 + τ 2 > 0. �

It follows form Theorem 7.1 and part (ii) of Proposition 6.2 that the eigenvalues of L in l2(ΛM ,�)

are non-degenerate. The spherical functions Φξm , m ∈ ΛM thus form an orthogonal basis of l2(ΛM ,�).
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To describe the corresponding Plancherel formula it is convenient to introduce the dual space
l2(ΛM , �̂) of functions f : ΛM →C endowed with the inner product

〈 f , g〉
�̂

:=
∑

m∈ΛM

fm ḡm�̂m
(

f , g ∈ l2(ΛM , �̂)
)
, (7.3a)

with respect to a weight function �̂ : ΛM → (0,∞) of the form

�̂m := 1

2c(ξm)c(−ξm)V ′(ξm)

= (1 − cos(2ξm))

(1 + τ 4 − 2τ 2 cos(2ξm))

(
M + 2(1 − τ 4)

1 + τ 4 − 2τ 2 cos(2ξm)

)−1

. (7.3b)

Let Φ : ΛM × ΛM →R denote the kernel function given by Φm;n := Φξm (n) (m,n ∈ ΛM ).

Theorem 7.2.

(i) The functions Φm;· : ΛM →R, m ∈ ΛM form an orthogonal basis of l2(ΛM ,�), viz. for any m,m′ ∈ ΛM

〈Φm;·,Φm′;·〉� =
M∑

n=0

Φm;nΦm′;n�n =
{

0 if m = m′,
�̂−1

m if m = m′.

(ii) The functions Φ ·;n : ΛM →R, n ∈ ΛM form an orthogonal basis of l2(ΛM , �̂), viz. for any n,n′ ∈ ΛM

〈Φ ·;n,Φ ·;n′ 〉
�̂

=
M∑

m=0

Φm;nΦm;n′�̂m =
{

0 if n = n′,
�−1

n if n = n′.

Proof. Parts (i) and (ii) are equivalent, since both can be reformulated as the affirmation that the
matrix [�̂1/2

m Φm;n�
1/2
n ]0�m,n�M is orthogonal. In view of the above mentioned orthogonality of the

basis Φm;· = Φξm , m ∈ ΛM in l2(ΛM ,�), it is thus sufficient to verify the norm formula in part (i) for
m = m′ . An explicit computation reveals that

M∑
n=0

Φ2
ξm

(n)�n =
M∑

n=0

(
c(ξm)eiξmn + c(−ξm)e−iξmn)2

�n

= c2(ξm)

(
M−1∑
n=1

e2iξmn + 1 + e2iξm M

1 + τ 2

)
+ c2(−ξm)

(
M−1∑
n=1

e−2iξmn + 1 + e−2iξm M

1 + τ 2

)

+ 2c(ξm)c(−ξm)

(
M + 1 − τ 2

1 + τ 2

)
,

which is readily seen to simplify to 2c(ξm)c(−ξm)V ′(ξm) upon summation of the two terminating
geometric series and subsequent elimination of all occurrences of exponentials of the form e±2iMξm

via the relation e2iMξm = c2(−ξm)/c2(ξm) (cf. Propositions 6.1 and 6.2). �
Finally, we are now in the position to define the following discrete Fourier transform F : l2(ΛM ,

�) → l2(ΛM , �̂) associated with H:
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f̂m := (F f )m := 〈 f ,Φm;·〉� =
M∑

n=0

fnΦm;n�n
(

f ∈ l2(ΛM ,�), m ∈ ΛM
)
. (7.4a)

According to Theorem 7.2 the transform in question constitutes a unitary isomorphism of l2(ΛM ,�)

onto l2(ΛM , �̂) with an inversion formula given by

fn = (
F−1 f̂

)
n = 〈 f̂ ,Φ ·;n〉�̂ =

M∑
m=0

f̂mΦm;n�̂m
(

f̂ ∈ l2(ΛM , �̂), n ∈ ΛM
)
. (7.4b)

Furthermore, according to Theorem 7.1 the discrete Fourier transform diagonalizes the Laplacian L
in l2(ΛM ,�) in the sense that L = F−1 ÊF , where Ê denotes the real multiplication operator in
l2(ΛM , �̂) given by (Ê f )m := 2 cos(ξm) fm ( f ∈ l2(ΛM , �̂), m ∈ ΛM ).

Remark 7.3. The Hilbert space l2(ΛM ,�) admits the following natural orthogonal decomposi-
tion: l2(ΛM ,�) = l2(ΛM ,�)u ⊕ l2(ΛM ,�)−u , where l2(ΛM ,�)u := { f ∈ l2(ΛM ,�) | u f = f } and
l2(ΛM ,�)−u := { f ∈ l2(ΛM ,�) | u f = − f } (so l2(ΛM ,�)u ∼= l2(Z, δ) ∩ C(Z)W ). Similarly, the Hilbert
space l2(ΛM , �̂) decomposes orthogonally as l2(ΛM , �̂) = l2(Λe

M , �̂)⊕ l2(Λo
M , �̂). The discrete Fourier

transform F maps l2(ΛM ,�)u onto l2(Λe
M , �̂) and l2(ΛM ,�)−u onto l2(Λo

M , �̂). Indeed, it follows
from Theorem 7.2 combined with (the proof of) Proposition 6.1 and part (iii) of Proposition 6.2, that
the spherical functions Φξm , m ∈ Λe

M and Φξm , m ∈ Λo
M constitute orthogonal bases of the subspaces

l2(ΛM ,�)u and l2(ΛM ,�)−u , respectively.

Remark 7.4. It is not difficult to infer that for τ → 1 one has that: ξm → mπ
M , Φm;n → 2 cos(mnπ

M ), and

�n,2M�̂n →
{

1/2 if n = 0, M,

1 if 0 < n < M.

In other words, in this limit our discrete Fourier transform (diagonalizing the Laplacian L (5.3)) degen-
erates as expected to the discrete cosine transform (diagonalizing the undeformed discrete Laplacian)
[22,1].

Remark 7.5. The orthogonality relations in Theorem 7.2(ii) are a finite counterpart of well-known
orthogonality relations for the one-dimensional Hall–Littlewood polynomials φξ (n), n ∈ Z�0:

1

2π

π∫
0

φξ (n)φξ

(
n′) dξ

c(ξ)c(−ξ)
=

{
0 if n = n′,
Nn if n = n′,

with N0 = 1+τ 2 and Nn = 1 for n > 0. They constitute the simplest instances of (conjectural) discrete
orthogonality relations for the Hall–Littlewood polynomials [6] originating from the Bethe–Ansatz
method for the periodic quantum integrable particle model with pairwise delta-potential interactions
known as the delta Bose gas on the circle [5,14,8,13]. From this perspective, the spectral problem
for our Laplacian L (5.3) may be viewed as a discrete analog of the textbook spectral problem for a
quantum particle on the circle in the presence of a delta-potential. Based on the results presented
in this paper, it is natural to expect that the generalization of the representations in Section 3 to the
case of double affine Hecke algebras associated with arbitrary Weyl groups will provide an appropriate
algebraic framework encoding the symmetries of the integrable discretization of the delta Bose gas on
the circle introduced in [5]. This would generalize (i.e. discretize) corresponding recent constructions
in terms of degenerations of the double affine Hecke algebra for the (continuous) delta Bose gas on
the circle [7]. It is furthermore plausible that the spectral problem for L (5.3) is in turn a singular
limiting case of a transcendental spectral problem for Ruijsenaars’ analytic difference version of the
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one-dimensional Schrödinger operator with Weierstrass ℘-potential [18–20], which can be captured
through a very general double affine Hecke-algebraic construction due to Cherednik [3]. From this
viewpoint, the representations of the double affine Hecke algebra at q = 1 exhibited here in rank
one are expected to interpolate between the corresponding representations of the degenerate double
affine Hecke algebra in [7] and the more general Hecke-algebraic settings of Ref. [3].
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