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Summary

Glucose-inhibited neurons orchestrate behavior and
metabolism according to body energy levels, but

how glucose inhibits these cells is unknown. We stud-
ied glucose inhibition of orexin/hypocretin neurons,

which promote wakefulness (their loss causes narco-
lepsy) and also regulate metabolism and reward.

Here we demonstrate that their inhibition by glucose
is mediated by ion channels not previously implicated

in central or peripheral glucose sensing: tandem-pore
K+ (K2P) channels. Importantly, we show that this elec-

trical mechanism is sufficiently sensitive to encode
variations in glucose levels reflecting those occurring

physiologically between normal meals. Moreover, we

provide evidence that glucose acts at an extracellular
site on orexin neurons, and this information is trans-

mitted to the channels by an intracellular intermediary
that is not ATP, Ca2+, or glucose itself. These results

reveal an unexpected energy-sensing pathway in
neurons that regulate states of consciousness and

energy balance.

Introduction

A fundamental aspect of animal survival is the ability to
react appropriately to changes in life-sustaining energy
supplies. In mammals, the brain plays a central role in
these vital adaptations, detecting changes in body en-
ergy levels and initiating coordinated adjustments in
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behavior and metabolism (Saper et al., 2002; Schwartz
et al., 2000). One of the earliest explanations for how
the brain monitors body energy levels came from the
discovery of ‘‘glucose-sensing’’ hypothalamic neurons,
which respond to rises in ambient glucose levels with in-
creases (glucose-excited cells) or decreases (glucose-
inhibited cells) in firing rate (Anand et al., 1964; Oomura
et al., 1969). These cells are critical for responding to
the ever-changing body energy state with finely orches-
trated changes in arousal, food seeking, hormone
release, and metabolic rate, to ensure that the brain al-
ways has adequate glucose (Levin et al., 1999; Routh,
2002; Burdakov et al., 2005b). It is therefore important
to understand how glucose exerts its effects on these
neurons.

For most glucose-excited cells, there is now strong
evidence that the excitation involves intracellular glu-
cose entry and closure of ATP-sensitive K+ channels
(Ashford et al., 1990; Routh, 2002). In contrast, the bio-
physical nature of glucose-mediated inhibition (glucose
inhibition) is a long-standing mystery. It has been spec-
ulated that glucose inhibition may involve enhanced
activity of either the sodium pump (Oomura et al., 1974)
or chloride channels (Routh, 2002). However, ion substi-
tution experiments necessary to test these theories
have not been performed. Moreover, even the basic
site of glucose action (intracellular versus extracellular)
in glucose-inhibited neurons is unknown.

Among glucose-inhibited cells are neurons containing
the recently described transmitters orexins/hypocretins
(orexin neurons) (Sakurai et al., 1998; de Lecea et al.,
1998). These cells are highly important regulators of
states of consciousness. They project to all major brain
areas except the cerebellum, with prominent innervation
of key arousal and autonomic regions, where orexins are
released and act on specific G protein-coupled recep-
tors (OX1R and OX2R) (Marcus et al., 2001; Peyron
et al., 1998; Sakurai et al., 1998; Willie et al., 2001; Sut-
cliffe and de Lecea, 2002). Defects in orexin signaling re-
sult in narcolepsy, demonstrating that orexin neurons
are vital for sustaining normal wakefulness (Chemelli
et al., 1999; Lin et al., 1999; Peyron et al., 2000; Than-
nickal et al., 2000; Sutcliffe and de Lecea, 2002). The
activity of orexin neurons also regulates appetite and
metabolic rate, and loss of orexin neurons leads to obe-
sity (Hara et al., 2001). Moreover, key roles for orexin
neurons are emerging in learning, reward seeking, and
addiction (Selbach et al., 2004; Harris et al., 2005; Smith
and Pang, 2005; Borgland et al., 2006).

Considering these crucial roles of orexin neurons, their
recently described inhibition by glucose (Yamanaka
et al., 2003; Burdakov et al., 2005a) is likely to have
considerable implications for the regulation of states of
consciousness and energy balance. However, as in
other glucose-inhibited neurons, it is unknown how glu-
cose suppresses the electrical activity of orexin cells.
Because the sensitivity of orexin cell firing to the small
changes in extracellular glucose that occur between
normal meals has never been tested, the daily physiolog-
ical relevance of their glucose sensing is also unknown.
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To address these important unknowns, here we iden-
tify orexin neurons via targeted expression of GFP in
transgenic mice and document key properties of their
inhibition by glucose. We demonstrate that glucose
inhibition is mediated by activation of ‘‘leak’’ K+ (K2P)
channels (also known as tandem-pore or two-pore do-
main K+ channels), which were not previously implicated
in central or peripheral glucose sensing. Crucially, this
electrical mechanism allows orexin neurons to encode
minute changes in glucose levels reflecting physiologi-
cal variations occurring in the brain between normal
meals. Glucose-modulated K2P channels are activated
by extracellular, but not intracellular, application of glu-
cose. Together, these results identify an unexpected
physiological role for the recently characterized K2P

channels and shed light on the long-elusive mechanism
of glucose inhibition, thus providing new insights into
cellular pathways regulating vigilance states and energy
balance.

Results

Identifying Living Orexin Neurons via Targeted
Expression of eGFP

To identify living orexin neurons in situ, we made trans-
genic mice in which the expression of enhanced green
fluorescent protein (eGFP) is driven by the human pre-
pro-orexin promoter (orexin-eGFP mice; see Experi-
mental Procedures). This proved to be a highly reliable
marker of orexin cells: up to 80% of orexin-containing
neurons in brain slices from orexin-eGFP mice were la-
beled with eGFP, as in previous studies of eGFP expres-
sion driven by this promoter (Li et al., 2002; Yamanaka
et al., 2003). Expression of orexin in 100% of eGFP neu-
rons (Figure 1A) was further confirmed by scanning indi-
vidual cells (n = 70) at high magnification.

To study electrical activity of orexin neurons, we per-
formed whole-cell patch-clamp recordings in acutely
isolated brain slices. Exactly like wild-type mouse orexin
neurons (Burdakov et al., 2005a), eGFP-containing neu-
rons exhibited spontaneous electrical activity (Figure 1B;
n = 20) and were inhibited when the extracellular solution
was switched from 0.2 to 4.5 mM glucose (Figure 2A, n =
19/20). This confirmed that transgenic eGFP expression
does not disrupt intrinsic electrophysiology and glucose
sensing of mouse orexin neurons, which is also sug-
gested by previous reports (Li et al., 2002; Yamanaka
et al., 2003).

Biophysical Identity of the Current Responsible
for Glucose Inhibition

To address the ionic nature of glucose inhibition, we
combined intracellular ion substitutions with whole-cell
recordings. First, we used a K-gluconate intracellular
solution; in its presence, glucose induced hyperpolar-
ization (Figure 2A). With this solution, the current re-
sponsible for hyperpolarization can be carried by two
ions, K+ and Cl–, since only these ions have equilibrium
(Nernst) potentials (Eion) that are more negative than
resting membrane potentials of orexin cells (EK = 2103
mV, ECl = 258 mV). This indicates that glucose inhibition
is mediated by K+ or Cl– currents.

Next, we used a KCl intracellular solution (which was
also used in all subsequent experiments). This solution
sets ECl to w0 mV, making K+ channels the only ion
channels that can hyperpolarize resting potentials of
orexin cells. Under these conditions, glucose still pro-
duced pronounced hyperpolarization (Figure 2A, n =
38/41). This indicates that a K+, and not Cl–, current is
responsible. Thus, the net glucose-induced current
should have an equilibrium potential corresponding to
EK. We isolated the net glucose-induced current by
subtracting whole-cell currents in 0.2 mM extracellular
glucose from those recorded from the same cell in 4.5
mM glucose (Figures 2A and 2B). Glucose-induced cur-
rent (Figure 2C) had an equilibrium potential of 2104 6 1
mV (n = 30), confirming its high selectivity for K+ ions
(EK = 2103 mV). Direct injections of currents of similar
size into orexin neurons mimicked hyperpolarization
produced by glucose (Figure 2F), confirming that the
glucose-induced current was large enough to account
for glucose inhibition.

The K+ channel families fall into three groups based on
voltage and Ca2+ dependence of their currents: (1) volt-
age- and/or Ca2+-gated channels, (2) inwardly rectifying
channels, and (3) leak channels exhibiting Goldman-
Hodgkin-Katz (GHK) outward rectification (Hille, 2001).
To determine which of these channel families mediates
glucose inhibition, we focused on the current-voltage
(I-V) relationship of the net glucose-induced current
(Figure 2C). This showed clear outwardly rectifying be-
havior that was well described by the GHK current equa-
tion (Figure 2C). This is strongly indicative of a leak K+

conductance lacking intrinsic voltage dependence,
whereas K+ channels of types (1) and (2) (above) have
strikingly different I-V relationships (Hille, 2001).

Glucose-induced current was also unaffected by fix-
ing cytosolic [Ca2+] at 90 nM with an intracellularly ap-
plied BAPTA-Ca2+ mixture (n = 15, see Figure 7D and
associated text), providing a further strong argument
against involvement of Ca2+-activated K+ currents
(Gribkoff et al., 2001). Overall, the properties of glu-
cose-induced currents were thus consistent with leak
K+ channels but not with other K+ channel families. Ana-
lyzing the time course of net glucose-induced currents
evoked in response to voltage steps revealed rapid
activation and minimal time-dependent decay (Figures

Figure 1. Properties of eGFP-Expressing Neurons from Orexin-

eGFP Mice

(A) Imaging of eGFP (green) and immunolabeled orexin-A (red).

Colocalization of eGFP and orexin-A is shown in yellow. Scale bar,

100 mm.

(B) Current-clamp recording from an orexin-eGFP neuron showing

intrinsic activity.
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Figure 2. Biophysical Properties of Glucose-

Activated Current in Orexin Neurons

(A) Effects of elevating extracellular glucose

from 0.2 to 4.5 mM on membrane potential

with K-gluconate (top) and K-chloride (bot-

tom) pipette solutions. Arrows indicate

when currents shown in (B) were recorded.

(B) Effects of glucose on membrane I-V rela-

tionship of the cell in (A).

(C) I-V plot of net glucose-activated current

(n = 6). The line is a fit of the GHK equation

to the data (see Experimental Procedures for

fitting parameters). Data are means 6 SEM.

(D) Effects of glucose on membrane currents

obtained with voltage steps. Currents were

produced by steps to 280, 270, 260, and

250 mV (from 290 mV).

(E) Time course of activation and inactivation

of net glucose-activated currents (high glu-

cose minus low glucose), obtained by steps

to 270 and 260 mV (from 290 mV).

(F) Effects of current injections on an orexin

cell: 15 (top), 30 (middle), and 45 (bottom) pA

(the current-clamp protocol is shown sche-

matically below).
2D and 2E). These kinetic features are further typical
attributes of leak K+ channels (Goldstein et al., 2001).

Modulation of Glucose-Induced Currents

by Halothane and Acid
Together, the K+ selectivity, GHK outward rectification,
rapid activation, and minimal inactivation indicated the
involvement of K+-selective leak channels. In mammals,
such leak K+ channels are made up of K2P protein sub-
units, encoded by the KCNK gene family (Lesage and
Lazdunski, 2000; Patel and Honore, 2001; Goldstein
et al., 2001). This family has 15 genes, most of which pro-
duce functional ion channels upon expression (Gold-
stein et al., 2005). Different subfamilies of these K2P

channels exhibit different responses to certain modula-
tors. Notably, halothane activates K2P channels belong-
ing to ‘‘TASK’’ or ‘‘TREK’’ subfamilies, but inhibits
channels of ‘‘THIK’’ and ‘‘TALK’’ subfamilies (reviewed
in O’Connell et al., 2002). Of these, TASK K2P channels
are potently inhibited by extracellular acid, which,
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Figure 3. Effects of Halothane on Orexin Neu-

rons

(A) Effect of halothane (1%) on membrane

potential.

(B) I-V relationship of net halothane-induced

current from cell shown in (A). The red line is

a fit of the GHK equation to the data.

(C) Effect of glucose in the presence of halo-

thane (1%). The cell was first hyperpolarized

by halothane, then returned to prehalothane

potential by current injection (the current-

clamp protocol is shown below the trace).

Arrows indicate when the currents shown in

(D) were recorded.

(D) Effects of halothane and glucose on mem-

brane I-V relationship of the cell shown in (C).
together with activation by halothane and GHK rectifica-
tion, is among the best diagnostic tests for TASK K2P

channels (Bayliss et al., 2003).
In our experiments, halothane (1%, based on Meuth

et al., 2003) mimicked actions of glucose on the mem-
brane potential (Figure 3A, n = 5), an effect that was not
readily reversed in our slice preparations. The net halo-
thane-induced currents were identical to glucose-
induced currents in GHK rectification (Figure 3B), activa-
tion/inactivation kinetics (data not shown), and reversal
potentials (2104 6 3 mV), in four out of six cells. In the
remaining two cells (which were not used for analysis),
halothane-induced current reversed at potentials posi-
tive to EK (280 and 275 mV), indicating that, in some
orexin cells, halothane also modulates other ion cur-
rents, as reported for other neurons (Meuth et al., 2003).
To examine the actions of glucose in the presence of hal-
othane, halothane-hyperpolarized cells were returned to
control (prehalothane) membrane potentials by current
injection (Figure 3C). Subsequent glucose application
still induced hyperpolarization and further activated the
halothane-induced current (Figures 3C and 3D, n = 5),
regardless of whether the halothane-activated currents
were large or small. This indicated that halothane did
not fully activate the current, consistent with previous
data showing that halothane cannot by itself attain the
maximal open state of K2P channels (Sirois et al., 2000).
Overall, these effects of halothane implicated either
TASK or TREK K2P channels.

We next tested the effect of extracellular acid, which
clearly reversed the effects of glucose on the membrane
potential and current of orexin cells (Figures 4A and 4B,
n = 15). The net acid-inhibited currents were indistin-
guishable from glucose-induced currents in GHK rectifi-
cation (Figure 4D, n = 7), reversal potentials (2102 6 1,
n = 7), and activation/inactivation kinetics (n = 5, data
not shown). Extracellular acidification from pH 7.3 to
5.9 acted as a selective way of blocking glucose-acti-
vated channels, because at 0.2 mM of glucose (when
glucose-activated channels are closed) acidification
did not affect the membrane potential or currents (Fig-
ure 4C, n = 4). This allowed us to test whether impairing
the function of glucose-activated channels with low ex-
tracellular pH would prevent glucose responses. On the
background of pH 5.9, glucose failed to induce any
changes in the membrane potential or currents of orexin
cells (Figure 4C, n = 5). We confirmed that glucose-mod-
ulated channels were present in all of these cells by re-
turning pH to the control value of 7.3; we first observed
a rapid unmasking of glucose responses, followed by
normal responses to further applications of glucose
(Figure 4C, n = 5).

In summary, glucose-induced currents exhibit GHK
outward rectification, inhibition by extracellular acid,
and activation by halothane. Among cloned ion chan-
nels, TASK K2P channels are at present unique in exhib-
iting this combination of attributes (Bayliss et al., 2003).
Thus our data imply that TASK K2P channels mediate
glucose inhibition.

Evidence for TASK3 Subunits in Glucose-Activated

Channels
We saw half-maximal inhibition (IC50) of glucose-
induced current at a pH of 6.9 (Figure 4E). This has impli-
cations for the channel identity, because different TASK
channels have different sensitivities to acid, as illus-
trated by their IC50 pH values: w7.3 for TASK1 (K2P3.1),
w8.3 for TASK2 (K2P5.1), w6.7 for TASK3 (K2P9.1), and
w10 for TASK4 (K2P17.1) (reviewed in O’Connell et al.,
2002). The measured value of 6.9 is closest to channels
containing TASK3 subunits, such as TASK3 homomers
or TASK3-containing heteromeric channels (Czirjak
and Enyedi, 2002; O’Connell et al., 2002; Berg et al.,
2004; Kang et al., 2004). However, the high variation of
published IC50 values (e.g., Berg et al., 2004; Rajan
et al., 2000) makes it difficult to rule out channels with
a similar IC50, e.g., TASK1, on the basis of acid sensitivity
alone.
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Figure 4. Effects of Extracellular pH on Glu-

cose Responses of Orexin Neurons

(A) Effects of changes in pH on glucose-

induced hyperpolarization.

(B) Effects of changes in pH on glucose-

induced currents.

(C) Glucose does not affect membrane poten-

tial (left) and current (right) when pH is low

(control extracellular solution is at a pH of 7.3).

(D) Net current inhibited by extracellular acid-

ification (current at pH 7.3 minus current at pH

6, both in 4.5 mM glucose). The red line is a fit

of the GHK equation to the data.

(E) Dose-response of acid-induced inhibition

of glucose-activated currents (measured at

260 mV) (n = 5). The line is a fit of the Hill equa-

tion to the data (see Experimental Proce-

dures), IC50 is at a pH 6.9. Data are means

6 SEM.

Experiments performed in 1 mM tetrodotoxin.
Single-channel conductance provides a more accu-
rate way of distinguishing TASK3-containing channels
from TASK1 homomers (Bayliss et al., 2003; Kang
et al., 2004). We measured single-channel activity using
cell-attached recordings (with no glucose in the pipette;
see Experimental Procedures). Glucose-activated chan-
nels were observed in six out of eight cell-attached
patches (Figures 5A and 5B), but not in five out of five
patches recorded using acidic (pH = 5.9) pipette solu-
tions, as expected from whole-cell data (Figure 4). These
channels exhibited flickering on-off kinetics typical of
TASK channels (e.g., Kang et al., 2004; Leonoudakis
et al., 1998) and had a conductance of 40 6 1 pS (Fig-
ure 5C, n = 6 channels). This value is different from con-
ductances of TASK1 homomers (w14 pS), but is in good
agreement with TASK3-containing channels, which
have conductances of 38.1 6 0.7 pS (TASK3-containing
heteromers) or 30–37.8 pS (TASK3 homomers) (Bayliss
et al., 2003; Kang et al., 2004).

To distinguish between TASK3 homomers and
TASK3-containing heteromers (which are biophysically
identical), we used ruthenium red. It is well established
that at 5–10 mM, this drug blocks TASK3 homomers
by w80%, but has little effect on TASK3-containing het-
eromers (Czirjak and Enyedi, 2002; Kang et al., 2004;
Berg et al., 2004). We found no inhibitory effect of
10 mM ruthenium red on the glucose-induced current
(Figure 5D, n = 4).
The pharmacological and biophysical profile of glu-
cose-activated channels thus implicated heteromeric
channels containing TASK3 subunits. In further corrob-
oration of this conclusion, we detected TASK3 proteins
in orexin neurons using two different antibodies (Fig-
ure 5E, n > 20 for each antibody; antibodies are de-
scribed in Experimental Procedures). This is in agree-
ment with high levels of TASK3 mRNA in the lateral
hypothalamus (Talley et al., 2001), where orexin neurons
are clustered (Yamanaka et al., 2003). Hence, both
functional and molecular data support the idea that
glucose-activated channels contain TASK3 subunits.
The importance of these subunits is that they determine
the single-channel biophysics and anesthetic and trans-
mitter sensitivity of K2P channels, even when combined
with other pore-forming subunits such as TASK1 (Kang
et al., 2004; Talley and Bayliss, 2002). Here, we did not
further address the nature and significance of such other
subunits, although we observed binding of an antibody
against TASK1 to orexin neurons (Figure 5F, n = 20 cells),
which is in agreement with overlapping expression of
TASK3 and TASK1 mRNA in the lateral hypothalamus
(Talley et al., 2001).

Control of Orexin Cell Firing by Small Physiological
Changes in Glucose Levels

As mentioned above, it is unknown whether the small
changes in extracellular glucose that occur between
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Figure 5. Properties of Glucose-Activated

Channels in Orexin Neurons

(A) Cell-attached recording with no glucose in

the pipette (the scheme of recording is above

the trace; see Experimental Procedures for

details). Closed (c) and open (o) states are in-

dicated approximately with arrowheads. The

electrode potential was zero.

(B) (Top) Cell-attached recordings of glucose-

activated channels at different estimated

patch potentials (see Experimental Proce-

dures). (Bottom) Amplitude histogram of

single-channel events at an estimated patch

potential of 280 mV. Red lines are individual

Gaussian fits; black line is the sum of these

fits. Data are means 6 SEM.

(C) Amplitudes of single-channel currents

(determined from Gaussian fits such as that

shown in [B]) at different estimated patch po-

tentials (n = 4). The slope of the line fitted

through the points is 0.04 pA/mV (40 pS).

(D) Whole-cell recording of the effect of ruthe-

nium red (RR) on glucose-induced changes in

membrane potential (left) and current (right).

(E) Detection of TASK3 proteins (red) in orexin

neurons (green) with two different antibodies

(Anti-TASK3 1 and 2, see Experimental Proce-

dures). Scale bars, 10 mm.

(F) Staining of orexin neurons with an anti-

body against TASK1 (blue), and overlay of

TASK3 staining in the same cell (colocaliza-

tion is shown in pink). Scale bar, 10 mm.

Experiments performed in 1 mM tetrodotoxin.
normal meals can affect the firing rate of orexin cells.
Brain interstitial glucose levels are typically 10%–30%
of plasma glucose levels, and the experiments per-
formed above involved switching between the lowest
(0.2 mM) and highest (4.5 mM) extremes of brain glu-
cose, likely to correspond to starvation and eating
a very large meal, respectively (Routh, 2002; Silver and
Erecinska, 1994). Variations in glucose levels in mamma-
lian brains that occur between normal meals are much
more subtle, between 1 and 2.5 mM (Routh, 2002). To
provide evidence for the involvement of glucose inhibi-
tion of orexin cells in normal physiology, it is crucial to
establish if their glucose-sensing machinery is suffi-
ciently sensitive to translate such small variations in
glucose into different firing rates.

Switching from 1 to 2.5 mM extracellular glucose
evoked marked hyperpolarization and suppressed firing
in all orexin neurons tested (Figure 6A, n = 7). The firing
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Figure 6. Sensing of Subtle Changes in Glu-

cose Concentration by Orexin Neurons

(A) Effects of switching between 1 and 2.5

mM extracellular glucose on membrane po-

tential. Arrows show when voltage-clamp

ramps in (B) were recorded.

(B) Effects of glucose on membrane currents

of the orexin neuron shown in (A).

(C) I-V relationship of net glucose-activated

current in the neuron shown in (A). The red

line is a fit of the GHK equation to the data.
rate decreased dramatically from 4.5 6 1 Hz in 1 mM glu-
cose to 0.02 6 0.01 Hz in 2.5 mM glucose (p < 0.001, n =
5). The net current activated by this physiological rise in
glucose showed the same properties as in the previous
sections: GHK rectification and a reversal potential cor-
responding to EK (2103 6 2 mV, Figure 6B and 6C, n = 5),
rapid activation, little or no inactivation, and inhibition by
extracellular acid (n = 4, data not shown).

These results provide evidence that the firing rate of
orexin cells is sensitive to changes in glucose that corre-
spond to fluctuations occurring normally during the day
and also show that the same electrical mechanism is in-
volved in sensing both subtle and extreme changes in
glucose.

Coupling between Extracellular Glucose

and Membrane Currents
To determine whether glucose acts intracellularly or ex-
tracellularly, we applied it selectively to the inside of the
cell. The rationale for this experiment is that if intracellu-
lar action of glucose is important, then increasing glu-
cose levels inside the cell should reproduce the effects
of extracellular glucose. Conversely, if glucose acts ex-
tracellularly, then intracellular glucose should neither
reproduce nor prevent the effects of extracellular glu-
cose. This is a classical experimental strategy, which
was used, for example, to show that peptide hormones
exert their action by acting extracellularly and not intra-
cellularly (Philpott and Petersen, 1979). The whole-cell
patch-clamp mode is a powerful and widely used way
of applying chemicals inside cells, since it makes the
interior of the pipette continuous with the cytosol, allow-
ing intracellular infusion of pipette contents. Using an
intracellular tracer, we previously confirmed that orexin
neurons become thoroughly filled with pipette solution
within 5–10 min after establishing whole-cell mode (Bur-
dakov et al., 2005a).

To evaluate the possibility that glucose acts intra-
cellularly, as assumed for glucose-excited neurons
(reviewed in Burdakov et al., 2005b), we added 5 mM
glucose to the pipette and dialyzed orexin cells with
this solution for 10–20 min in the whole-cell mode. This
neither mimicked nor prevented the electrical actions
of extracellular glucose (Figures 7A and 7B, n = 6).
Thus, glucose itself did not appear to act as an intra-
cellular messenger mediating electrical inhibition of
orexin neurons. Rather, its electrically important actions
are mediated by action on an extracellular site (see
Discussion).

We followed the same rationale to evaluate possible
roles for ATP and Ca2+, since these intracellular messen-
gers can act as modulators of membrane currents (Ash-
croft, 1988; Petersen et al., 1994). In all whole-cell exper-
iments described above, the cells were already dialyzed
with higher [ATP] (5 mM) than typical physiological
levels in hypothalamic neurons (about 1 mM, Ainscow
et al., 2002). This neither reproduced nor prevented the
effects of glucose (e.g., Figure 2A). To increase ATP
levels still further, we loaded cells with a supraphysiolog-
ical concentration of ATP (10 mM ATP in pipette). Again,
this was without effect (Figure 7C, n = 15). These results
argue strongly against any dominant role for changes in
cytosolic [ATP] in responses of orexin cells to glucose,
consistent with recent evidence that cytosolic [ATP] is
not influenced by changes in extracellular glucose in
hypothalamic neurons (Ainscow et al., 2002).

Dialyzing the cells with pipette solutions containing
the fast Ca2+ buffer BAPTA (10 mM) combined with 2
mM Ca2+ (to clamp cytosolic [Ca2+] at w90 nM, Mogami
et al., 1998) did not prevent the electrical effects of glu-
cose (Figure 7D, n = 15), suggesting that changes in Ca2+

levels are not essential for these effects. Glucose inhibi-
tion also persisted when Ca2+ influx into the cell was
suppressed using a low Ca2+/high Mg2+ extracellular
solution (see Experimental Procedures) (Figure 7E, n =
4). These data suggest that neither Ca2+ entry nor Ca2+

mobilization from intracellular stores is critical for glu-
cose inhibition.
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Figure 7. Effects of Putative Intracellular

Messengers on Glucose Responses of

Orexin Neurons

(A) Intracellular (pipette) glucose (5 mM)

elicits no inhibition and does not prevent a

response to extracellular glucose. The begin-

ning of the trace corresponds to the moment

when the whole-cell mode was established.

(B) Effects of intracellular and extracellular

glucose on membrane I-V relationship of an

orexin neuron. Five millimolar glucose was

continuously present in the pipette in whole-

cell mode. Extracellular glucose was elevated

to 4.5 mM at 7.5 min and returned to the

control value of 0.2 mM at 10.5 min.

(C) Effects of glucose on the membrane po-

tential (left) and current (right) in a cell dia-

lyzed with 10 mM ATP for 20 min prior to

recording of the trace shown.

(D) Effects of glucose on the membrane po-

tential (left) and current (right) in a cell dia-

lyzed with 10 mM BAPTA/2 mM Ca+ for 20

min prior to recording of the trace shown. Ar-

rows show when voltage-clamp ramps were

recorded.

(E) Effects of glucose on the membrane po-

tential (left) and current (right) in a low Ca2+/

high Mg2+ extracellular solution.
Discussion

Despite the importance of glucose-inhibited neurons for
regulation of arousal states, appetite, and metabolism,
the electrical mechanism of glucose inhibition and the
basic site of glucose action (intracellular versus extra-
cellular) were unknown. Here we identify three unex-
pected features of glucose inhibition of orexin neurons,
which control states of consciousness and metabolism.
First, glucose inhibition is mediated by K2P channels
(Figure 2), an electrical mechanism of energy sensing
that was not previously suspected in the brain or else-
where. This identifies an important function for K2P

channels, a recently characterized channel family with
few currently known physiological roles. Second, this
electrical pathway enables orexin cells to detect fluctua-
tions in glucose corresponding to physiological changes
occurring between normal fed and fasted states
(Figure 6). This provides evidence that normal daily var-
iations in brain glucose levels can exert powerful control
on the firing of orexin cells. Third, glucose acts extracel-
lularly and not intracellularly (Figures 7A and 7B). Our
results thus provide important new insights into how
the brain tunes arousal and metabolism according to
body energy levels.

Electrical Mechanism of Glucose Inhibition

Several K2P channels are expressed in mammalian
brains (Hervieu et al., 2001; Kindler et al., 2000; Medhurst
et al., 2001; Talley et al., 2001), yet so far relatively few
physiological roles for them have emerged. Notably,
acid-sensing TASK channels in the brain stem are
thought to trigger adaptive increases in arousal when
brain pH falls (Bayliss et al., 2003; Talley et al., 2003).
In addition, K2P channels are involved in regulating ex-
citability of cerebellar granule (Brickley et al., 2001;
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Chemin et al., 2003; Millar et al., 2000), thalamocortical
(Meuth et al., 2003), supraoptic (Han et al., 2003), and
dorsal vagal neurons (Hopwood and Trapp, 2005), but
the physiological roles of these effects remain to be
elucidated. It is intriguing to uncover a role for these re-
cently described channels in the long-elusive mecha-
nism of glucose inhibition. Since these channels have
not been previously implicated in glucose sensing or
hypothalamic detection of other messengers, it would
be interesting to test if they play similar roles in other
glucose-inhibited cells.

In addition to GHK rectification, leak-like kinetics, and
K+ selectivity, glucose-activated currents displayed the
following properties: (1) block by extracellular acid with
an IC50 at pH 6.9 (Figure 4E), (2) potentiation by halo-
thane (Figure 3), (3) single-channel conductance of
w40 pS (Figures 5A–5C), and (4) insensitivity to ruthe-
nium red (Figure 5D). Together, this provides strong ev-
idence for the involvement of heteromeric K2P channels
containing TASK3 subunits. Indeed, we detected TASK3
subunits in lateral hypothalamic orexin neurons using
two different antibodies (Figure 5E), which is consistent
with the high expression of TASK3 mRNA in this brain
region (Talley et al., 2001).

However, it remains a formal possibility that other K2P

subunits play a role, which could be functionally similar
or identical to TASK3, but are not yet fully characterized.
For example, subunits that are currently thought to be
nonfunctional, e.g., TASK5 (K2P15.1), could play a role
once activated through mechanisms similar to that re-
cently revealed for the formerly ‘‘nonfunctional’’ K2P1.1
(Rajan et al., 2005). Elucidating the full molecular com-
position of glucose-modulated K2P channels is an inter-
esting subject for future investigation; its unequivocal
resolution would require manipulation of multiple
KCNK genes and protein-protein interaction analyses
in orexin cells.

Coupling between Extracellular Glucose

and Electrical Activity
Intracellular application of glucose or ATP neither repro-
duced nor precluded the effects of extracellular glucose
(Figures 7A–7C). Preventing cytosolic Ca2+ rises also
had no effect on responses to glucose (Figures 7D and
7E). These data support a general mechanism of glu-
cose sensing whereby glucose acts at an extracellular
site and information is transmitted to membrane chan-
nels by an intracellular intermediary that is not ATP,
Ca2+, or glucose itself (Figure 8A). Traditional models
by which glucose is thought to influence neuronal elec-
trical activity involve either neuronal glucose entry and
metabolism (Figure 8B) (Routh, 2002) or glial conversion
of glucose to lactate (Figure 8C) (Ainscow et al., 2002;
Pellerin and Magistretti, 2004). Our results provide evi-
dence for a different mechanism in glucose-inhibited
neurons (Figure 8A).

The extracellular target on which glucose acts is
located on orexin neurons themselves, because they
continue to sense glucose when synaptically isolated
using tetrodotoxin (Figure 4A) or low extracellular Ca2+

(Figure 7E), as well as when studied in isolated cell prep-
arations (Yamanaka et al., 2003). However, the appear-
ance of glucose-activated channels in patches that do
not have glucose on the extracellular side (Figures 5A
and 5B) suggests that glucose does not act on the extra-
cellular side of the channels themselves. Perhaps extra-
cellular glucose receptors such as those identified in
yeast (Holsbeeks et al., 2004) could be involved, but it
is currently unknown whether similar molecules operate
in mammalian brains.

Implications for Control of Behavioral

and Metabolic States
Orexin cells are critical for promoting wakefulness and
regulating metabolism and reward, and so the new
mechanism of their regulation described here could
contribute to these vital processes. Importantly, we
demonstrate that the glucose-sensing machinery of
orexin neurons is sufficiently sensitive to translate small,
nonextreme, physiological fluctuations in glucose into
substantial changes in firing rate (Figure 6). This raises
the possibility that, besides being important for adaptive
responses to starvation, modulation of orexin cells by
glucose has a much wider behavioral role, contributing
to the continuous daily readjustments in the level of
arousal and alertness. The reversal of glucose inhibition
by extracellular acid (Figure 4) may also have important

Figure 8. Schematic Cartoons of How Glucose Can Influence Elec-

trical Activity

(A) Glucose can bind to extracellular sites and trigger intracellular

transduction pathways regulating membrane channels such as K2P.

(B) Glucose can enter cells via electrogenic or nonelectrogenic path-

ways, and be metabolized inside neurons to ATP, which inhibits

plasmalemmal KATP channels.

(C) Glia (astrocytes) can convert glucose to lactate, which is then

metabolized further inside neurons to produce ATP.

See Discussion for more detail.
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implications, because we observed this inhibition to be
most pronounced (Figure 4E) within the physiological
range of brain pH (6.9 to 7.4, Kintner et al., 2000). It is
therefore possible that situations leading to acidification
of brain interstitial space, such as an excessive reduc-
tion of breathing during sleep for example (Phillipson
and Bowes, 1986), may override glucose inhibition of
orexin neurons when it is necessary to increase arousal
despite high energy levels.

Experimental Procedures

Generation of Transgenic Mice

Mice were made transgenic for eGFP, a red-shifted variant of the

wild-type GFP that has been optimized for brighter fluorescence

and higher expression in mammalian cells. Expression of eGFP

was driven by the human prepro-orexin promoter kindly donated

by Dr. Takeshi Sakurai. A 3.2 kb SacI-SalI fragment containing the

50 flanking region and noncoding region of the prepro-orexin gene

was excised from the construct used for the generation of human

prepro-orexin-nlacZ transgenic mice (Sakurai et al., 1999) and

cloned into the MCS of the pEGFP-1 vector (Clontech Laboratories,

Inc, CA). A 4 kb SacI-AflII fragment containing the promoter and

eGFP, including SV40pA signals, was excised and injected into

fertilized mouse eggs from B6D2 (DBA/2xC57BL/6 F1) mice. Viable

embryos were subsequently transferred to the oviducts of pseudo-

pregnant B6D2 females for development to term. Transgenic off-

spring were identified by PCR amplification of tail DNA using primers

specific for the prepro-orexin-eGFP sequence, and by expression of

eGFP in orexin neurons (Figure 1A).

Electrophysiology

Whole-Cell Recordings

Procedures involving animals were carried out in accordance with

the Animals (Scientific Procedures) Act, 1986 (UK). Coronal slices

(300 mm thick) containing the lateral hypothalamus were obtained

from orexin-eGFP mice (16–21 days old) as previously described

(Burdakov et al., 2004). Experiments were performed at room tem-

perature (24ºC–26ºC). Extracellular solution was ACSF gassed with

95% O2 and 5% CO2 and contained (in mM) NaCl, 125; KCl, 2.5;

MgCl2, 2; CaCl2, 2; NaH2PO4, 1.2; NaHCO3, 21; HEPES, 10; glucose,

0.2; pH = 7.3 with NaOH (based on brain interstitial pH in vivo, Kintner

et al., 2000). ASCF [glucose] was 0.2 mM unless indicated otherwise.

The small osmolarity changes associated with changing [glucose] in

ASCF were either compensated with sucrose or left uncompen-

sated; no differences were observed between the two conditions.

‘‘Low Ca2+/high Mg2+’’ ACSF contained 0.3 mM Ca2+ and 9 mM

Mg2+ (Burdakov et al., 2003). Where indicated, ACSF pH was altered

by addition of NaOH or HCl. ‘‘K-gluconate’’ intracellular (pipette)

solution contained (in mM) K-gluconate, 120; KCl, 10; EGTA, 0.1;

HEPES, 10; K2ATP, 4; Na2ATP, 1; MgCl2, 2; pH = 7.3 with KOH.

‘‘KCl’’ intracellular solution contained (in mM) KCl, 130; EGTA, 0.1;

HEPES, 10; K2ATP, 5; NaCl, 1; MgCl2, 2; pH = 7.3 with KOH. All the

chemicals were from Sigma.

Neurons were visualized using an Olympus BX50WI upright mi-

croscope equipped with infrared gradient contrast optics (Dodt

et al., 2002), a mercury lamp, and filters for visualizing eGFP-contain-

ing cells. Current- and voltage-clamp whole-cell recordings were

performed using an EPC-9 amplifier (Heka, Lambrecht, Germany).

In current-clamp experiments, the holding current was zero unless

indicated otherwise. Patch pipettes were pulled from borosilicate

glass and had tip resistances of 2–3 MU when filled with the ‘‘KCl’’

pipette solution. Series resistances were in the range of 5–8 MU

and were not compensated. Data were sampled and filtered using

Pulse/Pulsefit software (Heka, Lambrecht, Germany) and analyzed

with Pulsefit and Origin (Microcal, Northampton, MA) software.

Steady-state membrane I-V relationships (Figure 2C) were obtained

using 500 ms long hyperpolarizing and depolarizing voltage-clamp

steps from a holding potential of 290 mV. Alternatively, I-Vs were

obtained by ramping the membrane potential from 0 to 2140 mV

at a rate of 0.1 mV/ms, which was sufficiently slow to allow the K+
current to reach steady state at each potential (Meuth et al., 2003).

Data are given as mean 6 SEM.

Where indicated, I-Vs were fitted with the Goldman-Hodgkin-Katz

(GHK) current equation (Hille, 2001), in the following form:

I = PKz2VF2

RT

½K+ �i 2 ½K+ �oexpð2 zFV=RTÞ
1 2 expð2 zFV=RTÞ

Here, I is current, V is membrane potential, z is the charge of

a potassium ion (+1), [K+]i is the pipette K+ concentration, [K+]o is

the ACSF K+ concentration, T is temperature (298.15 K, correspond-

ing to 25ºC), and R and F have their usual meanings (Hille, 2001). PK

(a constant reflecting the K+ permeability of the membrane) was the

only free parameter during fits. The values of PK used to obtain the

fits shown were 0.0176 (Figure 2C), 0.03485 (Figure 3B), 0.0439

(Figure 4D), and 0.0202 (Figure 6C).

Dose-response relation for acid-induced inhibition of glucose-

activated current (I) was fitted with a modified Hill equation:

I = Imax 2 Imax

½H+ �h

ICh
50 + ½H+ �h

Here, Imax is the maximal current, [H+] is the extracellular proton

concentration, IC50 is the value of [H+] at which the inhibition is half-

maximal, and h is the Hill coefficient. The fit shown in Figure 4E was

obtained with the following parameters: Imax = 171 pA, h = 1.2, IC50 =

127 nM (equivalent to pH of 6.9).

Single-Channel Recordings

For cell-attached recordings from cell bodies of orexin neurons,

patch-pipettes were filled with a high K+ solution containing (in

mM) KCl 120, EGTA 11, CaCl2 1, MgCl2 2, HEPES 10, adjusted to

pH 7.25 with 35 mM KOH (final K+ concentration 155 mM) (Verheu-

gen et al., 1999). In neurons, using this solution results in sufficiently

symmetrical K+ concentrations on the two sides of the cell-attached

patch to justify the assumption that EK in the patch is z 0 mV (Ver-

heugen et al., 1999). When the membrane potential is negative and

the electrode potential is zero, K+ currents thus appear as inward

currents (Figures 5A and 5B). Data were sampled at 10 kHz and fil-

tered at 3 kHz. All other experimental conditions were the same as

for whole-cell recordings. Only patches with no channel activity in

control (0.2 mM glucose) ASCF were used for further experimenta-

tion, and channel amplitudes were determined in patches judged

to contain one glucose-activated channel. Estimated values of the

patch potential (obtained as in Verheugen et al., 1999) were in close

agreement with whole-cell data: 10 min after applying 4.5 mM glu-

cose, patch and whole-cell potentials were 280 6 3 mV and 281

6 2 mV, respectively (n = 4 cells for each case). Single-channel con-

ductances were calculated from slopes of linear fits (Origin) of chan-

nel I-V relationships (Figure 5C). We also performed cell-attached

recordings of glucose-activated channels using pipette solution

from Kang et al. (2004), which yielded similar channel conductances

(38 6 2 pS, n = 3 patches, data not shown).

Immunocytochemistry and Confocal Imaging

Immunolabeling for orexin-A was performed as in our previous stud-

ies (Burdakov et al., 2004, 2005a). For detection of K2P proteins, the

brains of orexin-eGFP mice were fixed in 4% PFA at 4ºC for 24 hr and

then cut in PBS into 150–200 mm coronal sections. Slices were incu-

bated for 20 min in a blocking medium containing 10% horse serum,

0.2% BSA, and 0.5% Triton in PBS, followed by two washes in PBS.

For detection of TASK3 we used two different antibodies. Antibody

(1) in Figure 5E was a goat polyclonal antibody (Rusznak et al., 2004;

Yamamoto and Taniguchi, 2003) raised against a peptide mapping

to the C terminus of TASK3 of rat origin (1:100, Santa Cruz Biotech-

nology, CA). Antibody (2) in Figure 5E was a rabbit polyclonal anti-

body raised against an epitope corresponding to residues 57–73

of the rat TASK3 protein (1:1000, Alomone labs, Israel). The antibody

against TASK1 (Figure 5F) was a rabbit polyclonal antibody (Kindler

et al., 2000; Lopes et al., 2000; Millar et al., 2000) raised against the

peptide (C)EDEK RDAEH RALLT RNGQ corresponding to residues

252–269 of human TASK1 (1:1000, Alomone Labs, Jerusalem, Israel).

Slices were incubated with the primary antibodies overnight in PBS

containing 1% horse serum, 0.2% BSA, and 0.5% Triton, followed by

four washes in PBS. Subsequently, slices were incubated with sec-

ondary antibodies, chicken antirabbit IgG-Alexa Fluor 647 (1:1000,
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Molecular Probes, Eugene, Oregon) and donkey antigoat IgG-Texas

red (1:200, Santa Cruz Biotechnology), for 90 min in PBS containing

0.2% BSA and 0.5% Triton, followed by six washes in PBS. Slices

were then mounted on glass coverslips in Vectashield antibleach

mounting medium (Vector Laboratories, Peterborough, UK). For

negative controls, the primary antibodies were preincubated for

1 hr with control peptide antigens (1 mg of antigen per 1 mg of anti-

body) provided with the antibodies. All the chemicals were from

Sigma unless stated otherwise. Slices were analyzed using a Leica

Microsystems TCS SL confocal laser-scanning microscope (Man-

nheim, Germany). eGFP, Texas red, and Alexa Fluor 647 were

excited at 477 nm, 543 nm, and 633 nm, respectively, and emission

was detected at 490–550 nm, 570–620 nm, and 660–740 nm, respec-

tively. For optimal separation of fluorescent signals, the sequential

‘‘between lines’’ scanning mode of the microscope was used.

Acknowledgments

D.B. (independent principal investigator holding a Royal Society

Dorothy Hodgkin Fellowship) initiated, designed, and directed this

study and wrote the text. L.F. and L.J. generated and supplied the

orexin-eGFP transgenic mice. H.A. (supported by a Wellcome Trust

OXION Training Fellowship) and R.W. (supported by a BBSRC PhD

studentship) contributed to immunocytochemical experiments. A.V.

and the University of Manchester provided most of the experimental

facilities. Electrophysiological experiments were performed by D.B.

We thank Nick Willcox and Christina Riggs for advice on the text.

Received: October 28, 2005

Revised: February 9, 2006

Accepted: April 28, 2006

Published: May 31, 2006

References

Ainscow, E.K., Mirshamsi, S., Tang, T., Ashford, M.L., and Rutter,

G.A. (2002). Dynamic imaging of free cytosolic ATP concentration

during fuel sensing by rat hypothalamic neurones: evidence for

ATP-independent control of ATP-sensitive K(+) channels. J. Physiol.

544, 429–445.

Anand, B.K., Chhina, G.S., Sharma, K.N., Dua, S., and Singh, B.

(1964). Activity of single neurons in the hypothalamic feeding cen-

ters: effect of glucose. Am. J. Physiol. 207, 1146–1154.

Ashcroft, F.M. (1988). Adenosine 50-triphosphate-sensitive potas-

sium channels. Annu. Rev. Neurosci. 11, 97–118.

Ashford, M.L., Boden, P.R., and Treherne, J.M. (1990). Glucose-

induced excitation of hypothalamic neurones is mediated by ATP-

sensitive K+ channels. Pflugers Arch. 415, 479–483.

Bayliss, D.A., Sirois, J.E., and Talley, E.M. (2003). The TASK family:

two-pore domain background K+ channels. Mol. Interv. 3, 205–219.

Berg, A.P., Talley, E.M., Manger, J.P., and Bayliss, D.A. (2004). Mo-

toneurons express heteromeric TWIK-related acid-sensitive K+

(TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9)

subunits. J. Neurosci. 24, 6693–6702.

Borgland, S.L., Taha, S.A., Sarti, F., Fields, H.L., and Bonci, A. (2006).

Orexin A in the VTA is critical for the induction of synaptic plasticity

and behavioral sensitization to cocaine. Neuron 49, 589–601.

Brickley, S.G., Revilla, V., Cull-Candy, S.G., Wisden, W., and Farrant,

M. (2001). Adaptive regulation of neuronal excitability by a voltage-

independent potassium conductance. Nature 409, 88–92.

Burdakov, D., Liss, B., and Ashcroft, F.M. (2003). Orexin excites

GABAergic neurons of the arcuate nucleus by activating the so-

dium-calcium exchanger. J. Neurosci. 23, 4951–4957.

Burdakov, D., Alexopoulos, H., Vincent, A., and Ashcroft, F.M.

(2004). Low-voltage-activated A-current controls the firing dynamics

of mouse hypothalamic orexin neurons. Eur. J. Neurosci. 20, 3281–

3285.

Burdakov, D., Gerasimenko, O., and Verkhratsky, A. (2005a). Physi-

ological changes in glucose differentially modulate the excitability of

hypothalamic melanin-concentrating hormone and orexin neurons

in situ. J. Neurosci. 25, 2429–2433.
Burdakov, D., Luckman, S.M., and Verkhratsky, A. (2005b). Glucose-

sensing neurons of the hypothalamus. Philos. Trans. R. Soc. Lond. B

Biol. Sci. 360, 2227–2235.

Chemelli, R.M., Willie, J.T., Sinton, C.M., Elmquist, J.K., Scammell,

T., Lee, C., Richardson, J.A., Williams, S.C., Xiong, Y., Kisanuki, Y.,

et al. (1999). Narcolepsy in orexin knockout mice: molecular genetics

of sleep regulation. Cell 98, 437–451.

Chemin, J., Girard, C., Duprat, F., Lesage, F., Romey, G., and Laz-

dunski, M. (2003). Mechanisms underlying excitatory effects of

group I metabotropic glutamate receptors via inhibition of 2P do-

main K+ channels. EMBO J. 22, 5403–5411.

Czirjak, G., and Enyedi, P. (2002). Formation of functional hetero-

dimers between the TASK-1 and TASK-3 two-pore domain potas-

sium channel subunits. J. Biol. Chem. 277, 5426–5432.

de Lecea, L., Kilduff, T.S., Peyron, C., Gao, X., Foye, P.E., Danielson,

P.E., Fukuhara, C., Battenberg, E.L., Gautvik, V.T., Bartlett, F.S.,

2nd.., et al. (1998). The hypocretins: hypothalamus-specific pep-

tides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA 95,

322–327.

Dodt, H.U., Eder, M., Schierloh, A., and Zieglgansberger, W. (2002).

Infrared-guided laser stimulation of neurons in brain slices. Sci.

STKE.http://stke.sciencemag.org/cgi/content/full/OC_sigtrans;2002/

120/pl2.

Goldstein, S.A., Bockenhauer, D., O’Kelly, I., and Zilberberg, N.

(2001). Potassium leak channels and the KCNK family of two-P-

domain subunits. Nat. Rev. Neurosci. 2, 175–184.

Goldstein, S.A., Bayliss, D.A., Kim, D., Lesage, F., Plant, L.D., and

Rajan, S. (2005). International Union of Pharmacology. LV. Nomen-

clature and molecular relationships of two-P potassium channels.

Pharmacol. Rev. 57, 527–540.

Gribkoff, V.K., Starrett, J.E., Jr., and Dworetzky, S.I. (2001). Maxi-K

potassium channels: form, function, and modulation of a class of

endogenous regulators of intracellular calcium. Neuroscientist 7,

166–177.

Han, J., Gnatenco, C., Sladek, C.D., and Kim, D. (2003). Background

and tandem-pore potassium channels in magnocellular neurosecre-

tory cells of the rat supraoptic nucleus. J. Physiol. 546, 625–639.

Hara, J., Beuckmann, C.T., Nambu, T., Willie, J.T., Chemelli, R.M.,

Sinton, C.M., Sugiyama, F., Yagami, K., Goto, K., Yanagisawa, M.,

and Sakurai, T. (2001). Genetic ablation of orexin neurons in mice re-

sults in narcolepsy, hypophagia, and obesity. Neuron 30, 345–354.

Harris, G.C., Wimmer, M., and Aston-Jones, G. (2005). A role for lat-

eral hypothalamic orexin neurons in reward seeking. Nature 437,

556–559.

Hervieu, G.J., Cluderay, J.E., Gray, C.W., Green, P.J., Ranson, J.L.,

Randall, A.D., and Meadows, H.J. (2001). Distribution and expres-

sion of TREK-1, a two-pore-domain potassium channel, in the adult

rat CNS. Neuroscience 103, 899–919.

Hille, B. (2001). Ion Channels of Excitable Membranes, Third Edition

(Sunderland, MA: Sinauer Associates, Inc.).

Holsbeeks, I., Lagatie, O., Van Nuland, A., Van de Velde, S., and

Thevelein, J.M. (2004). The eukaryotic plasma membrane as a nutri-

ent-sensing device. Trends Biochem. Sci. 29, 556–564.

Hopwood, S.E., and Trapp, S. (2005). TASK-like K+ channels medi-

ate effects of 5-HT and extracellular pH in rat dorsal vagal neurones

in vitro. J. Physiol. 568, 145–154.

Kang, D., Han, J., Talley, E.M., Bayliss, D.A., and Kim, D. (2004).

Functional expression of TASK-1/TASK-3 heteromers in cerebellar

granule cells. J. Physiol. 554, 64–77.

Kindler, C.H., Pietruck, C., Yost, C.S., Sampson, E.R., and Gray, A.T.

(2000). Localization of the tandem pore domain K+ channel TASK-1

in the rat central nervous system. Brain Res. Mol. Brain Res. 80,

99–108.

Kintner, D.B., Anderson, M.K., Fitzpatrick, J.H., Jr., Sailor, K.A., and

Gilboe, D.D. (2000). 31P-MRS-based determination of brain intracel-

lular and interstitial pH: its application to in vivo H+ compartmenta-

tion and cellular regulation during hypoxic/ischemic conditions.

Neurochem. Res. 25, 1385–1396.

Leonoudakis, D., Gray, A.T., Winegar, B.D., Kindler, C.H., Harada,

M., Taylor, D.M., Chavez, R.A., Forsayeth, J.R., and Yost, C.S.

http://stke.sciencemag.org/cgi/content/full/OC_sigtrans;2002/120/pl2
http://stke.sciencemag.org/cgi/content/full/OC_sigtrans;2002/120/pl2


Neuron
722
(1998). An open rectifier potassium channel with two pore domains

in tandem cloned from rat cerebellum. J. Neurosci. 18, 868–877.

Lesage, F., and Lazdunski, M. (2000). Molecular and functional prop-

erties of two-pore-domain potassium channels. Am. J. Physiol. Re-

nal Physiol. 279, F793–F801.

Levin, B.E., Dunn-Meynell, A.A., and Routh, V.H. (1999). Brain glu-

cose sensing and body energy homeostasis: role in obesity and

diabetes. Am. J. Physiol. 276, R1223–R1231.

Li, Y., Gao, X.B., Sakurai, T., and van den Pol, A.N. (2002). Hypocre-

tin/Orexin excites hypocretin neurons via a local glutamate neuron-

A potential mechanism for orchestrating the hypothalamic arousal

system. Neuron 36, 1169–1181.

Lin, L., Faraco, J., Li, R., Kadotani, H., Rogers, W., Lin, X., Qiu, X., de

Jong, P.J., Nishino, S., and Mignot, E. (1999). The sleep disorder

canine narcolepsy is caused by a mutation in the hypocretin (orexin)

receptor 2 gene. Cell 98, 365–376.

Lopes, C.M., Gallagher, P.G., Buck, M.E., Butler, M.H., and Gold-

stein, S.A. (2000). Proton block and voltage gating are potassium-

dependent in the cardiac leak channel Kcnk3. J. Biol. Chem. 275,

16969–16978.

Marcus,J.N., Aschkenasi, C.J., Lee,C.E.,Chemelli,R.M., Saper,C.B.,

Yanagisawa, M., and Elmquist, J.K. (2001). Differential expression of

orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol. 435, 6–25.

Medhurst, A.D., Rennie, G., Chapman, C.G., Meadows, H., Duck-

worth, M.D., Kelsell, R.E., Gloger, I.I., and Pangalos, M.N. (2001).

Distribution analysis of human two pore domain potassium channels

in tissues of the central nervous system and periphery. Brain Res.

Mol. Brain Res. 86, 101–114.

Meuth, S.G., Budde, T., Kanyshkova, T., Broicher, T., Munsch, T.,

and Pape, H.C. (2003). Contribution of TWIK-related acid-sensitive

K+ channel 1 (TASK1) and TASK3 channels to the control of activity

modes in thalamocortical neurons. J. Neurosci. 23, 6460–6469.

Millar, J.A., Barratt, L., Southan, A.P., Page, K.M., Fyffe, R.E., Rob-

ertson, B., and Mathie, A. (2000). A functional role for the two-pore

domain potassium channel TASK-1 in cerebellar granule neurons.

Proc. Natl. Acad. Sci. USA 97, 3614–3618.

Mogami, H., Tepikin, A.V., and Petersen, O.H. (1998). Termination of

cytosolic Ca2+ signals: Ca2+ reuptake into intracellular stores is

regulated by the free Ca2+ concentration in the store lumen.

EMBO J. 17, 435–442.

O’Connell, A.D., Morton, M.J., and Hunter, M. (2002). Two-pore do-

main K+ channels-molecular sensors. Biochim. Biophys. Acta 1566,

152–161.

Oomura, Y., Ono, T., Ooyama, H., and Wayner, M.J. (1969). Glucose

and osmosensitive neurones of the rat hypothalamus. Nature 222,

282–284.

Oomura, Y., Ooyama, H., Sugimori, M., Nakamura, T., and Yamada,

Y. (1974). Glucose inhibition of the glucose-sensitive neurone in the

rat lateral hypothalamus. Nature 247, 284–286.

Patel, A.J., and Honore, E. (2001). Properties and modulation of

mammalian 2P domain K+ channels. Trends Neurosci. 24, 339–346.

Pellerin, L., and Magistretti, P.J. (2004). Neuroenergetics: calling

upon astrocytes to satisfy hungry neurons. Neuroscientist 10, 53–62.

Petersen, O.H., Petersen, C.C., and Kasai, H. (1994). Calcium and

hormone action. Annu. Rev. Physiol. 56, 297–319.

Peyron, C., Tighe, D.K., van den Pol, A.N., de Lecea, L., Heller, H.C.,

Sutcliffe, J.G., and Kilduff, T.S. (1998). Neurons containing hypocre-

tin (orexin) project to multiple neuronal systems. J. Neurosci. 18,

9996–10015.

Peyron, C., Faraco, J., Rogers, W., Ripley, B., Overeem, S., Charnay,

Y., Nevsimalova, S., Aldrich, M., Reynolds, D., Albin, R., et al. (2000).

A mutation in a case of early onset narcolepsy and a generalized

absence of hypocretin peptides in human narcoleptic brains. Nat.

Med. 6, 991–997.

Phillipson, E., and Bowes, G. (1986). Control of breathing during

sleep. In Handbook of Physiology: The Respiratory System (Be-

thesda, MD: American Physiological Society), pp. 649–689.

Philpott, H.G., and Petersen, O.H. (1979). Extracellular but not intra-

cellular application of peptide hormones activates pancreatic acinar

cells. Nature 281, 684–686.
Rajan, S., Wischmeyer, E., Xin Liu, G., Preisig-Muller, R., Daut, J.,

Karschin, A., and Derst, C. (2000). TASK-3, a novel tandem pore do-

main acid-sensitive K+ channel. An extracellular histiding as pH

sensor. J. Biol. Chem. 275, 16650–16657.

Rajan, S., Plant, L.D., Rabin, M.L., Butler, M.H., and Goldstein, S.A.

(2005). Sumoylation silences the plasma membrane leak K+ channel

K2P1. Cell 121, 37–47.

Routh, V.H. (2002). Glucose-sensing neurons: are they physiologi-

cally relevant? Physiol. Behav. 76, 403–413.

Rusznak, Z., Pocsai, K., Kovacs, I., Por, A., Pal, B., Biro, T., and

Szucs, G. (2004). Differential distribution of TASK-1, TASK-2 and

TASK-3 immunoreactivities in the rat and human cerebellum. Cell.

Mol. Life Sci. 61, 1532–1542.

Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R.M., Ta-

naka, H., Williams, S.C., Richardson, J.A., Kozlowski, G.P., Wilson,

S., et al. (1998). Orexins and orexin receptors: a family of hypotha-

lamic neuropeptides and G protein-coupled receptors that regulate

feeding behavior. Cell 92, 573–585.

Sakurai, T., Moriguchi, T., Furuya, K., Kajiwara, N., Nakamura, T.,

Yanagisawa, M., and Goto, K. (1999). Structure and function of

human prepro-orexin gene. J. Biol. Chem. 274, 17771–17776.

Saper, C.B., Chou, T.C., and Elmquist, J.K. (2002). The need to feed:

homeostatic and hedonic control of eating. Neuron 36, 199–211.

Schwartz, M.W., Woods, S.C., Porte, D., Jr., Seeley, R.J., and Bas-

kin, D.G. (2000). Central nervous system control of food intake.

Nature 404, 661–671.

Selbach, O., Doreulee, N., Bohla, C., Eriksson, K.S., Sergeeva, O.A.,

Poelchen, W., Brown, R.E., and Haas, H.L. (2004). Orexins/hypocre-

tins cause sharp wave- and theta-related synaptic plasticity in the

hippocampus via glutamatergic, gabaergic, noradrenergic, and

cholinergic signaling. Neuroscience 127, 519–528.

Silver, I.A., and Erecinska, M. (1994). Extracellular glucose concen-

tration in mammalian brain: continuous monitoring of changes dur-

ing increased neuronal activity and upon limitation in oxygen supply

in normo-, hypo-, and hyperglycemic animals. J. Neurosci. 14, 5068–

5076.

Sirois, J.E., Lei, Q., Talley, E.M., Lynch, C., 3rd., and Bayliss, D.A.

(2000). The TASK-1 two-pore domain K+ channel is a molecular sub-

strate for neuronal effects of inhalation anesthetics. J. Neurosci. 20,

6347–6354.

Smith, H.R., and Pang, K.C. (2005). Orexin-saporin lesions of the

medial septum impair spatial memory. Neuroscience 132, 261–271.

Sutcliffe, J.G., and de Lecea, L. (2002). The hypocretins: setting the

arousal threshold. Nat. Rev. Neurosci. 3, 339–349.

Talley, E.M., and Bayliss, D.A. (2002). Modulation of TASK-1 (Kcnk3)

and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and

neurotransmitters share a molecular site of action. J. Biol. Chem.

277, 17733–17742.

Talley, E.M., Solorzano, G., Lei, Q., Kim, D., and Bayliss, D.A. (2001).

Cns distribution of members of the two-pore-domain (KCNK) potas-

sium channel family. J. Neurosci. 21, 7491–7505.

Talley, E.M., Sirois, J.E., Lei, Q., and Bayliss, D.A. (2003). Two-pore-

Domain (KCNK) potassium channels: dynamic roles in neuronal

function. Neuroscientist 9, 46–56.

Thannickal, T.C., Moore, R.Y., Nienhuis, R., Ramanathan, L., Gulyani,

S., Aldrich, M., Cornford, M., and Siegel, J.M. (2000). Reduced num-

ber of hypocretin neurons in human narcolepsy. Neuron 27, 469–474.

Verheugen, J.A., Fricker, D., and Miles, R. (1999). Noninvasive mea-

surements of the membrane potential and GABAergic action in hip-

pocampal interneurons. J. Neurosci. 19, 2546–2555.

Willie, J.T., Chemelli, R.M., Sinton, C.M., and Yanagisawa, M. (2001).

To eat or to sleep? Orexin in the regulation of feeding and wakeful-

ness. Annu. Rev. Neurosci. 24, 429–458.

Yamamoto, Y., and Taniguchi, K. (2003). Heterogeneous expression

of TASK-3 and TRAAK in rat paraganglionic cells. Histochem. Cell

Biol. 120, 335–339.

Yamanaka, A., Beuckmann, C.T., Willie, J.T., Hara, J., Tsujino, N.,

Mieda, M., Tominaga, M., Yagami, K., Sugiyama, F., Goto, K., et al.

(2003). Hypothalamic orexin neurons regulate arousal according to

energy balance in mice. Neuron 38, 701–713.


	Tandem-Pore K+ Channels Mediate Inhibition of Orexin Neurons by Glucose
	Introduction
	Results
	Identifying Living Orexin Neurons via Targeted Expression of eGFP
	Biophysical Identity of the Current Responsible for Glucose Inhibition
	Modulation of Glucose-Induced Currents by Halothane and Acid
	Evidence for TASK3 Subunits in Glucose-Activated Channels
	Control of Orexin Cell Firing by Small Physiological Changes in Glucose Levels
	Coupling between Extracellular Glucose and Membrane Currents

	Discussion
	Electrical Mechanism of Glucose Inhibition
	Coupling between Extracellular Glucose and Electrical Activity
	Implications for Control of Behavioral and Metabolic States

	Experimental Procedures
	Generation of Transgenic Mice
	Electrophysiology
	Whole-Cell Recordings
	Single-Channel Recordings

	Immunocytochemistry and Confocal Imaging

	Acknowledgments
	References


