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a b s t r a c t

Weconsider the sandwich problem, a generalization of the recognition problem introduced
by Golumbic et al. (1995) [15], with respect to classes of graphs defined by excluding
induced subgraphs. We prove that the sandwich problem corresponding to excluding a
chordless cycle of fixed length k is NP-complete. We prove that the sandwich problem
corresponding to excluding Kr \ e for fixed r is polynomial. We prove that the sandwich
problem corresponding to 3PC(·, ·)-free graphs is NP-complete. These complexity results
are related to the classification of a long-standing open problem: the sandwich problem
corresponding to perfect graphs.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

All graphs in this paper are finite, simple and undirected. We say that a graph G1
= (V , E1) is a spanning subgraph of

G2
= (V , E2) if E1

⊆ E2 and that a graph G = (V , E) is a sandwich graph for the pair G1,G2 if E1
⊆ E ⊆ E2. For notational

simplicity in the sequel, we let E3 be the set of all edges in the complete graph with vertex set V which are not in E2. Thus
every sandwich graph G = (V , E) for the pair G1,G2 satisfies E1

⊆ E ⊆ E2, or equivalently E1
⊆ E and E ∩ E3

= ∅. We
call E1 the forced edge set, E2

\ E1 the optional edge set, and E3 the forbidden edge set. The graph sandwich problem for
property Π is defined as follows [15]:

The graph sandwich problem for property Π

Instance: Vertex set V , and edge sets E1 and E2, such that E1
⊆ E2.

Question: Is there a graph G = (V , E) such that E1
⊆ E ⊆ E2 which satisfies property Π?

Both forms (V , E1, E2) and (V , E1, E3) can be used to refer to an instance of a graph sandwich problem. The recognition
problem for a class of graphs C has as instance just the graph G = (V , E) that we want to recognize and the property Π is
‘‘belonging to class C’’. Therefore the recognition problem for C is equivalent to the particular graph sandwich problem in
which the forced edge set E1

= E, and the optional edge set E2
\ E1
= ∅ or equivalently the forbidden edge set E3 consists

of all edges not present in E. Graph sandwich problems have attractedmuch attention lately arising frommany applications
and as a natural generalization of recognition problems [2,10,12,13,20,21].

Golumbic et al. [15] have considered sandwich problemswith respect to several subclasses of perfect graphs, and proved
that the graph sandwich problem for split graphs remains in P . On the other hand, they proved that the graph sandwich
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problem for chordal graphs turns out to be NP-complete. As remarked in [15], the sandwich problem with respect to C
has the same complexity as the sandwich problem with respect to C, the complementary graph class containing for each
G ∈ C the complement graph G. Indeed, G ∈ C is a sandwich graph for the instance (V , E1, E3) if and only if G ∈ C is a
sandwich graph for the instance (V , E3, E1).

In particular, the classification P versus NP-complete in the seminal paper [15] suggested the investigation of the
following properties as regards graph sandwich problems:

1. Let C be a self-complementary graph class. Is the graph sandwich problem for C in P?
2. Let C be a graph class defined by a finite family of forbidden induced subgraphs. Is the graph sandwich problem for C

in P?

Positive answers for Property 1 have been given for the self-complementary graph property of having a homogeneous
set [1], and for several self-complementary graph classes: cographs [15], split graphs [15], P4-sparse graphs [10], and P4-
reducible graphs [2]. Note that cographs and split graphs are graph classes defined by a finite family of forbidden induced
subgraphs and so give for both Properties 1 and 2 positive answers. On the negative side, the NP-completeness for hereditary
clique-Helly graphs [12] presents a first example of a graph classC defined by a finite family of forbidden induced subgraphs
for which the graph sandwich problem for C is NP-complete giving for Property 2 a negative answer. Negative evidence
for Property 1 has been given for permutation graphs, a self-complementary graph class whose recognition is polynomial
whereas the sandwich problem turns out to be NP-complete [15].

We say that a graph G contains a graph F if F is isomorphic to an induced subgraph of G. A graph G is F-free if it does not
contain F . Note that thewell-studied class of cographs is precisely the class of P4-free graphs, where P4 is the path induced by
four vertices. A hole is a chordless cycle of length at least 4. A hole is even (resp. odd) if it contains an even (resp. odd) number
of vertices. A hole of length k is also called a k-hole and it is denoted by Ck. Let F be a (possibly infinite) family of graphs. A
graph G is F -free if it is F-free, for every F ∈ F . The well-studied class of split graphs is precisely the self-complementary
class of {C4, C4, C5}-free graphs [14].

A challenging self-complementary class is the class of Berge graphs, the class of {odd hole, odd hole}-free graphs. The
celebrated strong perfect graph theoremcharacterized the class of perfect graphs as being precisely the class of Berge graphs;
the polynomial recognition of Berge graphs was established subsequently [3]. It is surprising that the recognition of even-
hole-free graphs can be done in polynomial time [4,8,11] whereas the recognition of odd-hole-free graphs is an outstanding
open problem [3].

In the present paper, our result on C5-free graphs presents a surprising example of a self-complementary graph class
C, for which the graph sandwich problem for C is NP-complete. Since the complement of graph C5 is itself, we have the
first example of a self-complementary graph class C defined by just one forbidden induced subgraph for which the graph
sandwich problem for C is NP-complete.

Remark that the seminal paper on graph sandwich problems [15] left three open problems: the graph sandwich problem
for strongly chordal graphs recently classified as NP-complete [13], the graph sandwich problem for chordal bipartite
graphs recently additionally classified as NP-complete [20], and the graph sandwich problem for perfect graphs, still
open.

In the present paper we consider several classes related to perfect graphs contributing towards the classification of this
remaining sandwich problem.

By the perfect graph theorem, the class of perfect graphs is defined as a self-complementary class by a parity condition on
the size of its holes. Please refer to Fig. 1 where we relate the class of perfect graphs, the parity condition, and graph classes
that have been defined and studied with the aim of better understanding the complexity of searching for an even or for an
odd hole. A graph is perfect if and only if it contains no odd hole and no complement of an odd hole as an induced subgraph.
The class of graphs with no induced C4 does not have the complement of Cn, n ≥ 6, as an induced subgraph, either, a fact
that relates the structure of C4-free graphs to the structure of even-hole-free graphs.

A convenient setting for the study of even or odd holes in graphs is the one of signed graphs, since it has been shown in
the literature that the essence of even-hole-free (resp. odd-hole-free) graphs is actually captured by their generalization to
signed graphs, called the odd-signable (resp. even-signable) graphs. A theorem due to Truemper characterizes the graphs
whose edges can be labeled such that all chordless cycles have prescribed parities [9,22]. This theorem has proven to be
an essential tool in the study of various objects like balanced matrices, graphs with no even holes and graphs with no odd
holes [6,8]. We sign a graph by assigning 0, 1 weights to its edges. The weight of a cycle is the sum of the weights of its edges.
A graph is odd-signable if there exists a signing that makes every triangle odd weight and every hole odd weight. Note that
a graph has no even holes if and only if it is odd-signable with all labels equal to 1. A graph is even-signable if there exists a
signing that makes every triangle odd weight and every hole even weight. Note that a graph has no odd holes if and only if
it is even-signable with all labels equal to 1.

Testing whether a graph is even-signable (resp. odd-signable) is open. In fact an algorithm for testing whether a graph
is even-signable (resp. odd-signable) implies an algorithm for testing whether a graph is odd-hole-free (resp. even-hole-
free) [7]. Odd-signable graphs and even-signable graphs can be characterized in terms of excluded induced subgraphs that
we introduce now. Please refer to Fig. 2.

A 3PC is a graph induced by three internally disjoint chordless paths P1 = x1, . . . , y1, P2 = x2, . . . , y2 and P3 = x3, . . . , y3
such that any two of them induce a hole. If x1 = x2 = x3 and y1 = y2 = y3, we say that P1 ∪ P2 ∪ P3 induces a 3PC(x1, y1).
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Fig. 1. Graph classes defined by forbidden induced subgraphs (excepting β-perfect graphs, for which such characterization is not known). In the diagram,
note that odd-signable graphs are precisely (3PC(·, ·), 3PC(1, 1), evenwheel)-free graphs, even-signable graphs are precisely (3PC(1, ·), oddwheel)-free
graphs and chordal graphs are precisely graphs that are both perfect and β-perfect. Labels O, N and P refer to the complexity of the recognition problem
(open, NP-complete andpolynomial, respectively). Following the notation of [15], dashed, bold and light classes refer to the complexity of the corresponding
sandwich problem (open, NP-complete and polynomial, respectively). The four highlighted classes in the diagram correspond to classes classified in this
paper.

Fig. 2. Path configurations 3PC(·, ·), 3PC(△,△), 3PC(△, ·) and a wheel. Dashed lines represent paths of length at least 1.

If {x1, x2, x3} and {y1, y2, y3} induce triangles, then we say that P1 ∪ P2 ∪ P3 induces a 3PC(x1x2x3, y1y2y3). If {x1, x2, x3}
induces a triangle and y1 = y2 = y3, we say that P1 ∪ P2 ∪ P3 induces a 3PC(x1x2x3, y1). We say that a graph G contains a
3PC(·, ·) if it contains a 3PC(x, y) for some x, y ∈ V (G). Similarlywe say that a graphG contains a 3PC(1, 1) (resp. 3PC(1, ·))
if it contains a 3PC(x1x2x3, y1y2y3) (resp. 3PC(x1x2x3, y)) for some x1, x2, x3, y1, y2, y3 ∈ V (G) (resp. x1, x2, x3, y ∈ V (G)).
Graphs 3PC(·, ·), 3PC(1, 1) and 3PC(1, ·) are also known as thetas, prisms and pyramids, respectively. Testing for thetas
and testing for pyramids can both be done in polynomial time [5] whereas testing for prisms is NP-complete [17].

A wheel, denoted by (H, x), is a graph induced by a hole H and a vertex x ∉ V (H) having at least three neighbors in H ,
say x1, . . . , xn. If x is adjacent to two consecutive vertices in H , say xi, xi+1, we say that xixi+1 is a short sector of the wheel.
A wheel is odd if it has an odd number of short sectors. Wheel (H, x) is even if x has an even number of neighbors in H .
Detecting an odd wheel is NP-complete [18] whereas detecting an even wheel is open.

It is easy to see that even wheels, 3PC(·, ·)’s and 3PC(1, 1)’s cannot be contained in even-hole-free graphs, while odd
wheels and 3PC(1, ·)’s cannot be contained in odd-hole-free graphs. In fact, a graph is odd-signable if and only if it does
not contain an even wheel, a 3PC(·, ·) or a 3PC(1, 1) and a graph is even-signable if and only if it does not contain an odd
wheel or a 3PC(1, ·) [7,9,22].

Another class introduced in the context of graphs not containing holes of a prescribed parity is the class of β-perfect
graphs. A graph is β-perfect [19] if for each induced subgraph H of G, χ(H) = β(H), where β(G) = max{δ(G′) + 1 : G′
is an induced subgraph of G}. It is easy to see that β-perfect graphs belong to the class of even-hole-free graphs, and that
this containment is proper. It has recently been shown in [16] that (even-hole, diamond)-free graphs are β-perfect, where
a diamond is a cycle of length 4 that has exactly one chord, or equivalently the graph K4 \ e. The recognition of β-perfect
graphs is open. Graphs that are both perfect and β-perfect are precisely the well known chordal graphs [19].

In the present paper, we prove that the sandwich problem corresponding to excluding a chordless cycle of fixed length k
is NP-complete. We prove that the sandwich problem corresponding to excluding Kr \ e for fixed r is polynomial. We prove
that the sandwich problem corresponding to 3PC(·, ·)-free graphs is NP-complete. These complexity results are related to
the classification of a long-standing open problem: the sandwich problem corresponding to perfect graphs.
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2. The Ck-free graph sandwich problem

In this section we prove that, for any fixed k ≥ 4, the Ck-free graph sandwich problem is NP-complete. In order to
obtain this result, first we prove in Theorem 1 that the C4-free graph sandwich problem (i.e. the particular case k = 4) is
NP-complete by showing a reduction from the NP-complete problem 3-satisfiability. Second, in Theorem 2, we show how
this reduction can be generalized to prove the NP-completeness of the Ck-free graph sandwich problem. These decision
problems are defined as follows.

3-satisfiability (3sat)
Instance: A pair (X, C), where X = {x1, . . . , xn} is the set of variables, and C = {c1, . . . , cm} is the collection of clauses over
X such that each clause c ∈ C has |c| = 3 literals.
Question: Is there a truth assignment for X such that each clause in C has at least one true literal?

The C4-free graph sandwich problem (c4sp)
Instance: Vertex set V , and edge sets E1 and E2, such that E1

⊆ E2.
Question: Is there a graph G = (V , E) such that E1

⊆ E ⊆ E2, and G is C4-free?

The Ck-free graph sandwich problem (cksp)
Instance: Vertex set V , and edge sets E1 and E2, such that E1

⊆ E2.
Question: Is there a graph G = (V , E) such that E1

⊆ E ⊆ E2, and G is Ck-free, for a fixed k ≥ 4?

Now we prove the following theorem.

Theorem 1. c4sp is NP-complete.
Proof. In order to reduce 3sat to c4spwe need to construct a particular instance (V , E1, E2) of c4sp from a generic instance
(X, C) of 3sat, such that C is satisfiable if and only if (V , E1, E2) admits a sandwich graph G = (V , E) which is C4-free.
First, we describe the construction of a particular instance (V , E1, E2) of c4sp; second, we prove in Lemma 1 that every C4-
free sandwich graph G = (V , E) for particular instance (V , E1, E2) defines a satisfying truth assignment for (X, C); third,
we prove in Lemma 2 that every satisfying truth assignment for (X, C) defines a C4-free sandwich graph G = (V , E) for
particular instance (V , E1, E2). These steps are explained below. �

Construction of a particular instance of c4sp

The vertex set V contains: for each variable xi ∈ X , a set Xi = {xi1, x
i
2, x

i
1, x

i
2}; for each clause cj = (lj1 ∨ lj2 ∨ lj3) in C , the

corresponding set Cj = Aj ∪ Bj, where Aj, Bj are defined in the following way: Aj = {p
j
1, . . . , p

j
4} and Bj =


q=1,2,3{l

j
q, t

j
q,

sjq1, . . . , s
j
q4, r

j
q1, . . . , r

j
q4}.

Forced edge set E1 contains: for each variable xi, the edges xi1x
i
1, x

i
1x

i
2, x

i
2x

i
2, x

i
2x

i
1; for each clause cj, 1 ≤ j ≤ m, the edges
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j
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j
1p

j
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j
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j
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j
2p

j
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j
3l

j
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j
3p

j
4, p

j
4p

j
1, p

j
1t

j
1, t

j
1p

j
2, p

j
2t

j
2, t

j
2p

j
3, p

j
3t

j
3, t

j
3p

j
4, p

j
1s

j
11, p

j
2s

j
13, p

j
2s

j
21, p

j
3s

j
23, p

j
3s

j
31, p

j
4s

j
33 and for q ∈ {1, 2, 3},

the set Y j
q = Aj

q ∪ Bj
q where Aj

q = {t
j
qr

j
q3, l

j
qr

j
q1, s

j
q1s

j
q2, s

j
q2s

j
q3, s

j
q3s

j
q4, s

j
q4s

j
q1, r

j
q1r

j
q2, r

j
q2r

j
q3, r

j
q3r

j
q4, r

j
q4r

j
q1} and Bj

q is defined as
follows. If ljq = xi, then Bj

q = {xi1s
j
q2, x

i
2s

j
q4, x

i
1r

j
q2, x

i
2r

j
q4}; if l

j
q = xi, then Bj

q = {xi1r
j
q2, x

i
2r

j
q4, x

i
1s

j
q2, x

i
2s

j
q4}.

The optional edge set E0
= E2

\ E1 contains: for each variable xi, the edges xi1x
i
2, x

i
1x

i
2, for each clause cj, the edges

pj1p
j
2, p

j
2p

j
3, p

j
3p

j
4, and for q ∈ {1, 2, 3}, the edges ljqt

j
q, s

j
q2s

j
q4, s

j
q1s

j
q3, r

j
q2r

j
q4, r

j
q1r

j
q3.

For each xi, i ∈ {1, . . . , n}, we call the variable gadget corresponding to xi the subgraph of G2
= (V , E2) induced by Xi. For

each cj, j ∈ {1, . . . ,m}, we call the clause gadget corresponding to cj the subgraph of G2
= (V , E2) induced by the set Cj. In

Figs. 3 and 4, solid edges are forced E1-edges, dashed edges are optional E0-edges and omitted edges are forbidden E3-edges.
In the clause gadget corresponding to clause cj, let Z

j
1 = {p

j
1, t

j
1, p

j
2, l

j
1} and let Rj

q, q ∈ {1, 2, 3}, be the set {r jq1, . . . , r
j
q4}.

Lemma 1. If the particular instance (V , E1, E2) of c4sp constructed above admits a graph G = (V , E) such that E1
⊆ E ⊆ E2

and G is C4-free, then there exists a truth assignment that satisfies (X, C).
Proof. Suppose there exists a C4-free sandwich graph G = (V , E). We define the truth assignment for (X, C): for i ∈
{1, . . . , n}, variable xi is true if and only if xi1x

i
2 ∈ E(G). Suppose that for some j ∈ {1, . . . ,m}, the clause cj = (lj1 ∨ lj2 ∨ lj3) is

false.

Claim 1. r jq1r
j
q3 ∈ E(G), q ∈ {1, 2, 3}.

Proof of Claim 1. If ljq = xi, then since ljq is false, xi1x
i
2 ∉ E(G). Since Xi cannot induce a 4-hole, xi1x

i
2 ∈ E(G). Since

{xi1, x
i
2, r

j
q2, r

j
q4} and Rj

q cannot induce 4-holes, r jq1r
j
q3 ∈ E(G).

If ljq = xi, then xi1x
i
2 ∈ E(G). Since {xi1, x

i
2, r

j
q2, r

j
q4} and Rj

q cannot induce 4-holes, r jq1r
j
q3 ∈ E(G). This completes the proof

of Claim 1. �
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a b

Fig. 3. (a) Variable gadget Xi . (b) Clause gadget Cj . Solid edges are forced E1-edges, dashed edges are optional E0
= E2

\ E1 edges and omitted edges are
forbidden E3-edges.

By Claim 1 and since {r j11, r
j
13, t

j
1, l

j
1} and Z j

1 cannot induce 4-holes, p1p2 ∈ E(G). Similarly pj2p
j
3, p

j
3p

j
4 ∈ E(G). But then

{pj1, p
j
2, p

j
3, p

j
4} induces a 4-hole. Therefore all clauses are satisfied. �

The converse of Lemma 1 is given next by Lemma 2.

Lemma 2. If there exists a truth assignment that satisfies (X, C), then the particular instance (V , E1, E2) of c4sp constructed
above admits a graph G = (V , E) such that E1

⊆ E ⊆ E2 and G is C4-free.

Proof. Suppose that there is a truth assignment that satisfies (X, C). We define a C4-free sandwich graph G that is the
solution for the particular instance (V , E1, E2) of c4sp associated with the 3sat instance (X, C).

If variable xi is true, then include the optional edge xi1x
i
2, for i ∈ {1, . . . , n}. Otherwise, if variable xi is false, then include

xi1x
i
2. For every cj = (lj1 ∨ lj2 ∨ lj3), j ∈ {1, . . . ,m}, include the following optional edges. If lj1 is true, then include the

edges sj11s
j
13, r

j
12r

j
14 and lj1t

j
1. Otherwise, include sj12s

j
14, r

j
11r

j
13 and pj1p

j
2. If l

j
2 is true, then include the edges sj21s

j
23, r

j
22r

j
24 and

lj2t
j
2. Otherwise, include sj22s

j
24, r

j
21r

j
23 and pj2p

j
3. If l

j
3 is true, then include the edges sj31s

j
33, r

j
32r

j
34 and lj3t

j
3. Otherwise, include

sj32s
j
34, r

j
31r

j
33 and pj3p

j
4.

Now we prove that the sandwich graph G constructed above is C4-free. Clearly each subgraph G[Xi] and each subgraph
G[Cj] are C4-free. Since there are no edges betweenG[Xi1 ] andG[Xi2 ], i1 ≠ i2, and no edges betweenG[Cj1 ] andG[Cj2 ], j1 ≠ j2,
it remains to verify that there is no 4-hole that contains an edgewith one endnode in a variable gadget and the other endnode
in a clause gadget. First consider the next two remarks:

(1) If ljq = xi, then |{x1x2, s
j
q2s

j
q4} ∩ E| = 1 and |{x1x2, r

j
q2r

j
q4} ∩ E| = 1.

(2) If ljq = xi, then |{x1x2, r
j
q2r

j
q4} ∩ E| = 1 and |{x1x2, s

j
q2s

j
q4} ∩ E| = 1.

The edges connecting the subgraphs G[Xi] and G[Cj] are: for q ∈ {1, 2, 3}, either {xi1s
j
q2, x

i
2s

j
q4} ∪ {x

i
1r

j
q2, x

i
2r

j
q4}, when

ljq = xi; or {xi1r
j
q2, x

i
2r

j
q4} ∪ {x

i
1s

j
q2, x

i
2s

j
q4}, when ljq = xi. Then, by Remarks (1) and (2), there are no 4-holes containing edges

connecting variable gadgets to clause gadgets, and hence G is C4-free. �

Now we generalize the previous construction to prove the NP-completeness of cksp.

Theorem 2. cksp is NP-complete.

Proof. In order to prove that cksp is NP-complete, we show how the variable and the clause gadgets presented in Theorem 1
can be modified to obtain gadgets for every fixed k ≥ 5. Please refer to Fig. 5, where an example of the construction is given
for the particular case where k = 5.

In the clause gadget corresponding to clause cj, j ∈ {1, . . . ,m}, replace each edge pj4p
j
1 in G1 with the corresponding

path pj4, p
j
5, . . . , p

j
k, p

j
1 in G1. For q = {1, 2, 3}, replace each edge sjq4s

j
q1 and each edge r jq4r

j
q1 in G1 with the corresponding

paths sjq4, s
j
q5, . . . , s

j
qk, s

j
q1 and r jq4, r

j
q5, . . . , r

j
qk, r

j
q1 in G1. Similarly replace each edge t jqr

j
q3, s

j
13p

j
2, s

j
23p

j
3, s

j
33p

j
4, p

j
1t

j
1, p

j
2t

j
2, p

j
3t

j
3

in G1 with corresponding paths of length k− 3 in G1. If ljq = xi, then replace each edge xi1s
j
q2 and each edge xi1r

j
q2 in G1 with
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Fig. 4. Example of a particular instance of c4sp for (V , E1, E2) obtained from the instance of 3sat: I = (X, C) = ({x1, x2, x3, x4, x5}, {(x1 ∨ x2 ∨ x3), (x4 ∨
x5 ∨ x3)}).

corresponding paths of length k− 3 in G1. If ljq = xi, then replace the edges xi1r
j
q2 and xi1s

j
q2 in G1 with paths of length k− 3

in G1.
Finally, in the variable gadget corresponding to xi, i ∈ {1, . . . , n}, replace each edge xi2x

i
1 in G1 with a corresponding path

of length k− 3 in G1. �

3. The (Kr \ e)-free graph sandwich problem

In this section we are interested in the complexity of the (Kr \ e)-free graph sandwich problem. We note that the
particular case r = 4 is the sandwich problem corresponding to excluding a diamond as an induced subgraph. We present
an algorithm that decides in polynomial time whether an instance (V , E1, E2) admits a (Kr \ e)-free sandwich graph. This
decision problem and the algorithm are presented below.

The (Kr \ e)-free graph sandwich problem (kresp)
Instance: Vertex set V , and edge sets E1 and E2, such that E1

⊆ E2.
Question: Is there a graph G = (V , E) such that E1

⊆ E ⊆ E2, and G is (Kr \ e)-free?

The following algorithm runs in timeO(nrm), where |V | = n and |E2
| = m. The algorithm constructs a strictly increasing

sequence of edge sets containing E1 and contained in E2.
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Fig. 5. Example of a particular instance of c5sp for (V , E1, E2) obtained from the instance of 3sat: I = (X, C) = ({x1, x2, x3}, (x1 ∨ x2 ∨ x3)).

Algorithm 1 kresp Algorithm
Input: (V , E1, E2)
Output: (YES, G) or NO
1: E ← E1

2: while G = (V , E) contains a Kr \ e do
3: E∗ ← ∅
4: for every Kr \ e in G do
5: if e is an optional edge in E2

\ E1 then
6: E∗ ← E∗ ∪ {e}
7: else
8: return NO
9: E ← E ∪ E∗

10: return (YES,G)

Theorem 3. Algorithm 1 correctly decides whether (V , E1, E2) admits a (Kr \ e)-free sandwich graph G.

Proof. The proof follows since Algorithm 1 is a greedy algorithm based on the fact that at each step, either there is an edge
that must be added (and if it is not among the optional edges, then there is no solution) or the graph is already Kr \ e-free.
See Figs. 7 and 6 for an example of a YES instance and an example of a NO instance, respectively. �

4. The 3PC(·, ·)-free graph sandwich problem

In this section we prove that the 3PC(·, ·)-free graph sandwich problem is NP-complete by showing a reduction from
the NP-complete problem chordal graph sandwich problem. These two decision problems are defined as follows.

The chordal graph sandwich problem (csp)
Instance: Vertex set V , and edge sets E1 and E2, such that E1

⊆ E2.
Question: Is there a graph G = (V , E) such that E1

⊆ E ⊆ E2, and G is a chordal graph?
The 3PC(·, ·)-free graph sandwich problem (3PC(·, ·)SP)
Instance: Vertex set V , and edge sets E1 and E2, such that E1

⊆ E2.
Question: Is there a graph G = (V , E) such that E1

⊆ E ⊆ E2, and G is 3PC(·, ·)-free?

Theorem 4. 3PC(·, ·)SP is NP-complete.

Proof. Let (V ∗, E1∗, E2∗) be an instance of csp. We construct a particular instance (V , E1, E2) of 3PC(·, ·)SP from
(V ∗, E1∗, E2∗) as follows.
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Fig. 6. An example of a NO instance for Algorithm 1.

Fig. 7. An example of a YES instance for Algorithm 1.

The vertex set V contains: vertices of V ∗ and a set S of auxiliary vertices constructed in the following way. For each pair
u, v of nonadjacent vertices in G1∗, include two vertices xuv, yuv in S. The set of forced edges E1 contains: all edges in E1∗;
for each pair u, v ∈ V ∗ of nonadjacent vertices in G1∗, the edges {uxuv, xuvyuv, yuvv}; and the edges between every pair of
vertices in S. The optional edge set is E2

\ E1
= E2∗

\ E1∗. All remaining edges are forbidden.
Suppose that we have a chordal sandwich graph G∗ = (V ∗, E∗) for (V ∗, E1∗, E2∗). Let G = (V , E) be a sandwich graph for

the instance (V , E1, E2) such that V = V ∗ ∪ S and E is the union of E∗, all edges between vertices of S and the edges of type
uxuv for every u ∈ V and non-edge uv of G1∗. Suppose that G is not 3PC(·, ·)-free and let T ⊆ V be a 3PC(a, b) in G. Clearly,
T is not entirely contained in V ∗; otherwise G∗ is not a chordal graph. So at least one vertex of T , say x, is contained in S.

Suppose that x = a. Since every vertex of S has atmost one neighbor inG\S, and since x has three neighbors in T ,N[x]∩T
induces a triangle in T , a contradiction. So x ≠ a, and by symmetry x ≠ b.

Let H1,H2,H3 be the three holes contained in T . W.l.o.g., suppose that x ∉ H3. Since H3 is not entirely contained in V ∗
(otherwise G∗ is not a chordal graph), H3 must contain at least one vertex, say y, in S \ {x}. By the same argument as in the
previous paragraph, wemay assume that y ≠ a, b. But then, since xy ∈ E,H cannot induce a 3PC(·, ·), a contradiction. Hence
G is 3PC(·, ·)-free.

Now suppose that we have a 3PC(·, ·)-free sandwich graph G = (V , E) for (V , E1, E2). Let G∗ be a sandwich graph for
(V ∗, E1∗, E2∗) with vertex set V \ S and edge set E∗ = E ∩ (V ∗× V ∗). Suppose that G∗ is not a chordal graph. Let H be a hole
in G∗, and let u, v be two nonadjacent vertices in H . But then there is chordless path P = u, xuvyuv, v in G, and hence H ∪ P
induces a 3PC(u, v) in G, a contradiction. Therefore G∗ is a chordal graph. �

5. Final remarks

The complexities of sandwich problems corresponding to P4-free graphs (polynomial [15]), C4-free graphs (NP-complete)
and diamond-free graphs (polynomial) present an interesting non-monotonicity with respect to the number of edges
removed from a K4 graph: three edges (polynomial), two edges (NP-complete) and one edge (polynomial).

The present paper presents complexity results that are related to the classification of the sandwich problem
corresponding to perfect graphs, the only remaining open problem suggested in the seminal paper [15]. The investigation
of the sandwich problem paradigm proposes interesting and challenging questions itself. For instance, as classified in the
paper [15], the sandwich problem for (C4, 2K2, C5)-free graphs (the self-complementary class of split graphs) is polynomial,
whereas we have established that the sandwich problems for C4-free graphs and for 2K2-free graphs (a consequence of the
result for C4-free graphs) and C5-free graphs are all NP-complete.
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