Phosphorylation-Dependent Activation of the ESCRT Function of ALIX in Cytokinetic Abscission and Retroviral Budding

Graphical Abstract

Highlights
- Cytosolic ALIX changes from closed to open conformation during M phase induction
- Phosphorylation of the S718-S721 residues produces an open conformation of ALIX
- S718-S721 phosphorylation allows ALIX to function in cytokinetic abscission
- S718-S721 phosphorylation is required for ALIX to support EIAV budding

Authors
Sheng Sun, Le Sun, Xi Zhou, Chuanfen Wu, Ruoning Wang, Sue-Hwa Lin, Jian Kuang

Correspondence
jkuang@mdanderson.org

In Brief
The widely expressed adaptor protein ALIX promotes membrane scission during cytokinesis, retroviral budding, and endolysosomal trafficking of activated growth factor receptors. Sun et al. identify a phosphorylation-dependent mechanism that relieves ALIX auto-inhibition and specifically activates its membrane-remodeling function in cytokinetic abscission and retroviral budding, but not in receptor trafficking.
Phosphorylation-Dependent Activation of the ESCRT Function of ALIX in Cytokinetic Abscission and Retroviral Budding

Sheng Sun,1,2 Le Sun,3 Xi Zhou,1 Chuanfen Wu,1 Ruoning Wang,1,6 Sue-Hwa Lin,5,4 and Jian Kuang1,2,*

1Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
2Experimental Therapeutics Academic Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
3AbMax Biotechnology, Beijing 100085, China
4Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
5Present address: Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children’s Hospital, Ohio State University, Columbus, OH 43205, USA
6Correspondence: jkuang@mdanderson.org

http://dx.doi.org/10.1016/j.devcel.2016.01.001

SUMMARY

The modular adaptor protein ALIX is a key player in multiple ESCRT-III-mediated membrane remodeling processes. ALIX is normally present in a closed conformation due to an intramolecular interaction that renders ALIX unable to perform its ESCRT functions. Here we demonstrate that M phase-specific phosphorylation of the intramolecular interaction site in the proline-rich domain (PRD) of ALIX transforms cytosolic ALIX from closed to open conformation. Defining the role of this mechanism of ALIX regulation in three classical ESCRT-mediated processes revealed that phosphorylation of the intramolecular interaction site in the PRD is required for ALIX to function in cytokinetic abscission and retroviral budding, but not in multivesicular body sorting of activated epidermal growth factor receptor. Thus, phosphorylation of the intramolecular interaction site in the PRD is one of the major mechanisms that activates the ESCRT function of ALIX.

INTRODUCTION

The endosome sorting complexes required for transport (ESCRT) proteins constitute an evolutionary conserved membrane remodeling system that buds membranes and severs membrane necks in the opposite topology of endocytosis (Henne et al., 2011, 2013; Hurley, 2015). The best-characterized functions of ESCRT proteins are the multivesicular body (MVB) sorting of internalized membrane receptors (Babst et al., 2002a, 2002b; Katzmann et al., 2001), the budding of enveloped retroviruses from infected cells (Strack et al., 2003; von Schwedler et al., 2003), and the membrane scission at the end of cytokinesis (Carlton and Martin-Serrano, 2007; Morita et al., 2007). The central event in ESCRT-mediated membrane remodeling is the assembly of a highly oligomerized ESCRT-III complex from monomeric proteins (McCullough et al., 2015; Teis et al., 2008), followed by the timely disassembly of this complex by the ATPase Vps4 (Caillat et al., 2015; Yang et al., 2015). Upstream of the core event, ALIX (ALG-2 interacting protein X), in parallel with the ESCRT-I-ESCRT-II complex, binds both a membrane remodeling cargo and the ESCRT-III component CHMP4 to initiate ESCRT-III assembly at the right time and in the right location (Carlson and Hurley, 2012; Pashkova et al., 2013).

Structural studies of ALIX revealed that ALIX consists of an N-terminal banana-shaped Bro1 domain, a middle V letter-shaped domain, and an intrinsically disordered C-terminal proline-rich domain (PRD) (Fisher et al., 2007). The Bro1 domain contains a 3D docking site for CHMP4 (hydrophobic Patch 1) and a linear docking site for Src (hydrophobic Patch 2) (Kim et al., 2005; McCullough et al., 2008). The V domain contains a 3D hydrophobic pocket around F676 (the F676 pocket), which is the docking site for retroviral Gag proteins (Lee et al., 2007; Zhai et al., 2008). The PRD contains two linear docking sites (717–720 and 852–855) for the ESCRT-I component TSG101 and an ALIX multimerization sequence (Carlton et al., 2008). Using monoclonal antibodies that recognize different epitopes in ALIX, we discovered that cytosolic ALIX is normally present in a closed conformation that is unable to interact with CHMP4, Src, or viral GAG (Zhou et al., 2008, 2009). This is achieved through an intramolecular interaction between the Src docking site in the Bro1 domain and the first TSG101 docking site (TDS) in the PRD (Zhou et al., 2010). These findings predict that relieving the intramolecular interaction of ALIX is critical for multiple ESCRT-III mediated processes.

In MVB sorting of activated epidermal growth factor receptor (EGFR), calcium-dependent ALG-2 interaction with cytosolic ALIX relieves its intramolecular interaction and promotes its association with the membrane through interaction with membrane-bound CHMP4 (Sun et al., 2015b). ALG-2 knockdown inhibited ALIX-supported MVB sorting and degradation of activated EGFR, but did not affect ESCRT-mediated cytokinetic abscission or retroviral budding (Sun et al., 2015a). These findings identify ALG-2 as a critical regulator of ALIX in calcium-dependent ESCRT processes and predict that a different...
mechanism activates ALIX for it to function in calcium-independent ESCRT-mediated processes.

The Xenopus ortholog of ALIX, Xp95, is phosphorylated both at the conserved tyrosine residue (Y318) within Patch 2 of the Bro1 domain (Che et al., 1999) and at multiple sites within the N-terminal half of the PRD (nPRD) during Xenopus oocyte maturation (Dejournett et al., 2007). Since these phosphorylations also occur in ALIX (Dejournett et al., 2007; Schmidt et al., 2005), phosphorylation of one or both of the intramolecular interaction sites may transform ALIX from closed to open conformation. In this study, we demonstrated that mitotic phosphorylation of cytosolic ALIX at the intramolecular interaction site within the nPRD transforms ALIX from closed to open conformation. We also showed that this activating phosphorylation of ALIX is required for ALIX to function in cytokinetic abscission and equine infectious anemia virus (EIAV) budding but not in MVB sorting of activated EGFR.

RESULTS

Cytosolic ALIX Changes from Closed to Open Conformation during M Phase Induction

As illustrated in Figure 1A, the anti-ALIX antibody 1A3 recognizes the Patch 2/Src docking site in the Bro1 domain, and the anti-ALIX antibody 2H12 recognizes the F676 pocket/the viral GAG docking site in the V domain. Because the intramolecular interaction of ALIX renders these two partner protein docking sites inaccessible, 1A3 and 2H12 only immunoprecipitate opened ALIX. In contrast, the anti-ALIX antibodies 3A9 and 1A12 recognize conformation-insensitive epitopes within the V domain and thus immunoprecipitate both opened and closed ALIX (Zhou et al., 2010). We used immunoprecipitation (IP) with 1A3 or 2H12 to determine whether cytosolic ALIX undergoes a conformational change when HEK293 cells proceed from interphase (I) to mitosis (M).

Asynchronously growing cells (>95% in I, called I cells) or mitotically arrested cells (>80% in M, called M cells) were extracted with a detergent-free buffer to isolate cytosolic proteins without affecting the intramolecular interaction of ALIX (Zhou et al., 2008, 2009). ATP and the PP1/PP2A inhibitor microcystin were added to the extraction buffer for M cells to stabilize the M phase status of the extracts. Immunoblotting (IB) of I cell extracts (IE) or M cell extracts (ME) with the mitotic phospho-protein monoclonal antibody 2 (MPM-2) (Wu et al., 2010) demonstrated a dramatically increased level of protein phosphorylation in M cells. ALIX IB showed that levels of ALIX are similar between I and M cells (Figure 1B). IP results showed that 1A12 and 3A9 immunoprecipitated ALIX from both IE and ME, whereas 1A3 and 2H12 immunoprecipitated ALIX only from ME (Figure 1C), indicating a conformational change of ALIX during mitotic entry. To determine whether the difference in ALIX conformation between IE and ME was due to different buffer conditions, we prepared both IE and ME in the presence of ATP and microcystin and performed parallel IP with 2H12 and 3A9. Under the same buffer conditions, 2H12 immunoprecipitated a trace amount of ALIX from IE but a high level of ALIX from ME (Figure S1A). The trace amount of 2H12-immunoprecipitable ALIX in IE could be from a small percentage of mitotic cells present in I cells. Together, these results indicate that ALIX changes from closed to open conformation during mitotic entry.

To characterize opened ALIX in M cells, we examined ALIX interaction with ectopically expressed CHMP4b, endogenous TSG101, and GST-Src. Both FLAG-CHMP4b and TSG101 coimmunoprecipitated with ALIX in ME but not in IE (Figures 1D and 1E). GST-Src also specifically pulled down ALIX from ME (Figure 1F). These results indicate that the opened cytosolic ALIX in mitotic cells is able to interact with multiple partner proteins.

To previously showed that relieving the intramolecular interaction of cytosolic ALIX promotes CHMP4-mediated ALIX association with the membrane in I cells (Sun et al., 2015a; Zhou et al., 2010). To determine whether this also occurs in M cells, we fractionated the post nuclear supernatant (PNS) of crude cell lysates from I or M cells by membrane flotation centrifugation. The distribution of ALIX and CHMP4b between membrane and soluble protein fractions was similar between I and M cells (Figure S1C), suggesting that membrane-bound CHMP4 in M cells cannot interact with newly opened cytosolic ALIX.

To determine whether Xp95 undergoes a conformational change during oocyte maturation, we immunoprecipitated Xp95 from interphase-arrested Xenopus oocyte extracts (IOE) or M phase-arrested Xenopus egg extracts (MEE), which were also prepared in the absence of detergent, with 1A3 and 1A12. While 1A12 immunoprecipitated Xp95 from both IOE and MEE, 1A3 specifically immunoprecipitated Xp95 from MEE (Figure 1G), indicating that the M phase-associated conformational change of cytosolic ALIX is a conserved phenomenon that applies to both mitotic and meiotic cycles.

To determine the role of protein phosphorylation in the conformational change of ALIX during mitotic entry, we treated ME with calf intestinal alkaline phosphatase (CIP) and determined the effect on ALIX conformation. CIP treatment both eliminated MPM-2 reactivity (Figure 1H) and reversed 1A3 immunoprecipitability of ALIX (Figures 1I and S1B), indicating that protein phosphorylation plays a critical role in the conformational change of ALIX during mitotic entry. Interestingly, if GST-CHMP4b or myc-TSG101 was added to ME before the CIP treatment, the CIP-induced reversal of the 1A3 immunoprecipitability became partial (Figures 1I and S1B), indicating that the acquired intramolecular interaction of ALIX decreases the probability of reforming the intramolecular interaction of ALIX after dephosphorylation of mitotic phosphoproteins.

MEE Treatment of ALIXnPRD Inhibits Its Interaction with ALIXBro1

To define the protein phosphorylation that relieves the intramolecular interaction of ALIX in mitotic cells, we first incubated GST-tagged ALIX1-746, which contains both of the intramolecular interaction sites (Figure 2A) (Zhou et al., 2010), with IOE, MEE, or MEE plus CIP, and immunoprecipitated the end products with 3A9 or 2H12. 3A9 immunoprecipitated high levels of GST-ALIX1-746 under all three conditions, whereas 2H12 immunoprecipitated a readily detectable level of GST-ALIX1-746 only after its treatment with MEE (Figure 2B). That the MEE induces an open conformation of GST-ALIX1-746 was further confirmed by GST-ALIX1-746 pull-down of FLAG-CHMP4b (Figure 2C).

To identify the ALIX domain through which MEE treatment relieves the intramolecular interaction of ALIX, we produced
GST-ALIXBro1 and myc-ALIXnPRD (Figure 2A) and verified their interaction. We then incubated the in vitro transcription-linked-translation (TNT) product of myc-ALIXnPRD with IOE, MEE, or MEE plus CIP as diagrammed (Figure 2D, left) and determined the effect on myc-ALIXnPRD interaction with GST-ALIXBro1. Treating myc-ALIXnPRD with MEE but not with IOE or MEE plus CIP induced a gel mobility shift (Figure 2D, middle). Accordingly, GST-ALIXBro1 pulled down myc-ALIXnPRD treated with IOE or MEE but not with MEE (Figure 2D, right). We also incubated GST-ALIXBro1 with IOE, MEE, or MEE plus CIP, examined the tyrosine phosphorylation of the washed substrate, and determined its interaction with myc-ALIXnPRD. Treating GST-ALIXBro1 with MEE but not with IOE or MEE plus CIP generated immunoreactivity to anti-phosphotyrosine antibodies (Figure 2E). However, the MEE treatment only moderately reduced the ability of GST-ALIXBro1 to interact with myc-ALIXnPRD (Figure 2F).

Together, these results indicate that the MEE treatment relieves the intramolecular interaction of ALIX mainly through targeting the nPRD.

S718-S721 Phosphorylation Inhibits the ALIXnPRD Interaction with ALIXBro1

The nPRD of Xp95 is phosphorylated at multiple sites in mature oocytes (Dejournett et al., 2007). Sequence alignment of the nPRD of ALIX with that of Xp95 showed that the nPRD contains seven conserved S/T residues, two of which (S718 and S721 in ALIX) localize at or near the TDS at 717–720 (Figure 3A). We thus determined whether MEE phosphorylates the S718 residue in ALIX nPRD. MEE treatment of the wild-type (WT) but not the S718A-S721A (S2A) mutant form of GST-ALIXnPRD or myc-ALIXnPRD generated reactivity to #4381, as determined by IB or IP (Figure 3B). We also generated rabbit polyclonal antibodies against a synthetic ALIX peptide that is phosphorylated at both S718 and S721 and observed that the antibodies, named the anti-pS2 antibody (a pS2), also preferentially recognized a polypeptide about the size of ALIX in ME (Figure S2B). As observed with #4381, a pS2 specifically recognized WT but not S2A GST-ALIXnPRD upon MEE treatment (Figure 3C). The recognition was sensitive to CIP treatment (Figure S2C). Incubation of WT but not S2A GST-ALIXnPRD with progesterone-matured oocyte extracts, freshly prepared in the absence of microcystin, also generated reactivity to a pS2 in a CIP-sensitive manner (Figures 2 and 3D).
Collectively, these results indicate that MEE phosphorylates S718-S721 in ALIX nPRD.

To determine whether the phosphorylation of ALIX nPRD at S718-S721 is required for MEE-induced inhibition of the ALIX nPRD interaction with ALIX Bro1, we produced a phosphomimetic form of myc-ALIX nPRD on S718-S721 (S718D-S721D, S2D) and a control phosphodefective form of myc-ALIX nPRD on S712-S729 (S712A-S729A, S2A/C0). We then incubated S2A, S2A/C0, or S2D myc-ALIX nPRD with IOE, MEE, or MEE plus CIP, and characterized their interaction with GST-ALIX Bro1. None of the double mutations eliminated the gel mobility shift of myc-ALIX nPRD in MEE (Figure 3D, left), consistent with previous results (Dejournett et al., 2007). However, while S2A myc-ALIX nPRD interacted with GST-CHMP4b in IE, IB of input and bound proteins with the indicated antibodies.

Figure 2. MEE Treatment of ALIX nPRD Inhibits Its Interaction with ALIX Bro1

(A) Schematic illustration of the regions of ALIX that comprise the three structural domains and the ALIX fragments used in this study.

To characterize the interaction with GST-ALIX Bro1, we produced a phosphomimetic form of myc-ALIX nPRD on S718-S721 (S718D-S721D, S2D) and a control phosphodefective form of myc-ALIX nPRD on S712-S729 (S712A-S729A, S2A/C0). We then incubated S2A, S2A/C0, or S2D myc-ALIX nPRD with IOE, MEE, or MEE plus CIP, and characterized their interaction with GST-ALIX Bro1. None of the double mutations eliminated the gel mobility shift of myc-ALIX nPRD in MEE (Figure 3D, left), consistent with previous results (Dejournett et al., 2007). However, while S2A myc-ALIX nPRD interacted with GST-ALIX Bro1 under all three conditions, S2D myc-ALIX nPRD did not do so under any of the three conditions. Only S2A/C0 myc-ALIX nPRD interacted with GST-ALIX Bro1 upon incubation with IOE or MEE plus CIP but not with MEE (Figure 3D, right). These results indicate that S718-S721 phosphorylation is

S2D–S2F). Collectively, these results indicate that MEE phosphorylates S718-S721 in ALIX nPRD.

To determine whether the phosphorylation of ALIX nPRD at S718-S721 is required for MEE-induced inhibition of the ALIX nPRD interaction with ALIX Bro1, we produced a phosphomimetic form of myc-ALIX nPRD on S718-S721 (S718D-S721D, S2D) and a control phosphodefective form of myc-ALIX nPRD on S712-S729 (S712A-S729A, S2A–). We then incubated S2A, S2A–, or S2D myc-ALIX nPRD with IOE, MEE, or MEE plus CIP, and characterized their interaction with GST-ALIX Bro1. None of the double mutations eliminated the gel mobility shift of myc-ALIX nPRD in MEE (Figure 3D, left), consistent with previous results (Dejournett et al., 2007). However, while S2A myc-ALIX nPRD interacted with GST-ALIX Bro1 under all three conditions, S2D myc-ALIX nPRD did not do so under any of the three conditions. Only S2A– myc-ALIX nPRD interacted with GST-ALIX Bro1 upon incubation with IOE or MEE plus CIP but not with MEE (Figure 3D, right). These results indicate that S718-S721 phosphorylation is
required for MEE-induced inhibition of the ALIXnPRD interaction with ALIXBro1.

S718-S721 phosphorylation may directly inhibit the ALIXnPRD interaction with ALIXBro1 through phosphorylation-produced negative charges or by generating a docking site for a cofactor that prevents the ALIXnPRD interaction with ALIXBro1. To distinguish between these two possibilities, we determined the interaction of different mutant forms of myc-ALIXnPRD with GST-ALIXBro1 in the absence of Xenopus extracts. GST-ALIXBro1 pulled down WT, S2A, and S2A- myc-ALIXnPRD but not S2D myc-ALIXnPRD (Figure 3E), favoring the direct inhibition of the ALIXnPRD interaction with ALIXBro1 by S718-S721 phosphorylation.

The S718 context fits with the phosphorylation consensus sequences for PKD and PLK1. Since both PKD and PLK1 are activated in mitotic cells (Golsteyn et al., 1995; Kienzle et al., 2013), we determined whether PKD and/or PLK1 are the major kinases in MEE that phosphorylate S718-S721. GST-ALIXnPRD was phosphorylated with MEE in the presence or absence of the PKD inhibitor CID755673 and/or the PLK1 inhibitor BI-2536 or the pan kinase inhibitor staurosporine, and the washed substrate was probed with αpS2 to determine the level of S718-S721 phosphorylation (n = 3 ± SD). *0.01 < p < 0.05; **0.001 < p < 0.01; ***p < 0.001.

S718-S721 phosphorylation may directly inhibit the ALIXnPRD interaction with ALIXBro1. S718-S721 phosphorylation may directly inhibit the ALIXnPRD interaction with ALIXBro1. The S718 context fits with the phosphorylation consensus sequences for PKD and PLK1. Since both PKD and PLK1 are activated in mitotic cells (Golsteyn et al., 1995; Kienzle et al., 2013), we determined whether PKD and/or PLK1 are the major kinases in MEE that phosphorylate S718-S721. GST-ALIXnPRD was phosphorylated with MEE in the presence or absence of the PKD inhibitor CID755673 and/or the PLK1 inhibitor BI-2536 or the pan kinase inhibitor staurosporine, and the washed substrate was probed with αpS2. The pan kinase inhibitor dramatically inhibited the phosphorylation of GST-ALIXnPRD. In contrast, the PKD and PLK1 inhibitors reduced the phosphorylation to 83% and 65% of the control level, respectively, and their combined use reduced the phosphorylation to 59% of the control level (Figure 3F). We also phosphorylated GST-ALIXnPRD with purified Xenopus PLK1 (Plx1). WT but not a catalytically inactive (K82R) Plx1 generated immunoreactivity to αpS2 (Figure 3G). These results indicate that PKD and PLK1 are among the protein kinases in MEE that phosphorylate S718-S721 in ALIXnPRD.

Figure 3. S718-S721 Phosphorylation Inhibits the ALIXnPRD Interaction with ALIXBro1

(A) Sequence alignment of the ALIXnPRD with the Xp95 nPRD; the conserved S/T sites are indicated with asterisks.

(B and C) Left: IB of mock-treated or MEE phosphorylated GST-ALIXnPRD with α4381 (B) or αpS2 (C). Right: dIP of mock-treated or MEE phosphorylated myc-ALIXnPRD with α4381 (B) or αpS2 (C), followed by IB with αmyc.

(D) GST or GST-ALIXBro1 pull-down of the indicated forms of myc-ALIXnPRD after their treatment with IOE, MEE, or MEE plus CIP, followed by IB with the indicated antibodies.

(E) Pull-down of the indicated forms of myc-ALIXnPRD with GST or GST-ALIXBro1, followed by IB with the indicated antibodies.

(F) GST-ALIXnPRD was mock treated or phosphorylated at 22°C for 1 hr with MEE in the presence or absence of CID755673 (CID), BI-2536 (BI), both inhibitors (C + B), or staurosporine (ST). After the substrate was immobilized onto GSH beads and washed, bound proteins were probed with αpS2 to determine the level of S718-S721 phosphorylation (n = 3 ± SD). *0.01 < p < 0.05; **0.001 < p < 0.01; ***p < 0.001.

(G) Phosphorylation of GST-ALIXnPRD with HA-Plx1, followed by IB of the substrate with αpS2.

Developmental Cell 36, 331–343, February 8, 2016 ©2016 Elsevier Inc. 335
Figure 4. S718-S721 Phosphorylation Relieves the Intramolecular Interaction of ALIX

(A) Left: IB of dIE and dME with MPM-2. Middle: dIP with #4381, followed by IB with 3A9. Right: dIP with 3A9, followed by IB with 3A9 and αpS2.

(B) dIP of IE and ME from cells ectopically expressing WT or S2A GFP-ALIX with #4381, followed by IB with αGFP.

(C) dIP of the IE and ME samples in (B) with αGFP, followed by IB with αGFP and αpS2.

(D) Left: IB of IE and ME from cells ectopically expressing the indicated forms of GFP-ALIX with the indicated antibodies. Right: IP of the IE or ME samples with IgG or the indicated αALIX, followed by IB with the indicated antibodies.

(E) IP of ME from cells ectopically expressing the indicated forms of GFP-ALIX with IgG or the indicated αALIX, followed by IB of input proteins and immunocomplexes with αGFP.

(legend continued on next page)
antibodies differentially recognized ALIX from M cells (Figure 4A). When WT or S2A GFP-ALIX was expressed in HEK293 cells, both #4381 (Figure 4B) and #pS2 (Figure 4C) recognized WT GFP-ALIX but not S2A GFP-ALIX in ME, confirming that the antibody recognition was due to S718-S721 phosphorylation.

To determine the effect of S718-S721 phosphorylation on the intramolecular interaction of ALIX, we ectopically expressed WT, S2A, S2D, or S2A– GFP–ALIX in HEK293 cells and probed their conformation by IP with 2H12. 2H12 immunoprecipitated WT and S2A– GFP–ALIX from ME but not IE, S2A GFP–ALIX from neither IE nor ME, but S2D GFP–ALIX from both IE and ME. IB of the immunocomplexes with αCHMP4b and αTSG101 showed that, in all cases, the 2H12 immunoprecipitability correlated the GFP–ALIX interaction with CHMP4b and TSG101 (Figure 4D). These results indicate that S718–S721 phosphorylation is responsible for relieving the intramolecular interaction of cytosolic ALIX in M cells.

To determine whether phosphorylation of both the S718 and S721 residues is required for relieving the intramolecular interaction of ALIX, we expressed the S718A and S721A single mutant forms of GFP–ALIX, and probed their conformation in M cells by IP with 2H12. While 2H12 did not immunoprecipitate S2A GFP–ALIX, it immunoprecipitated the S718A and S721A single mutant forms of GFP–ALIX at ~40% and ~70% of the level of WT GFP–ALIX, respectively (Figure 4E). These results indicate that phosphorylation of both the S718 and S721 residues is required to relieve the intramolecular interaction of ALIX most efficiently.

The S718–S721 Phosphorylation Is Required for ALIX to Function in Cytokinetic Abscission

Both ALIX and TSG101 interact with cep55 at the midbody and promote ESCRT-III assembly through recruiting CHMP4 (Carlton and Martin-Serrano, 2007; Morita et al., 2007). Since the cep55 interaction site in ALIX localizes at 801–806 (Carlton et al., 2008), which is outside the region required for the intramolecular interaction of ALIX (Zhou et al., 2010), S718–S721 phosphorylation is unlikely to be required for ALIX localization at the midbody but may be required for ALIX to recruit CHMP4 to the midbody. To test these predictions, we first examined the effect of ALIX knockdown on the midbody localization of mCherry (mCh)-tagged CHMP4b or TSG101 in HeLa cells. Consistent with the current understanding, ALIX knockdown inhibited the midbody localization of mCh–CHMP4b or TSG101 in >70% of the cells examined but had little effect on the midbody localization of mCh–TSG101 (Figures S3A and S3B). We then compared the abilities of different forms of siRNA-insensitive GFP–ALIX (GFP–ALIX*) to rescue the defect of the midbody localization of mCh–CHMP4b. All forms of GFP–ALIX* examined were able to localize at the midbody. However, while WT and S2A– GFP–ALIX* restored the midbody localization of mCh–CHMP4b near control levels, S2A GFP–ALIX* did not (Figure 5A). These results demonstrate that S718–S721 phosphorylation is required for ALIX to recruit CHMP4 to the midbody.

The above results predicted that S718–S721 phosphorylation is required for ALIX to function in cytokinetic abscission. To test this, we compared the abilities of WT, S2A, and S2A– GFP–ALIX* to rescue the defect of ALIX knockdown cells in cytokinetic abscission. Consistent with previous observations (Carlton and Martin-Serrano, 2007; Morita et al., 2007), ALIX knockdown increased the percentages of midbody-stage and multinucleated cells from <2% to ~14% and ~17%, respectively (Figure S3C). While the expression of WT or S2A– GFP–ALIX* reduced the percentage of midbody-stage or multinucleated cells to near control levels, the expression of S2A GFP–ALIX* did not rescue the cytokinetic abscission defect despite its ability to localize to the midbody (Figure 5B). The expression of S2A GFP–ALIX* in control knockdown cells did not generate any phenotypes in cytokinetic abscission (data not shown). The intracellular bridge in S2A GFP–ALIX*–expressing cells appeared largely normal without the secondary ingestion. These results supported our prediction.

Previous studies indicated that ~50% of ALIX knockdown cells had anti-tubulin staining persisting through the Flemming body, whereas ~10% of control cells had such aberrant midbodies (Carlton et al., 2008). Under our experimental conditions, however, only 3% and 12% of control and ALIX knockdown cells had aberrant midbodies, respectively (Figure S3D). The discrepancy of our observation with that in previous studies could be due to different culture conditions, which may affect the rate of conversion of midbody-stage cells to multinucleated cells.
S718-S721 Phosphorylation Is Required for ALIX to Function in EIAV Budding

EIAV budding requires ALIX interaction with both CHMP4b and the GAG protein p9 (Strack et al., 2003; von Schwedler et al., 2003). Since relieving the intramolecular interaction of ALIX is required for both events (Zhou et al., 2010), EIAV budding is an ideal model system for defining the role of S718-S721 phosphorylation in retroviral budding. GST-p9 pulled down ALIX from ME but not IE (Figure 6A), indicating that the phosphorylation-induced open conformation of ALIX supports ALIX interaction with p9. IP with 1A3 showed that the prior incubation of ME with GST-p9 partially sustained the open conformation of ALIX after ME dephosphorylation (Figure 6B). GST-p9 also sustained the open conformation of GFP-ALIX when GFP-ALIX was first phosphorylated by MEE and then dephosphorylated by IOE (Figure S4). These results indicate that the p9 interaction with phosphorylated ALIX helps sustain the open conformation of ALIX after ALIX dephosphorylation.

To determine the role of S718-S721 phosphorylation in EIAV budding, we first co-expressed WT, S2A, or S2A/C0 GFP-ALIX with an infection-defective EIAV in HEK293 cells and examined their conformation by IP with 1A3. 1A3 immunoprecipitated a readily detectable level of WT or S2A/C0 GFP-ALIX but not S2A GFP-ALIX (Figure 6C), indicating that S718-S721 phosphorylation is required for EIAV-expressing cells to generate a significant pool of opened ALIX. We then determined the ability of different forms of GFP-ALIX* to rescue the defect of ALIX knockdown cells in EIAV budding. While WT and S2A/C0 GFP-ALIX rescued the defect, S2A GFP-ALIX did not (Figure 6D), indicating that S718-S721 phosphorylation is required for ALIX to function in EIAV budding.

To determine whether S718-S721 phosphorylation that supports EIAV budding occurs in I or M cells, we determined the effect of mitotic or S phase arrest on EIAV budding. Arresting cells in mitosis greatly inhibited EIAV budding (Figure 6E), whereas arresting cells in S phase had no effect (Figure 6F), indicating that S718-S721 phosphorylation that supports EIAV budding occurs in interphase cells.

S718-S721 Phosphorylation Does Not Affect the Function of ALIX in MVB Sorting of Activated EGFR

Our previous studies demonstrated that calcium-dependent ALG-2 interaction with ALIX relieves the intramolecular interaction of ALIX in EGF-stimulated cells and promotes MVB sorting of activated EGFR (Sun et al., 2015a). To determine whether S718-S721 phosphorylation may cooperate with the ALG-2-dependent mechanism to fully activate the MVB sorting function of ALIX, we first determined the effect of the S2A mutation on ALIX association with the membrane, which indicates ALIX interaction with membrane-bound CHMP4. ALIX with deletion of the ALG-2 binding site (ΔPxY), which inhibits CHMP4-dependent ALIX association with the membrane, was used as a control (Sun et al., 2015a). As previously observed, EGF stimulation increased the membrane-associated WT GFP-ALIX by ~3-fold,
and ΔPxDY GFP-ALIX barely associated with the membrane irrespective of EGF stimulation. However, S2A GFP-ALIX behaved similarly as WT GFP-ALIX (Figures 7A and S5A), indicating that S718-S721 phosphorylation does not affect CHMP4-dependent ALIX association with the membrane.

We then determined the ability of S2A GFP-ALIX to rescue the defect of ALIX knockdown cells in MVB sorting of activated EGFR by the Proteinase K protection assay used in our previous studies (Sun et al., 2015a, 2015b), indicating that S718-S721 phosphorylation does not affect CHMP4-dependent ALIX association with the membrane.

We then determined the ability of S2A GFP-ALIX to rescue the defect of ALIX knockdown cells in MVB sorting of activated EGFR by the Proteinase K protection assay used in our previous studies (Sun et al., 2015a, 2015b). Consistent with our previous results, ALIX knockdown reduced the percentage of protected EGFR from 60% to 15%. Importantly, both S2A and S2A-GFP-ALIX* rescued the inhibitory effect of ALIX knockdown as efficiently as WT GFP-ALIX* (Figure 7B, right). These results indicate that S718-S721 phosphorylation does not affect MVB sorting of activated EGFR.

Furthermore, we determined the ability of S2A GFP-ALIX to rescue the defect of ALIX knockdown cells in the timely silencing of activated EGFR. As previously observed, ALIX knockdown prevented the quick and dramatic inactivation of ERK1/2 after 10 min and sustained the ERK1/2 activation at 80% and 50% of the peak level at 30 min and 60 min, respectively. While the effect was rescued by the expression of WT GFP-ALIX* (Figure 7C), it was not rescued by the expression of ΔPxDY GFP-ALIX* (Figure S5B). However, S2A GFP-ALIX* rescued the sustaining effect of ALIX knockdown on ERK1/2 activation (Figure 7D), indicating that S718-721 phosphorylation does not affect the timely silencing of activated EGFR.

Finally, we determined the ability of S2A GFP-ALIX to reverse the retardation of ALIX knockdown cells in EGFR degradation

Figure 6. S718-S721 Phosphorylation Is Required for ALIX to Function in EIAV Budding
(A) Incubation of GST or GST-p9 with IE or ME, followed by IB of input and bound proteins with the indicated antibodies.
(B) ME was first incubated with GST or GST-p9 at 4°C for 2 hr, and then treated with CIP. IE, ME, and the two samples of differently treated ME were immunoprecipitated with IgG or 1A3, followed by IB with the indicated antibodies.
(C) Left: experimental flowchart. Middle: IP of cell lysates with the indicated antibodies, followed by IB with αGFP. Right: IB of cell lysates with the indicated antibodies.
(D–F) HEK293 cells were processed as diagrammed. IB of VLPs and cell lysates with the indicated antibodies. Relative levels of the VLP production were determined (n = 3 ± SD). ns, not significant. ***p < 0.001. See also Figure S4.
under EGF continuous stimulation conditions. Consistent with our previous results (Sun et al., 2015b), ALIX knockdown retarded the 50% EGFR degradation from 1 hr to 2 hr, and the effect was rescued by the expression of WT GFP-ALIX* (Figure 7E) but not by ΔPxY GFP-ALIX* (Figure S5C). Importantly, the expression of S2A GFP-ALIX* rescued the retardation effect of ALIX knockdown on EGFR degradation (Figure 7F), indicating that S718-S721 phosphorylation does not affect the timely degradation of activated EGFR.

Collectively, these results indicate that S718-S721 phosphorylation does not affect the function of ALIX in MVB sorting of activated EGFR.

Figure 7. S718-S721 Phosphorylation Does Not Affect the Function of ALIX in MVB Sorting of Activated EGFR

(A) HEK293 cells ectopically expressing the indicated forms of GFP-ALIX were mock treated or stimulated with EGF for 1 hr, and the average percentage of each GFP-ALIX in the M fraction was determined by membrane flotation centrifugation of the PNS (n = 3 ± SD).

(B–F) Left: HEK293 cells were processed as diagrammed, and cell lysates were immunoblotted with the indicated antibodies. Right: cells were stimulated with EGF for 30 min and assayed for MVB sorting of activated EGFR by the Proteinase K protection assay (n = 2 ± data range). (C and D) Cells were stimulated with EGF for time indicated in minutes, and cell lysates were immunoblotted with the indicated antibodies. The relative levels of p-ERK were determined and normalized against the level of si-NC cells at 60 min (n = 3 ± SD). (E and F) Cells were stimulated with EGF for the time indicated in hours, and cell lysates were immunoblotted with the indicated antibodies. The percentages of remaining EGFR at different time points were determined. ns, not significant. **p < 0.01; ***p < 0.001. See also Figure S5.
DISCUSSION

Mitosis is a special time in the cell cycle when a great portion of protein kinases are simultaneously activated (Daub et al., 2008) and thousands of proteins are robustly phosphorylated (Dephouere et al., 2008; Olsen et al., 2010). Although none of the known ESCRT-mediated processes occurs in mitosis, mitotic cells provide a unique platform to determine the role of protein phosphorylation in the regulation of ALIX conformation. Using this platform, we discovered that S718-S721 phosphorylation transforms ALIX from closed to open conformation and that multiple protein kinases, including PLK1 and likely also PKD, catalyze S718-S721 phosphorylation. Following this lead, we demonstrated that S718-S721 phosphorylation is required for ALIX to function in cytokinetic abscission and EIAV budding, but does not affect the function of ALIX in MVB sorting of activated EGFR. These findings identify the phosphorylation of the intramolecular interaction site within the nPRD as one of the major mechanisms that activates the ESCRT function of ALIX.

Since cells undergoing cytokinetic abscission have already biochemically entered interphase (Gershony et al., 2014), there seems to be a time lag between the activating phosphorylation of ALIX and the function of ALIX in cytokinetic abscission. However, accumulating evidence indicates that multiple activated mitotic kinases and phosphoproteins remain at the midbody much longer than the duration of mitosis. For example, the midbody was specifically recognized by the mitotic phosphoprotein monoclonal antibody MPM-2 (Davis et al., 1983; Vandre et al., 1986), by antibodies that recognize activated MEK, ERK, and RSK (Willard and Crouch, 2001), by antibodies that recognize aurora B kinase (Crosio et al., 2002), and by antibodies that recognize citron kinase and its activator RhoA (Madaule et al., 1998). #4381 also stained the midbody area after the robust and widespread mitotic staining disappeared (S.S. and J.K., unpublished data). Therefore, it is possible that some of the mitotic kinases that catalyze S718-S721 phosphorylation remain active at the midbody. Once transformed into open conformation by the activating phosphorylation, the midbody-localized ALIX recruits CHMP4 and interacts with TSG101. These acquired intermolecular interactions of ALIX in turn inhibit reformation of the intramolecular interaction of ALIX even after ALIX dephosphorylation. We have yet to identify the ALIX-activating kinases at the midbody. Although our data indicate that PLK1 is one of the kinases in mitotic cells that catalyzes the activating phosphorylation of ALIX, PLK1 negatively regulates cep55 recruitment to the midbody (Bastos and Barr, 2010), disfavoring this possibility.

EIAV budding neither occurs in M cells nor requires cells to first pass through mitosis. Thus, it is somewhat surprising that S718-S721 phosphorylation is required for ALIX to function in EIAV budding. For this to occur, one potential scenario is that EIAV infection induces the activation of a protein kinase that catalyzes the activating phosphorylation of ALIX. However, when we probed ALIX phosphorylation in EIAV-expressing cells with the phosphospecific antibodies, we did not detect positive signals (S.S. and J.K., unpublished data), suggesting that either EIAV expression did not induce the activating phosphorylation of ALIX, or the induction level was too low to be detected. In any event, it seems improbable that EIAV-expressing cells contain a level of the activating phosphorylation of ALIX that can independently explain the ALIX activation required for EIAV budding.

Another potential scenario is that EIAV-expressing cells contain a low background or induced level of S718-S721 phosphorylation, which cooperates with a viral factor to generate a significant pool of activated ALIX. Since EIAV-expressing cells have high levels of p8 expression, and p8 interaction with phosphorylated ALIX maintains the open conformation of ALIX after ALIX dephosphorylation, it is possible that the combined effects of low levels of ALIX phosphorylation and high levels of p8 expression generate a significant pool of activated ALIX that supports EIAV budding.

EGF-induced downregulation of EGFR is a commonly used model system to study ESCRT-mediated MVB sorting and lysosome targeting of ubiquitinated membrane receptors in vertebrate cells. Our previous studies demonstrated that calcium-dependent ALG-2 interaction with ALIX generates opened ALIX that supports MVB sorting, silencing, and degradation of activated EGFR (Sun et al., 2015a). Since EGF-induced signal transduction activates multiple protein kinases, it is possible that the activating phosphorylation of ALIX cooperates with the ALG-2-dependent mechanism to maximally activate the MVB sorting function of ALIX in EGF-stimulated cells. Results in this study disprove this hypothesis.

MVB sorting of membrane receptors, retroviral budding, and cytokinetic abscission are three classical ESCRT-mediated processes that critically involve ALIX function (Bissig and Gruenberg, 2014; McCullough et al., 2013). Although ALG-2 expression is required for ALIX to function in MVB sorting of activated EGFR, it is not important for ALIX to function in EIAV budding or cytokinetic abscission (Sun et al., 2015a). These results are in sharp contrast to the roles of S718-S721 phosphorylation in the three classical ESCRT-mediated processes. Thus, it seems that the two identified mechanisms of ALIX activation are independently involved in distinct ESCRT-mediated membrane remodeling processes. Since only ALG-2 interaction with ALIX requires calcium, it is possible that ALIX activation by ALG-2 is primarily involved in calcium-dependent ESCRT-mediated processes, whereas the activating phosphorylation of ALIX is primarily involved in calcium-independent ESCRT-mediated processes.

EXPERIMENTAL PROCEDURES

Cell Culture, Transfection, and Cell Synchronization

Culture, transfection, and EGF stimulation of HEK293 or HeLa cells were performed as previously described (Sun et al., 2015a). HEK293 cells were synchronized in mitosis through a single thymidine (TdR) (Sigma) block, followed by nocodazole (NO) (Sigma) block (Wu et al., 2014). HEK293 cells were arrested in S phase by a single TdR block. The PLK1 inhibitor BI-2536 (AxonMedchem), PKD inhibitor CID755673 (BioVision), and pan kinase inhibitor staurosporine (LC Laboratories) were dissolved in DMSO and added to culture medium to reach a final concentration of 100 nM, 3 μM, and 50 nM, respectively. The siRNAs, mammalian expression vectors, and PCR primers used in this study are summarized in Tables S1–S3, respectively.

Protein Extraction, Immunoblotting, Immunoprecipitation, and Immunostaining

Preparation of crude cell lysates for IB were performed as we previously described (Sun et al., 2015a). Relative signals on immunoblots were quantified by analyzing scanned images with NIH ImageJ version 1.41o. To prepare
cytosolic proteins for IP or GST pull-down, pelleted cells were sonicated with 10 volumes of extraction buffer (EB), consisting of 80 mM 1-glycerophosphate, 20 mM EGTA, 15 mM MgCl₂, 150 mM NaCl, 1 mM DTT, and proteasine inhibitor cocktail (Sigma) (pH 7.4). For extraction of M cells and occasionally also I cells, EB was freshly supplemented with 1 μM microcystin (Sigma) and 1 mM ATP. Cell lysates were cleared by centrifugation at 16,000 g for 10 min at 4°C. CIP (New England Biolabs) was added to ME/MEE at a final concentration of 1 unit/μg substrate proteins. Samples were immunoprecipitated with the indicated antibodies, and immunocomplexes were washed five times with EB. To prepare cell lysates for dIP, pelleted cells were re-suspended with 10 volumes of denaturing buffer consisting of 50 mM Tris-HCl (pH 7.5), 1% SDS, and 5 mM DTT, and sonicated. After the samples were boiled for 5 min and cleared by centrifugation at 16,000 g for 5 min, they were diluted 10-fold with an SDS-neutralizing IP buffer consisting of 50 mM Tris-HCl (pH 7.5), 250 mM NaCl, 5 mM EDTA, 0.5% NP-40, 1 mM DTT (Tansey, 2007), and proteasine inhibitor cocktail (Sigma). Samples were immunoprecipitated with the indicated antibodies, and immunocomplexes were washed five times with the IP buffer. Production of αpS2 and immunostaining are described in Supplemental Experimental Procedures.

In Vitro Phosphorylation of ALIX Fragments with Xenopus Extracts and GST Pull-Down
MEE and IOE were prepared as previously described (Wu et al., 2010). In vitro transcription and linked translation was performed by using the TNT Quick Coupled Transcription/Translation System (Promega). GST and GST-tagged proteins were produced and purified using our standard procedures (Che et al., 1997). The phosphorylation reaction included one volume of substrate proteins and three volumes of IOE or MEE. The reaction was performed at 22°C for 2 hr unless otherwise indicated, and terminated by adding SDS-PAGE sample buffer. Bl-2538, CID755673, and staurosporine were added to MEE at 4°C 15 min prior to the phosphorylation reaction to reach a final concentration of 2 μM, 5 μM, and 5 μM, respectively. GST-tagged proteins were absorbed onto glutathione (GSH) beads (GenScript) at 4°C for 2 hr. After GSH beads were washed five times with EB, proteins remaining on the beads were eluted with SDS-PAGE sample buffer for IB.

EIAV VLP Release Assay, Membrane Flotation Centrifugation, and Proteinase K Protection Assay
Assays of virus-like particle (VLP) release from HEK293 cells transfected with the pEV53B EIAVag vector, fractionation of the PNS of crude lysates of HEK293 cells by membrane flotation centrifugation, and measurement of MVBS sorting of activated EGFPR by the Proteinase K protection assay were performed exactly as we previously described (Sun et al., 2015b).

Statistical Analysis
Statistical analyses were performed using Student’s t test.

SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Experimental Procedures, five figures, and four tables and can be found with this article online at http://dx.doi.org/10.1016/j.devcel.2016.01.001.

AUTHOR CONTRIBUTIONS
S.S. designed and performed most of the experiments and participated in writing the manuscript; L.S. generated αpS2; X.Z. performed some of the pilot experiments; C.W. and R.W. contributed critical reagents and participated in manuscript preparation; S.L. participated in data analyses and writing the manuscript; and J.K. directed the project and wrote the manuscript.

ACKNOWLEDGMENTS
We thank Drs. Masatoshi Maki (Nagoya, Japan), Wesley I. Sundquist (Salt Lake City, UT), William G. Dunphy (Pasadena, CA), and Robert Mealey (Pullman, WA) for generously sharing their reagents. This work was supported by NHARP grant 01878, an IRG grant awarded to J.K., and grants from NIH (P50 CA140388 and CA174798) and Cancer Prevention and Research Institute of Texas (RP150179 and RP150282) awarded to S.-H.L. DNA sequencing was performed by the DNA Analysis Facility of The University of Texas Anderson Cancer Center, which is supported by NIH/NCI grant P30CA016672.

Received: January 20, 2015
Revised: November 8, 2015
Accepted: January 4, 2016
Published: February 8, 2016

REFERENCES

342 Developmental Cell 36, 331–343, February 8, 2016 ©2016 Elsevier Inc.

