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Abstract

The classical Mittag–Le�er (M–L) functions have already proved their e�ciency as solutions of fractional-order dif-
ferential and integral equations and thus have become important elements of the fractional calculus’ theory and appli-
cations. In this paper we introduce analogues of these functions, depending on two sets of multiple (m-tuple, m¿2 is
an integer) indices. The hint for this comes from a paper by Dzrbashjan (Izv. AN Arm. SSR 13 (3) (1960) 21–63)
related to the case m = 2. We study the basic properties and the relations of the multiindex M–L functions with the
operators of the generalized fractional calculus. Corresponding generalized operators of integration and di�erention of
the so-called Gelfond–Leontiev-type, as well as Borel–Laplace-type integral transforms, are also introduced and studied.
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1. Introduction

Till recently, the Mittag–Le�er (M–L) functions have been almost totally ignored in the com-
mon handbooks on special functions and existing tables of Laplace transforms (even in the 1991
Mathematics Subject Classi�cation they could not be found). However, a description of their basic
properties appeared yet in the third volume of the Bateman Project [9], in a chapter devoted to
“miscellaneous functions”. In the pioneering works in the �eld of fractional integral and di�erential
equations, in 1931, Hille and Tamarkin provided a solution of the Abel integral equation of 2nd kind
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in terms of M–L functions. Special attention and detailed studies of functions of M–L type had found
place in Dzrbashian’s works [8], for solving problems of theory of functions, integral transforms, etc.
Among the “fractional analysts” these functions nowadays are commonly recognized when looking
for the solutions of linear fractional di�erential equations with constant coe�cients (see for exam-
ple, [24, Section 42]), various kinds of integral equations and more general di�erential equations of
fractional order and practical signi�cance [12,18] or equations involving both Erd�elyi–Kober frac-
tional integrals and derivatives [16]. Recently, the attention towards the M–L-type functions and the
recognition of their importance have increased from both analytical and numerical points of view,
as well as for describing fractional-order control systems, fractional viscoelastic models, etc. Their
de�nition and properties can now be found in many recent books and surveys on fractional calculus,
integral and di�erential equations, mechanics, etc., [12,22], [14, Appendix], etc.
The Mittag–Le�er functions E� (Mittag–Le�er, 1902–1905) and E�;� [1], de�ned by the power

series

E�(z) =
∞∑
k=0

zk

�(�k + 1)
; E�;�(z) =

∞∑
k=0

zk

�(�k + �)
; �¿ 0; �¿ 0 (1)

are natural extensions of the exponential function and trigonometric functions, like the cos-function

y1(z) = E1(z) = exp(z) =
∞∑
k=0

zk

�(k + 1)
; y2(z) = E2(−z2) = cos z =

∞∑
k=0

(−1)kz2k
�(2k + 1)

;

satisfying the (integer order) di�erential equations

D1y1(�z) = �y1(�z); D2y2(�z) =−�2y2(�z):

However, in the case of functions (1) with a fractional index �, one has fractional order di�erential
equations, like for example

D�y(z) = �y(z) with y(z) = z�−1E�;�(�z�); �¿ 0: (2)

The Mittag–Le�er functions (1) are examples of entire functions of given order � = 1=� and type
� = 1, in a sense, the simplest such functions.
Most of the special functions of mathematical physics are special cases of the generalized hyper-

geometric functions pFq, and thus, of the more general Meijer’s G-functions [9, Vol. 1, Chapter 5].
However, the Mittag–Le�er functions serve as an example of special functions that could not be
included in the scheme of the Meijer’s G-functions, being a more general Fox’s H -function. Namely
[27, p. 42],

E�;�(z) = H 1;2
1;2

[
−z
∣∣∣∣ (0; 1)
(0; 1); (1− �; �)

]
=

1
2�i

∫
L

�(s)�(1− s)
�(� − �s)

(−z)−s ds (3)

and only for rational �= p=q, (3) reduces to a G-function.
Functions (1) have been studied in details by Dzrbashjan [6,8]: asymptotic formulas in di�erent

parts of complex plane, kernel-functions of inverse Borel-type integral transforms, various relations
and representations. He used the denotation E�(z; �) for E1=�;�(z), in terms of (1).
The M–L functions have been also used as generating functions of a class of the so-called Gelfond–

Leontiev (G–L) operators of generalized di�erentiation and integration.
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De�nition 1.1 (Gelfond and Leontiev [10]). Let the function

’(�) =
∞∑
k=0

’k�k (4)

be an entire function with a growth (�¿ 0; � 6= 0) such that limk→∞ k1=� k
√|’k |= (�e�)1=�.

For a function f(z) =
∑∞

k=0 akzk , analytic in a disk �R = {|z|¡R}, the correspondence

f(z) =
∞∑
k=0

akzk
D’7→ D’f(z) =

∞∑
k=1

ak
’k−1
’k

zk−1 (5)

is said to be a Gelfond–Leontiev (G–L) operator of generalized di�erentiation with respect to the
function ’(�) and the corresponding G–L operator of integration is

L’f(z) =
∞∑
k=0

ak
’k+1

’k
zk+1: (6)

From the theory of entire functions, it is known that the conditions required for ’(�) always hold
for lim supk→∞. However, here it is supposed that there exists limk→∞ k

√|’k−1=’k |=1 and therefore,
by the Cauchy–Hadamard formula, series (5), (6) for f(z); D’f(z); L’f(z) have one and the same
radius of convergence R¿ 0.
It is evident that if ’(�) = exp �, i.e., ’k =1=�(k +1); k =0; 1; : : :, operators (5), (6) become the

usual di�erentiation and integration: Df(z) = (d=dz)f(z) = f′(z); Lf(z) = R1f(z) =
∫ z
0 f(�) d�.

Let ’(�) = E1=�;�(�) be M–L function (1) with �= 1=�¿ 0; � = �¿ 0. Then ’k = 1=�(� + k=�),
and operators (5), (6) turn into the so-called Dzrbashjan–Gelfond–Leontiev (D–G–L) operators of
di�erentiation and integration:

D�;�f(z) =
∞∑
k=1

ak
�(� + k=�)

�(� + (k − 1)=�) z
k−1; L�;�f(z) =

∞∑
k=0

ak
�(� + k=�)

�(� + (k + 1)=�)
zk+1 (7)

studied by Dimovski and Kiryakova [4,5], Kiryakova [14, Chapter 2]. Brie
y, the following results
have been obtained there.
Denote by H(
) the space of analytic functions in a complex domain 
, starlike with respect to

the origin z = 0 and consider the spaces

H�(
) = {f(z) = zpf̃(z);p¿�; f̃(z) ∈ H(
)}; H0(
):=H(
): (8)

It happens that D–G–L operators (7) can be analytically continued in the spacesH(
)⊂H−��(
),
with 
⊃�R by means of the Erd�elyi–Kober (E–K) fractional integrals and derivatives (see [14,25]):

I 
;�� y(z) = [z−(
+�)R�z
 y(z1=�)]|z→z�

=
z−�(
+�)

�(�)

∫ z

0
(z� − t�)�−1t�
 y(t) d(t�) =

1
�(�)

∫ 1

0
(1− �)�−1�
y(z�1=�) d� (9)

and

D
;�
� y(z) = [z−
 D� z
+�y(z1=�)]|z→z� ; (10)

where �¿ 0; 
 and �¿ 0 are real parameters and D
;�
� I 
;�� = Id. Namely,

L�;�f(z) = z1 I �−1;1=�� f(z) =
z

�(1=�)

∫ 1

0
(1− �)1=�−1 ��−1f(z�1=�) d� (11)
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and

D�;�f(z) = z−1D�−1−1=�;1=�
� f(z)− f(0)�(�)

�(� − 1=�) z
−1; since D�−1;1=�

� z−1 = z−1D�−1−1=�;1=�
� : (12)

Further, transmutation operators relating R–L fractional integrals R1=� and D–G–L generalized inte-
grations L�;1; L�;� and represented by E–K operators, have been obtained in above-mentioned papers.
They allow �nding a convolution, and even a family of convolutions of D–G–L integration operator
L�;�, see [4,14, Chapter 2]. By means of these convolutions we give explicit representations of the
commutant of L�;�, that is, of all the linear operators commuting with it in H(
). We have found
also a Laplace-type integral transform, the so-called Borel–Dzrbashjan transform, corresponding to
D–G–L operators and have studied its properties and possible applications.
In [14, Chapter 5] we have introduced multiple analogues of D–G–L operators (7) and studied

their analytical continuations in starlike domains by means of generalized fractional di�erintegrals.
These generalized fractional integrals and derivatives happen to be generated by functions ’(�)
that can be considered as multiindex analogues of M–L functions (1). In this paper we call them
“multiple multiindex Mittag–Le�er functions” and study some of their basic properties, relations to
fractional calculus operators and to corresponding Laplace-type integral transforms.
In a sense, the multiple M–L functions studied here, are extensions of the already-known hyper-

Bessel functions of Delerue (Example 2.7) that generate the hyper-Bessel di�erential and integral
operators [2,14, Chapter 3].

2. De�nitions and basic properties of the multiple M–L functions

De�nition 2.1. Let m¿ 1 be an integer, �1; : : : ; �m ¿ 0 and �1; : : : ; �m be arbitrary real numbers. By
means of “multiindices” (�i); (�i) we introduce the so-called multiindex (m-tuple, multiple) Mittag–
Le�er functions

E(1=�i);(�i) (z) =
∞∑
k=0

’kzk =
∞∑
k=0

zk

�(�1 + k=�1) : : : �(�m + k=�m)
: (13)

Theorem 2.2. For arbitrary sets of indices �i ¿ 0;−∞¡�i ¡ +∞; i = 1; : : : ; m; the multiindex
Mittag–Le�er function (13) is an entire function of order

�=

(
m∑
i=1

1
�i

)−1
;

i.e.,

1
�
=
1
�1
+ · · ·+ 1

�m
(14)

and type

� =
(
�1
�

)�=�1
· · ·

(
�m

�

)�=�m

: (15)
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Moreover; for every positive j; the asymptotic estimate
|E(1=�i);(�i)(z)|¡ exp((� + j)|z|�); |z|¿r0¿ 0 (16)

holds with �; � as in (14); (15) for |z|¿r0(j); r0(j) su�ciently large.

Proof. The proof follows some ideas from Dzrbashjan [7] and Goren
o, Kilbas and Rogozin [11].
The radius of convergence of series (13), by the Cauchy–Hadamard formula, is R¿ 0, where

1
R
= lim sup

k→∞
k

√
|’k |= lim sup

k→∞

[
m∏
i=1

�
(
�i +

k
�i

)]−1=k
:

By the Stirling’s asymptotic formula for the �-function �(r) ∼ √
2� rr−1=2 e−r for large r ¿ 0

(see, e.g., [9, Section 1:18]), we have

�
(
�i +

k
�i

)
∼

√
2�
(
�i +

k
�i

)�i+k=�i−1=2
e−�i e−k=�i for k → ∞

and

1
R
= lim sup

k→∞

[
m∏
i=1

�
(
�i +

k
�i

)]−1=k
= lim

k→∞

m∏
i=1

[(
k
�i

)−1=�i

e1=�i

]

= lim
k→∞

k−(1=�1+···+1=�m) �1=�11 : : : �1=�m
m e1=�1+···+1=�m ; (17)

thus 1=R= 0, or R=∞.
According to a known formula for the order of an entire function

∑∞
k=0 ’k zk ,

�= lim sup
k→∞

k ln k
ln 1=|’k | = lim supk→∞

k ln k
ln[
∏m

i=1 � (�i + k=�i) ]
:

The Stirling’s formula in the form

ln�(r) =
(
r − 1

2

)
ln r − r +

1
2
ln (2�) + O

(
1
r

)
; r → ∞

now gives

ln

[
m∏
i=1

�
(
�i +

k
�i

)]
=

m∑
i=1

[(
�i +

k
�i

− 1
2

)
ln
(
�i +

k
�i

)
−
(
�i +

k
�i

)
+
1
2
ln(2�) + O

(
1
k

)]

=
m∑
i=1

(
�i +

k
�i

− 1
2

)
ln
(
�i +

k
�i

)

−
m∑
i=1

�i − k
m∑
i=1

1
�i
+

m
2
ln(2�) + O

(
1
k

)
;

then �nally,

ln[
∏m

i=1 � (�i + k=�i) ]
k ln k

=
m∑
i=1

1
�i

{
1 + O

(
1
ln k

)}

and 1=�=
∑m

i=1 1=�i, as in (14).
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Further, the type � of the function
∑∞

k=0 ’k zk of order � is determined from the equality

(�e�)1=� = lim sup
k→∞

[k1=� k

√
|’k |]:

From (17),

lim sup
k→∞

[k1=� k

√
|’k |] = lim sup

k→∞

[
k1=�

m∏
i=1

�
(
�i +

k
�i

)−1=k]

= lim
k→∞

[k1=� k−(1=�1+···+1=�m) �1=�11 : : : �1=�m
m e1=�1+···+1=�m] = �1=�11 : : : �1=�m

m e1=�;

where 1=�= 1=�1 + · · ·+ 1=�m, and

�1=� = �−1=�(�1=�11 : : : �1=�m
m ) = �−(1=�1+···+1=�m)(�1=�11 : : : �1=�m

m )

from where (15) holds. The asymptotic estimate (16) follows from the de�nitions of order and type
of an entire functions.

Next, let us emphasize the place that the multiple M–L functions occupy among the known special
functions, especially in the scheme of generalized hypergeometric functions known as
Meijer’s G-functions (see [9, Vol. 1, 14, Appendix]) and Fox’s H -functions (see, e.g., [26,27,23,14,
Appendix]).

De�nition 2.3. By a Fox’s H -function we mean a generalized hypergeometric function, de�ned by
means of the Mellin–Barnes-type contour integral

Hm;n
p;q

[
�
∣∣∣∣(ak ; Ak)

p
1

(bk ; Bk)
q
1

]
=

1
2�i

∫
L′

∏m
k=1 �(bk − Bks)

∏n
j=1 �(1− aj + sAj)∏q

k=m+1 �(1− bk + sBk)
∏p

j=n+1 �(aj − sAj)
�s ds; (18)

where L′ is a suitable contour in C, the orders (m; n; p; q) are integers 06m6q; 06n6p and
the parameters aj ∈ R; Aj ¿ 0; j = 1; : : : ; p; bk ∈ R; Bk ¿ 0; k = 1; : : : ; q are such that Aj(bk + l) 6=
Bk(aj − l′ − 1); l; l′ = 0; 1; 2; : : : . For various type of contours and conditions for existence and
analyticity of function (18) in disks ⊂C whose radii are � =

∏p
j=1 A

−Aj
j
∏q

k=1 B
Bk
k ¿ 0, one can see

[23,26,14, Appendix], etc.
For A1 = · · ·=Ap=1; B1 = · · ·=Bq=1 (18) turns into the more popular Meijer’s G-function (see

[9, Vol. 1, Chapter 5,23,14]). The G- and H -functions encompass almost all the elementary and
special functions and this makes the knowledge on them very useful. Observe that the generalized
hypergeometric functions pFq are special cases of the G-function:

pFq(a1; : : : ; ap; b1; : : : ; bq; �) =

∏q
j=1 �(bj)∏p
j=1 �(aj)

G1;p
p;q+1

[
−�

∣∣∣∣∣ 1− a1; : : : ; 1− ap

0; 1− b1; : : : ; 1− bq

]
; (19)

while the M–L functions (1) with irrational parameters �¿ 0 and the Wright’s generalized hyper-
geometric functions p	q with irrational Aj; Bk ¿ 0, give examples of H -functions, not reducible to
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G-functions: see representation (3) and

p	q

[
(a1; A1); : : : ; (ap; Ap)
(b1; B1); : : : ; (bq; Bq)

∣∣∣∣∣ �
]
=

∞∑
k=0

�(a1 + kA1) : : : �(ap + kAp)
�(b1 + kB1) : : : �(bq + kBq)

�k

k!

=H 1;p
p;q+1

[
−�

∣∣∣∣∣ (1− a1; A1); : : : ; (1− ap; Ap)
(0; 1); (1− b1; B1); : : : ; (1− bq; Bq)

]
: (20)

However, for A1 = · · ·= Ap = B1 = · · ·= Bq = 1, cf. (19):

p	q

[
(a1; 1); : : : ; (ap; 1)
(b1; 1); : : : ; (bq; 1)

∣∣∣∣∣ �
]
=

[∏q
i=1 �(bi)∏p
j=1 �(aj)

]
pFq(a1; : : : ; ap; b1; : : : ; bq; �): (21)

Lemma 2.4. The multiple M–L functions (13) are Wright’s generalized hypergeometric functions
as well as Fox’s H -functions of the form

E(1=�i);(�i)(z) =1 	m

[
(1; 1)
(�i; 1�i

)m1

∣∣∣∣∣ z
]
= H 1;1

1;m+1

[
−z

∣∣∣∣∣ (0; 1)
(0; 1); (1− �i; 1�i

)m1

]
: (22)

They have the following Mellin–Barnes-type contour integral representation; extending integral
formula (3):

E(1=�i);(�i)(z) =
1
2�i

∫
L′

�(−s′)�(1 + s′)∏m
i=1 �(�i + s′=�i)

(−z)s
′
ds′

=
1
2�i

∫
L

�(s)�(1− s)∏m
i=1 �(�i − s=�i)

(−z)−s ds; z 6= 0; (23)

where L is any contour in C running from −i∞ to +i∞ in a way that the poles s=0;−1;−2; : : :
of �(s) lie to the left of L and the poles s=1; 2; : : : of �(1− s) to the right of it (cf. [26, p. 11]).

Proof. Comparing de�nitions (13) and (20), we obtain (22). On the other hand, the second equality
in (22) and de�nition (18) of the H -functions yield the integral representation (23), for which the
details on the contour L can be seen, e.g., in [26, p. 11].

Representation (22) of the multiple M–L functions as Fox’s H -functions allow to describe their
asymptotic behaviour as z → 0; z → ∞. In the case of M–L function (1) (m = 1), Dzrbashjan
[6,8] established di�erent asymptotic formulas for |z| → ∞, valid in di�erent parts of the complex
plain and under di�erent conditions on �; �. For example, if �¿ 1

2 and inside angle domains, (1) is≈ �z�(1−�) exp(z�). An asymptotic estimate in the case m¿ 1 is given by (16) and in more detailed
situations, the asymptotics of the multiindex M–L functions could be found from their interpretation
as 1	m-functions with 1¡m (the so-called “Bessel”-type generalized hypergeometric functions, see
[15]).
Let us mention some interesting special cases of the multiple (multiindex) Mittag–Le�er func-

tions.
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Example 2.5. A special function, generalizing classical M–L functions (1), (3) with respect to the
number of indices, was considered �rst by Dzrbashjan [7] in the case m=2, see also [14, Appendix].
He denoted it by ��1 ;�2 (�; �1; �2):

E(1=�1 ;1=�2);(�1 ;�2)(z) = ��1 ;�2 (z; �1; �2) =
∞∑
k=0

zk

�(�1 + k=�1)�(�2 + k=�2)
(24)

and showed that it is an entire function of order �= �1�2=(�1 + �2) and type �=(�1=�)�=�1 (�2=�)�=�2

with the following particular cases:

E1=�;�(z) = E(1=�;0); (�;1)(z) = ��;∞(z; �; 1);
1

1− z
= E(0;0); (1;1)(z) = �∞;∞(z; 1; 1);

J�(z) =
(
z
2

)�
E(1;1); (�+1;1)

(
−z2

4

)
=
(
z
2

)�
�1;1

(
−z2

4
; 1; �+ 1

)
:

In [7] Dzrbashjan found also the Borel transform (in [5,14] we called it “Borel–Dzrbashjan
transform”) of functions (24), some integral relations between them (representing fractional inte-
grals with respect to separate indices) and Mellin transforms on a set of axes. The latter results
allowed him to develop a theory of integral transforms in the class L2, involving kernels related to
functions (24) and further, to approximate entire functions in L2 for an arbitrary �nite system of
axes starting from the origin.
We like to add to the particular cases of (24): the so-called Bessel–Maitland or Wright’s functions

(misnamed after the second name Maitland of E.M. Wright):

J r
� (z) = 0	1

[ −
(�+ 1; r)

∣∣∣∣− z
]
= H 1;0

0;2

[
z
∣∣∣∣ −
(0; 1); (−�; r)

]

=
∞∑
k=0

(−z)k

�(�+ rk + 1) k!
= E(r;1); (�+1;1)(z) (25)

(used by Kalla and Galue (see [15, (4:2)]) as kernel functions of the so-called Wright–Erd�elyi–Kober
operators of fractional integration and by other authors as kernels of generalized Hankel transforms),
as well as the Struve and Lommel functions (see, e.g., [9, Vol.2, 14, (C.8)]):

s�;�(z) =
1
4
z�+1�

(
� − �+ 1

2

)
�
(
� + �+ 1

2

)
G1;1
1;3

[
z2

4

∣∣∣∣ 0
0; (�− � − 1)=2; (−�− � − 1)=2

]

=
1
4
z�+1E(1;1); ((3−�+�)=2; (3+�+�)=2)

(
−z2

4

)
;

H�(z) = [�2�−1(1=2)�]−1 s�; �(z) =
1
4
z�+1E(1;1); (3=2; (3+2�)=2)

(
−z2

4

)
:

Example 2.6. For arbitrary m¿ 2: let ∀�i=∞, i.e., 1=�i=0 and ∀�i=1; i=1; : : : ; m. From de�nition
(13) it is easily seen that

E(0;0; :::;0); (1;1; :::;1)(z) =
∞∑
k=0

zk =
1

1− z
:
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Example 2.7. Consider the case m¿2 with ∀�i = 1; i = 1; : : : ; m. Then

E(1;1; :::;1); (�i+1)(z) = 1	m

[
(1; 1)
(�i; 1)m1

∣∣∣∣ z
]

=

[
m∏
i=1

�(�i)

]−1
1Fm(1; �1; �2; : : : ; �m; z)

reduces to a 1Fm- and a Meijer’s G1;1
1;m+1-function.

Denote �i = 
i + 1; i = 1; : : : ; m and let additionally one of �i to be 1, for example: �m = 1, i.e.,

m = 0. Then the multiple (multiindex) M–L function becomes a hyper-Bessel function (in a sense
of Delerue, 1953; see [14, Chapter 3; Appendix (D.3)]):

(
z
m

)∑m−1

i=1

i

E(1;1; :::;1); (
1+1;
2+1;:::;
m−1+1;1)

(
−
(

z
m

)m)

=

[
m−1∏
i=1

�(
i + 1)

]−1 (
z
m

)∑m−1

i=1

i

0Fm−1

(

1 + 1; 
2 + 1; : : : ; 
m−1 + 1;−

(
z
m

)m)

= J (m−1)
i ;:::;
m−1
(z): (26)

In general, for rational values of ∀�i; i = 1; : : : ; m, functions (13) are reducible to Meijer’s
G-functions.

In next section, we show that in analogy with classical M–L functions (1), their multiple analogues
(13) satisfy some di�erential and integral relations and equations of fractional order.

3. Generalized fractional calculus and multiindex Mittag–Le�er functions

The generalized fractional calculus [14] is related to the Erd�elyi–Kober operators of fractional
integration and di�erentiation (9), (10) and their commutative compositions. The e�ective use and
simple properties of the generalized hypergeometric functions, especially – of a Meijer’s G-function
and Fox’s H -function, as kernel-functions allow to consider and deal with such compositions repre-
sented in more suitable way, as single integrals or di�er-integrals of special functions.
First, we recall brie
y some de�nitions.

De�nition 3.1 (Kiryakova [13;14]). Let m¿1 be an integer; �i ¿ 0; 
i ∈ R; �i ¿ 0; i = 1; : : : ; m.
Consider 
 = (
1; : : : ; 
m) as a multiweight and resp. � = (�1; : : : ; �m) as a multiorder of fractional
integration. The integral operators de�ned as follows:

I (
i); (�i)(�i); m f(z) =



∫ 1

0
Hm;0

m;m

[
�

∣∣∣∣∣(
i + �i + 1− 1
�i
; 1�i
)m1

(
i + 1− 1
�i
; 1�i
)m1

]
f(z�) d� if

∑m

i=1
�i ¿ 0;

f(x) if �1 = �2 = · · ·= �m = 0
(27)
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are said to be multiple (m-tuple) Erd�elyi–Kober fractional integration operators and more generally,
all the operators of the form

If(z) = z�0I (
i); (�i)(�i); m f(z) with �0¿0 (28)

are called brie
y a generalized (m-tuple) fractional integrals.
For 
i ¿− 1− �=�i; �i ¿ 0; i=1; : : : ; m operators (27) map a space H�(
) into itself, preserving

the power functions up to a constant multiplier. For m = 1 they turn into classical Erd�elyi–Kober
integrals (9). The main feature of the generalized (m-tuple) fractional integrals is that single integrals
(27) involving H -functions (or G-functions in the simpler case of equal �i = �¿ 0; i = 1; : : : ; m)
can be equivalently represented by means of commutative compositions of di�erent E–K integrals
(9), namely for f ∈ H�(
); 
i ¿− 1− �=�i; �i ¿ 0; i = 1; : : : ; m,

I (
i); (�i)(�i); m f(z) =

[
m∏
i=1

I 
i ; �i�i

]
f(z)

=
∫ 1

0
: : :
∫ 1

0

[
m∏
i=1

(1− �i)�i−1�

i
i

�(�i)

]
f(z�1=�11 : : : �1=�m

m ) d�1 : : : d�m; (29)

while if some of the �i are zeros: �1 = · · ·= �s=0; 16s6m, the corresponding multipliers I 
i ; �i�i
= I

are identity operators and the multiplicity of (27) reduces from m to m − s (same for the order of
the kernel H -functions). Decomposition (29) is the key to numereous applications of (27), (28),
arising from the simple but quite e�ective tools of the G- and H -functions.
The generalized fractional derivatives D(
i); (�i)

(�i); m =
∏m

i=1D

i;�i
�i
, corresponding to (27), are de�ned by

means of explicit di�erintegral expressions. To this end we denote

D� =


 m∏

i=1

�i∏
j=1

(
1
�j

x
d
dx
+ 
i + j

)
 ; �i =

{
[�i] + 1; if �i noninteger;

if �i integer;
i = 1; : : : ; m (30)

and de�ne

D(
i); (�i)
(�i); m f(z):=D� I (
i+�i); (�i−�i)

(�i); m f(z): (31)

The theory of generalized fractional integrals and derivatives (27), (31) has been developed in
the monograph [14], together with various applications.
By analogy with the M–L functions, their multiindex analogues (13) can be proved to satisfy

several relations involving operators of fractional calculus (E–K operators (9), (10)) or operators of
generalized fractional calculus (operators (27), (31)).
First, we consider integral relations involving classical E–K fractional integrals (9).

Lemma 3.2. For any complex � 6= 0 and �xed l; 16l6m; �l ¿ 0

I �l−1; �l
�l

E(1=�i);(�1 ;:::;�l;:::;�m)(�z)

=
1

�(�l)

∫ 1

0
(1− �)�l−1��l−1 E(1=�i);(�i)(�z�

1=�l) d� = E(1=�i);(�1 ;:::;�l+�l;:::;�m)(�z); (32)

i.e.; a fractional integration can transform a multiindex M–L function to another one with a
corresponding �l-parameter increased by the order of integration.



V.S. Kiryakova / Journal of Computational and Applied Mathematics 118 (2000) 241–259 251

Proof. Term-by-term integration of the series for entire function E(1=�i);(�i)(�z) gives

LHS of (32)=
1

�(�)

∫ 1

0
(1− �)�l−1��l−1

{ ∞∑
k=0

�kzk�k=�l

�(�l + k=�l)
∏

i 6=l �(�i + k=�i)

}
d�

=
∞∑
k=0

�kzk

�(�l + k=�l)
∏

i 6=l �(�i + k=�i)

∫ 1

0

(1− �)�l−1

�(�l)
��l+k=�l−1 d�

=
∞∑
k=0

�kzk

�(�l + k=�l)
∏

i 6=l �(�i + k=�i)
�(�l)�(�l + k=�l)

�(�l)�(�l + �l + k=�l)
= RHS of (32):

This is an extension of the known result ([8, p.120], see also [14, E.28]), z → z1=�,

I �−1; �� E1=�;�(�z1�) =
1

�(�)

∫ 1

0
(1− �)�−1��−1 E1=�(�z1=��1=�) d� = E(1=�); �+�(�z1=�):

Applying successively the E–K fractional integrals I �i−1; �i
�i

; �i ¿ 0; i = 1; : : : ; m to a multiindex
M–L function, on the base of (29) and (32), we obtain a relation involving a generalized fractional
integral (27):

I (�i−1); (�i)
(�i); m E(1=�i);(�i)(�z) =

∫ 1

0
Hm;0

m;m

[
�

∣∣∣∣∣(�i + �i − 1
�i
; 1�i
)

(�i − 1
�i
; 1�i
)

]
E(1=�i);(�i)(�z�) d�

=
∫ 1

0
: : :
∫ 1

0

[
m∏
i=1

(1− �i)�i−1�
�i−1
i

�(�i)

]
E(1=�i);(�i)(�z�

1=�1
1 : : : �1=�m

m ) d�1 : : : d�m

=E(1=�i);(�i+�i)(�z):

Taking in the above �i=1=�i; i=1; : : : ; m and multiplying by z, we obtain the following generalized
fractional integral relation:

zI (�i−1); (1=�i)
(�i); m E(1=�i);(�i)(�z) = zE(1=�i);(�i+1=�i)(�z)

=
1
�

∞∑
k=0

�k+1zk+1∏
i �(�i + (k + 1)=�i)

=
1
�

∞∑
k=1

�kzk∏
i �(�i + k=�i)

=
1
�
E(1=�i);(�i)(�z)−

1
�
∏

i �(�i)
: (33)

Then, by the rules of the generalized fractional calculus [14]

zI (�i−1); (1=�i)
(�i); m = I (�i−1−1=�i); (1=�i)

(�i); m z;

z−1D(�i−1−1=�i); (1=�i)
(�i); m I (�i−1−1=�i); (1=�i)

(�i); m zf(z) = f(z);

D(
i); (�i)
(�i); m {c}= c

m∏
i=1

�(
i + �i + 1)
�(
i + 1)

and an application of the operator �z−1D(�i−1−1=�i); (1=�i)
(�i); m to (33), it follows that

�E(1=�i);(�i)(�z) = z−1D(�i−1−1=�i); (1=�i)
(�i); m E(1=�i);(�i)(�z)− z−1D(�i−1−1=�i); (1=�i)

(�i); m

{
1∏

i �(�i)

}
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from where the following generalized fractional derivative relation for the multiple M–L functions
follows:

D(�i−1−1=�i); (1=�i)
(�i); m E(1=�i);(�i)(�z) = �z E(1=�i);(�i)(�z) +

[
m∏
i=1

�
(
�i − 1

�i

)]−1
: (34)

The latter can be considered as an extension of the known R–L fractional derivative relation for
M–L function (1), �:=1=�; � = 1:

D�E�(�z) = �E�(�z) +
z−�

�(1− �)
:

4. Multiple Dzrbashjan–Gelfond–Leontiev operators generated by Mittag–Le�er functions

Relations (33), (34) suggest introducing the following Gelfond–Leontiev operators of generalized
integration and di�erentiation (see De�nition 1:1) with respect to functions (13). Paying honour to
Dzrbashjan’s studies on the classical M–L functions, Gelfond–Leontiev operators generated by them
and on the 2-set indices M–L functions (24), we associate these operators also with his name.

De�nition 4.1 (Kiryakova [14, Chapter 5]). Let f(z) be an analytic function in a disk �R={|z|¡R}
and �i ¿ 0, �i ∈ R, i = 1; : : : ; m be arbitrary parameters. The operators in H(�R)

f(z) =
∞∑
k=0

akzk 7→
D(�i);(�i)f(z) =

∞∑
k=1

ak
�(�1 + k=�1) : : : �(�m + k=�m)

�(�1 + (k − 1)=�1) : : : �(�m + (k − 1)=�m)
zk−1;

L(�i);(�i)f(z) =
∞∑
k=0

ak
�(�1 + k=�1) : : : �(�m + k=�m)

�(�1 + (k + 1)=�1) : : : �(�m + (k + 1)=�m)
zk+1

(35)

are called multiple Dzrbashjan–Gelfond–Leontiev (D–G–L) di�erentiations and integrations, re-
spectively.

It is seen, from De�nition 1.1, that these operators are generated by the multiple Mittag–Le�er
functions (13), namely:  k = [

∏m
i=1 �(�i + k=�i)]

−1, and then operators (35) are Gelfond–Leontiev
di�erentiation and integration operators with respect to functions (13).
Let us note that D(�i);(�i)L(�i);(�i)f(z) = f(z) in H(�R) and the coincidence of the radii of con-

vergence of f(z) and series (35) follows easily by the Cauchy–Hadamard formula and asymptotic
estimation of the �-function multipliers, like in [13,14, Theorem 5.5.2]. For m = 1 these operators
turn into D–G–L operators (7).
The series representations of (35) can be analytically continued for analytic functions in starlike

domains 
⊃�R by means of single integral or di�erintegral expressions, as special cases of the
operators (27), (31) of the generalized fractional calculus.

Theorem 4.2. Let �R ⊂
; �i¿0; i = 1; : : : ; m; � = max16k6m {−�k�k}60. Then; the multiple
D–G–L integration operator (35) can be analytically continued from H(�R) into H�(
) by means
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of the single integral operator

L(�i);(�i)f(z) = z
∫ 1

0
Hm;0

m;m

[
�

∣∣∣∣∣
(�i; 1�i

)m1
(�i − 1

�i
; 1�i
)m1

]
f(z�) d� = zI (�i−1); (1=�i)

(�i); m f(z); (36)

that is; by a generalized fractional integral of form (27). The multiple D–G–L derivative has
also a di�erintegral representation in terms of (31); and especially for analytic functions in
H(
)⊃H(�R):

D(�i);(�i)f(z) = z−1D(�i−1−1=�i); (1=�i)
(�i); m f(z)−

[
m∏
i=1

�(�i)
�(�i − 1=�i)

]
f(0)
z

: (37)

Comparing generalized fractional integrals and derivatives (36), (37) with these involved in rela-
tions (33), (34), one easily obtains integral and di�erential equations satis�ed by (13), written in
terms of multiple D–G–L operators.

Lemma 4.3. The multiple Mittag–Le�er functions (13) satisfy the following relations (� 6= 0):
L(�i);(�i)E(1=�i);(�i)(�z) =

1
�
E(1=�i);(�i)(�z)−

1
�
∏

i �(�i)
; (38)

D(�i);(�i)E(1=�i);(�i)(�z) = �E(1=�i);(�i)(�z): (39)

Using the tools of the generalized fractional calculus [14] and of the special functions, and ex-
tending the results of Dimovski [2] and Luchko and Jakubovich [17], one can �nd a family of
convolutions of the multiple D–G–L integrals (35), in the sense of Dimovski [3].

Theorem 4.4. For �¿maxi (�i�i − 1)¿ − 1 the operations ( �?); de�ned by means of generalized
fractional integrals (27)

(f
�
? g)(z) = z�+1I (2�i−1); ((�+1)=�i−�i)

(�i); m (f ◦ g)(z) (40)

and of auxiliary operation

(f ◦ g)(x) =
∫ 1

0
· · ·
∫ 1

0

m∏
i=1

[ti(1− ti)]
�i−1f

[
z

m∏
i=1

t1=�i
i

]
g

[
z

m∏
i=1

(1− ti)1=�i

]
dt1 : : : dtm (41)

are convolutions of the multiple D–G–L integrations (35); (36) inH�(
) as well as in the subspace
H(
).

For a proof, see [14, Chapter 5]. This theorem allows to �nd convolutional representations of the
operator L= L(�i);(�i) itself, as well as of all the linear operators M that commute with L in H(
):
ML= LM (the so-called commutant of L); as well as to develop other elements of the operational
calculus for the multiple D–G–L operators.
Using the simple property of the generalized fractional integrals (27), [14, Chapter 5],

I (
i); (�i)(�i); m {zp}= cpzp; cp =
m∏
i=1

�(
i + 1 + p=�i)
�(
i + �i + 1 + p=�i)

; p¿− �i(
i + 1); (42)
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one can easily �nd the convolution products of some “basic functions”. For simplicity, if ∀�i¿0,
i = 1; : : : ; m, one can take in (40) �=−1 and consider the particular convolution

(f
−1
? g)(z) = I (2�i−1); (−�i)

(�i); m (f ◦ g)(z) (43)

that has the property to “sum up” the exponents of the power functions.

Example 4.5. For p; q¿� (zp; zq ∈ H�(
)),

zp
−1
? zq = zp+q

m∏
i=1

�(�i + p=�i)�(�i + q=�i)
�(�i + (p+ q)=�i)

: (44)

Example 4.6. For �; � 6= 0, the convolutional product of two multiindex Mittag–Le�er functions
(13) (being entire functions) is

E(1=�i);(�i)(�z)
−1
? E(1=�i);(�i)(�z) =

�E(1=�i);(�i)(�z)− �E(1=�i);(�i)(�z)
(�− �)

∏m
i=1 �(�i)

: (45)

Proof. The proof of (45) follows from relations (38) taken with �=�; �=�, each of them multiplied
convolutionally by E(1=�i);(�i)(�z) or E(1=�i);(�i)(�z) resp., and using convolutional property [3]

L(�i);(�i)E(1=�i);(�i)(�z)
−1
? E(1=�i);(�i)(�z) = E(1=�i);(�i)(�z)

−1
? L(�i);(�i)E(1=�i);(�i)(�z)

in the same lines as in the proof of Lemma 2:2:9 in [14], for the case m=1. However, (45) can be
also directly proved now by using fractional integral relations (32), (33).

5. Laplace-type integral transform

In [5,14, Chapter 2] we have shown that the role of a Laplace transformation for the D–G–L
operators D�;�; L�;� (m= 1) can be played by the Borel–Dzrbashjan transform:

B�;�

{ ∞∑
k=0

akzk
}
=

∞∑
k=0

ak�(� + k=�)
sk+1

; B�;�{f(z); s}= �s��−1
∫ ∞

0
exp(−s�z�)z��−1f(z) dz

(46)

usually considered in �-convex domains like


 =D�(0; �) =
{
s: R (s�)¿�; |arg s|¡ �

2�

}
:

There, for 12 ¡�¡ 1=� and L:=L�(0; �)=@D�(0; �) the following complex inversion formula holds
for (46) (see [8]):

f(z) =
1
2�i

∫
L

E1=�;�(sz)B�;�{f; s} ds; �¿�0: (47)

We have proved that (46) has the same convolution as the D–G–L operators, taken with � = −1
(operation (43) for m= 1), namely,

B(�); (�){f −1
? g; s}=B(�); (�){f(z); s}B(�); (�){g(z); s} (48)
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and have found some basic operational properties as well as images and convolutions of some
particular functions.
Here we introduce a Laplace-type integral transform, corresponding to the multiple D–G–L oper-

ators.

De�nition 5.1. The Laplace-type integral transform, de�ned as an H -transform

B(s) =B(�i);(�i){f(z); s}

=
∫ ∞

0
Hm;0
0;m

[
sz

∣∣∣∣∣ −
(�i − 1

�i
; 1�i
)

]
f(z) dz =

1
s

∫ ∞

0
Hm;0
0;m

[
sz

∣∣∣∣∣ −
(�i; 1�i

)

]
f(z)
z
dz (49)

is said to be a multiple Borel–Dzrbashjan (B–D) transform, corresponding to multiple D–G–L
operators (35)–(37).
We consider (49) for functions

f(z) ∈ H�; �=max
i
(−�i�i); f(z) = O{exp(�r1=�z1=�)} as |z| → ∞;

and for s ∈
{

R (s1=�)¿�0; |arg s|¡ ��
2

}
(50)

with some �0 ∈ R and r:=[
∏m

i=1 �
1=�i
i ], �:=

∑m
i=1 1=�i ¿ 0.

The restriction for the exponential growth of the originals f(z) as |z| → ∞, arises from the known
asymptotic behaviour of the kernel Hm;0

0;m -function, namely, it vanishes exponentially as |z| → ∞, see
[20, (1.6.3), 14, (E.17′)].

Example 5.2. If we put m = 1 in (49), we obtain the “single” B–D transform (46). Moreover, if
� = �= 1, then the Laplace integral transform follows as a special case, which justi�es the name
Laplace-type integral transform given to (49).
From de�nition (49) one can easily evaluate the images of some basic original functions f(z).

The aparatus of the H -functions is used.

Example 5.3. Since

B(�i);(�i){zq}= s−(q+1)
[

m∏
i=1

�
(
�i +

q
i

)]
; q¿�= max

16i6m
(−�i�i); (51)

then for �i ¿ 0, �i ¿ 0, i = 1; : : : ; m; we obtain the image of an analytic function

f(z) =
m∑

k=0

akzk ∈ H(�R)
B(�i );(�i )7→ B(s) =

m∑
k=0

ak
∏m

i=1 �(�i + k=�i)
sk+1

: (52)

Example 5.4. It is interesting to note that the image of multiindex M–L function (13), (22) under
(49) is a simple fraction, well-known in the operational calculus:

B(�i);(�i){E(1=�i);(�i)(z); s}=
1

s− 1 : (53)
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The multiple B–D transform, as de�ned by (49), (52), plays the same role for the multiple
D–G–L derivatives and integrals like the Laplace transform L{f(z); s} for the classical operators
of di�erentiation and integration. First, we have for function (13) the usefull relations (39), (53),
analogous to the well-known ones for the exponential function

d
dz
exp(�z) = � exp(�z); L{exp z; s}= 1

s− 1 :
Next, it is easy to prove that (49) algebrizes the multiple D–G–L derivatives and integrals, i.e.

reduces them to multiplications by �xed rational functions.

Theorem 5.5. If f(z) and s ∈ C satisfy conditions (50); then the multiple D–G–L integration
operator (35); (36) is algebrized by the multiple B–D transform (49):

B(�i);(�i){L(�i);(�i)f(z); s}=
1
s
B(�i);(�i){f(z); s} (54)

and the “generalized di�erential law” holds:

B(�i);(�i){D(�i);(�i)f(z); s}= sB(�i);(�i){f(z); s} − f(0)

[
m∏
i=1

�(�i)

]
: (55)

The latter relation generalizes the well-known di�erential law for the Laplace transform. The
proof follows in an elementary way by replacing (49), (36) into LHS of (54) and the widely used
techniques of evaluation of integrals of products of two H-functions (see [14, (E.21′), 20, (2.6.8)]).
The additional term from (37), depending on f(0), appears now in a modi�ed form in (55).
For the purposes of the operational calculus, to deal with the multiple B–D transform, one should

dispose with some inversion formulas. To compare with similar Laplace-type transforms like B–D
transform (46) or the more general, so-called Obrechko� transform [2,14, Chapter 3], we can look
for various complex inversion formulas, either of the kind of (47), or by means of Mellin transform
techniques, shown to be more e�ective. The following complex inversion formula seems most useful.

Theorem 5.6. If f(z); satisfying (50); has a B–D image (49)

B(s):=B(�i);(�i){f(z); s};
then the inversion formula

f(z) =
∫ c+i∞

c−i∞

z−q∏m
i=1 �(�i − q=�i)

dq
{∫ ∞

0
s−qB(s) ds

}
(56)

holds; provided that the integrals∫ ∞

0
zc−1f(z) dz;

∫ ∞

0
s−qB(s) ds

are absolutely convergent for q=c+iT; −∞¡T ¡∞ and c is a suitably chosen constant; c¡−�.

The proof is quite similar to that of Theorem 3:9:12, [14] in the case of Obrechko� transform.
Its e�ectiveness can be easily tested on Example 5.4.
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Another complex inversion formula of contour integral type (47), with a kernel-function

H 1;1
1;m+1

[
−sz

∣∣∣∣∣ (0; 1)
(0; 1); (1− �i; 1�i

)

]
= E(1=�i);(�i)(sz)

can be looked for, too.
Operation (43), being a convolution of D–G–L integration operator L(�i);(�i), is also a convolution

of the multiple B–D transform (49), similarly to (48).
The details of all the proofs in this section, as well as another representation of the kernel-function

of (49), relationship between (49) and the m-dimensional Laplace transform, etc. we leave for another
paper.

6. Relation to fractional hyper-Bessel di�erential and integral operators and Obrechko�
transform

The wide scope of applications of the multiple D–G–L di�erintegrals can be seen from the fact that
the D–G–L derivatives are not only multiple Erd�elyi–Kober fractional derivatives z−1D(�i−1−1=�i); (1=�i)

(�i); m

but also an interesting generalization of the hyper-Bessel di�erential operators, introduced by
Dimovski [2] and among the most often encountered operators in problems of mathematical physics:

B= z�0
(
d
dz

)
z�1
(
d
dz

)
z�2 · · ·

(
d
dz

)
z�m : (57)

The linear right inverse operators of (57), called hyper-Bessel integral operators, have been shown
in [14, Chapter 3] to be generalized fractional integrals of form (27) but with all equal �i = � =
m − (�0 + · · · + �m)¿ 0, thus their kernel-functions reduced to Meijer’s Gm;0

m;m-functions. Denoting

i=(�k+�k+1+ · · ·+�m−m+k)=�, i=1; : : : ; m, the hyper-Bessel integral operator L (BLf(z)=f(z),
f ∈ H�(
)), can be represented as

Lf(z) = (z�=�m)I (
i); (1;1; :::;1)(�;�; :::; �);m f(z): (58)

It is seen that (58) follows as a special case of multiple D–G–L integrals (36), by taking for
example � = 1 in (58) and �i = 
i + 1, �i = 1, i = 1; : : : ; m in (36); as in Example 2.7, where the
hyper-Bessel functions (26) follow from the multiindex M–L functions. Functions (26) are closely
related to hyper-Bessel operators (57), (58) and the solutions of hyper-Bessel di�erential equations
By(x) = �y(x) are represented in their terms. Thus, the multiple D–G–L operators of di�erentiation
D(�i);(�i) are natural extensions, a kind of “fractional” analogues (of multi-order of di�erentiation
(1=�1; : : : ; 1=�m) instead of (1; : : : ; 1)) of the hyper-Bessel di�erentiations (57).
The Laplace-type integral transform (49), corresponding to (57), (58), i.e., to the case �1 = · · ·=

�m=1, reduces to a G-function transform (see, e.g., [19]). This is the so-called Obrechko� integral
transform

O{f(z); s}= �s−�(
m+1)+1
∫ ∞

0
Gm;0
0;m

[
(sz)�

∣∣∣∣∣ −
(
i + 1− 1

�)
m
1

]
f(z) dz; (59)

where for simplicity one can put � = 1.
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This transformation was introduced by Obrechko� [21] in 1958 and studied by Dimovski [2] in
the modi�ed form

O{f(z); s}= �
∫ ∞

0
z�(
m+1)−1K[(sz)�]f(z) dz; (60)

where

K(z) =
∫ ∞

0
· · ·
∫ ∞

0
exp

(
−u1 − · · · − um−1 − z

u1 : : : um−1

) m∏
i=1

u
i−
i−1
i du1 : : : dum−1:

It was shown to be a suitable Laplace-type integral transform for building an operational calculus
for hyper-Bessel operators (57), (58). Convolutions, di�erential properties and inversion formulas
were found. Later, its new representation (59) by means of the Meijer’s G-function, allowed a more
detailed study in [14, Chapter 3].
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