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KEYWORDS Abstract Fully developed laminar mixed convection in a corrugated vertical channel filled with

two immiscible viscous fluids has been investigated. By using a perturbation technique, the coupled
nonlinear equations governing the flow and heat transfer are solved. The fluids are assumed to have
different viscosities and thermal conductivities. Separate solutions are matched at the interface
using suitable matching conditions. The velocity, the temperature, the Nusselt number and the
shear stress are analyzed for variations of the governing parameters such as Grashof number, vis-
cosity ratio, width ratio, conductivity ratio, frequency parameter, traveling thermal temperature
and are shown graphically. It is found that the Grashof number, viscosity ratio, width ratio and
conductivity ratio enhance the velocity parallel to the flow direction and reduce the velocity perpen-
dicular to the flow direction.
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1. Introduction heat transfer efficiency of industrial transport processes. The

problem of viscous flow in a wavy channel was first treated

Mixed convection is defined as a heat transfer situation where analytically by Burns and Parks (1967). Later on Goldstein

both natural convection and forced convection heat transfer
mechanisms interact. In the past thirty years, mixed convection
in a vertical heated channel has received considerable attention
due to its extensive practical applications, including turbine ro-
tor blade internal cooling systems, cooling of nuclear reactors
and electronic components. From a technological point of
view, the study of viscous fluids bounded by corrugated sur-
faces is of special interest and has practical applications in
the cooling of electronic devices and systems, enhancing the
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and Sparrow (1977), O’Brien and Sparrow (1982), Vajravelu
(1989) and Saniei and Dini (1993) studied the flow through a
corrugated channel.

Wang and Vanka (1995) determined the rates of heat trans-
fer for flow through a periodic array of wavy passages.
Malashetty et al. (2001a) studied the magnetoconvective flow
and heat transfer between a vertical wavy wall and a parallel
flat wall. Wang and Chen (2001) analyzed the rate of heat
transfer for flow through a sinusoidal curved channel. A
numerical study of mixed convection heat and mass transfer
along a vertical wavy surface has been carried out by Jang
and Yan (2004). Yao (2006) used finite difference methods to
analyze the problem of natural convection boundary layer flow
along a complex vertical surface represented by two sinusoidal
functions. He found that the total heat-transfer rates for a
complex surface are greater than those for a flat surface. Kuhn
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Nomenclature
a amplitude Greek symbols
Cg” specific heat at constant pressure B coefficient of thermal expansion
C, ratio of specific heat at constant pressure p ratio of coefficient of thermal expansion (5®/p")
g acceleration due to gravity & dimensionless amplitude parameter (a/A")
Gr Grashof number (h“)}g[f(l)AT/v(Uz) A wave length
h width ratio (h®/n") 29 dimensionless wave number (A9/hY)
KV thermal conductivity u? viscosity
k thermal conductivity ratio (K®/K1) W kinematic viscosity (u?/p?)
m viscosity ratio (u"/u®) 0 traveling thermal temperature
Nu Nusselt number p¥ density
PY pressure Do static density
Ds static pressure T skin friction
p¥ dimensionless pressure W frequency parameter
Pr Prandtl number (CLl> u/ K(l)) W stream function
r density ratio (p@/p") .
i temperature Superscrlpt .. S
70,49 dimensionless temperature j = 1,2 where 1 and 2 refer quantities for the fluids in re-
s p . . .
T, static temperature gion-I and region-II respectively.

t time

UP, V9 velocities along X and Y directions
u? v dimensionless velocities

X9 ¥ space co-ordinates

xP 39 dimensionless space co-ordinates

Subscript
0 mean part
1 perturbed part

and Rohr (2008) experimentally investigated mixed convective
flow over a wavy wall.

One geometry of the flow passage that is very simple and
may be used to enhance the exchanger performance is that
formed by wavy walls. Wavy channels are easy to fabricate
and can provide significant heat transfer enhancement if oper-
ated in an appropriate (transitional) Reynolds-number range.
Therefore, wavy passages have been considered in several
earlier studies as a means to enhance heat/mass transfer in
compact exchange devices. Both corrugated and converging-
diverging cross-sections have been studied experimentally
and numerically. An important observation made is that wavy
passages do not provide any significant heat transfer enhance-
ment when the flow is steady. However, if the flow is made un-
steady (either through external forcing or through natural
transitioning to an unsteady state) significant increases in heat
exchange are observed.

In realistic situations, however, the fluid system often con-
sists of two (and possibly more) separate, immiscible liquids,
a layer of one liquid overlying a layer of another liquid. The
problem formulation now contains additional dynamical
ingredients such as the interfacial stresses and the
deformation of the interface shape. Also, a multi-layered li-
quid arrangement provides an improved model for the buoy-
ancy-driven convection process in growing high-quality
crystals.

The application of the two-fluid model is dependent on the
presumed interface shape (either plane or curved) and on the
availability of reliable closure relations for the wall shear
and interfacial shear stresses (averaged over the corresponding

wetted perimeter) in terms of the local/instantaneous holdup
and velocities. These closure relations should correctly repre-
sent the effects of the system’s parameters (e.g. fluids’ flow
rates and physical properties).

Meyer and Garder (1954) were the first authors to publish a
paper on the mechanics of two immiscible fluids in porous
media. Loharsabi and Sahai (1998) analyzed the flow of two
immiscible fluids in a parallel plate channel assuming the con-
tinuity of velocity and thermal equilibrium at the interface.
Several researchers have assumed that separated two-phase
flow can be well represented by the superimposition of two sin-
gle-phase flows separated by a flat interface. The first exact
solution for the fluid flow in the interface region was presented
in Vafai and Kim (1990). In that study, the shear stress in the
fluid and the porous medium were taken to be equal at the
interface region. Using this assumption, Malashetty and Leela
(1992), Malashetty et al. (2001b, 2004), Umavathi et al. (2005,
2007, 2008a,b) and Prathap Kumar et al. (2011a,b) studied the
flow and heat transfer of different immiscible fluids through
channels. Most recently Umavathi and Shekar (2011, 2012)
studied the mixed convection flow of immiscible fluids in a ver-
tical corrugated channel.

In the literature, numerous experimental and theoretical
studies have been reported concerning the heat transfer in
the corrugated surface for the one-fluid model. Keeping in
view the various applications of the two-fluid model, we were
motivated to analyze the flow nature of two immiscible fluids
in a vertical corrugated channel for unsteady flow. The temper-
ature and velocity distributions are simulated by the perturba-
tion method.
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7O :ﬁ Region-I

Y =-h" +acos(AX +6)

Figure 1

2. Mathematical formulation of the problem

We consider a two dimensional unsteady laminar mixed con-
vective flow of two immiscible, incompressible fluids in a ver-
tical wavy channel as shown in Fig. 1. The X-axis is taken
parallel to the wavy wall, while the Y-axis is taken perpendic-
ular to it in such a way that the left wavy wall is represented by
= —h"D + gcos(AX + 0) and the right wavy wall by
Y = h® + acos(iX). The values of 0 = 0,7/2,7 and 37/2 rep-
resent different configurations of the wavy channels such as:

(1) the crest of a wall corresponds to the crest of the other
wall of the channel;

(ii) one of the walls considered in (i) has a phase-advance/
lag;

(iii) the crest of the wall corresponds to the trough of the
other; and

(iv) one of the walls considered in (iii) has a phase-advance/
lag.

The left and right walls are maintained at constant temper-
ature T, and T, respectively. The  region
—hV + acos(JX + 0) < Y <0 (region-I) is occupied by a
fluid of density pV, viscosity ", thermal conductivity KV,
thermal expansion coefficient 'V, specific heat at a constant
temperature C“) and the region 0 < Y < h(z) + acos(1X) (re-
gion-II) is occupled by the fluid of density p@, viscosity u®,
thermal conductivity K@, thermal expansion coefﬁc1ent 2,
specific heat at a constant temperature C,(,z). The fluids proper-
ties are assumed to be constant except the density in the buoy-
ancy term in the momentum equation. The fluid rises in the
channel driven by buoyancy forces. The transport properties
of both the fluids are assumed to be constant. The wave length
of the wavy wall which is proportional to 1/ is very large,
where A is the wave length. Since our model is general, one
can choose any two different fluids which are immiscible.

We consider the fluid to be incompressible and the flow is
unsteady, laminar, and two-dimensional (that is, the flow
is identical in vertical layers, which is a valid assumption). It is

Y =h? +acosl(1X)

Y =-h" +acos(AX +6)

Physical model and the coordinate system.

assumed that the only non-zero component of the velocity is
the X-component U(’)(j = 1,2). Thus, with these assumptions,
the continuity equations, the momentum equations, and the
energy equations are in the form

Region-I
ou  ar
ox0 oy ¢ W

(1) (1)
X (au +U<,)au o aU

or axM oYW )
_ ( )

oPV (v oy
“oxm K <axﬂ>2 oy
S0 (aw Waw 8V(‘>
1) axl) ayW
op o* azw
=y tH < ax1E T gy )
or\ aﬂ aT!
(1) (1) (1) 1)
pC, <atm+U X + ﬂ)
_ g (01T azﬂl
oxM? 0Y<‘>2
P = po(1 = T = T,))
Region-I1
ou®  ar®
—m 5 =0
ox?  oy®
ou® ou® ou®
(2 (2) 2)
P (az<2 - rondd aw)
oP> - (PUP  9uP o
G (aﬂ”ﬁawm)_p ¢
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o U oy TV oy
~fs” (%+%) ®)
(e e
- 1 (G ) ©)
P = (1 = AT = 7)) (10)

A characteristic feature of the two-layer flow problem is the
coupling across liquid/liquid interfaces. Interfacial relations
can be very complicated for certain practical applications. This
is mainly due to the terms arising from mass transfer and from
normal stresses. The former contributes as a thrust force due
to the density change in the mechanical boundary conditions.
The latter introduces complicated coupling effects of the flow
fields with the thermodynamic properties at the interface.
The liquid layers are mechanically coupled via transfer of
momentum across the interfaces. Transfer of momentum re-
sults from the continuity of interface tangential velocity and
from a stress balance across the interface. Together with these
two conditions, continuity of pressure gradient along the flow
direction at a liquid-liquid interface is assumed. Thermal cou-
pling is achieved through the continuity of temperature at the
interface and the balance of heat transfer across the interface.
Along with these there is a “‘no-slip”’ condition and a constant
temperature at the boundaries. With these assumptions the
boundary and interface conditions become

UY =10 =0 at Y=—h" +acos(JX + 0)

U =1 =0 at ¥Y=h?+acos(iX)

v = U(Z)7 D =@ at y=0
aut gy ou® v (11)
M= _4+ 77 __ :‘u(z) —+——=]at Y=0
oy~ ox® oY®  ox®
(1) (2)
ox ox®
TV = T(1 + acos(AX + wt))
=T, (say) at ¥ = —h'Y + acos(AX + 0)
7% = Ty(1 + acos(2X + wt))
=T, (say) at ¥ = h® + acos(J.X)
oV or" or® o1
H_ 702 1) ZZ ) = Kk®
=1 (e ) = (G ) o
Y=0
(12)

The boundary conditions on the temperature field physically
indicate that there are traveling thermal waves moving in a
negative X-direction.

We next introduce the non-dimensional flow variables as

1) 1) 2) 2)
X 7 o _Y NI iy y<2>:w_7
A H h? h?
H H
oo oy
Wl =T U, A =T v,
@ @ 0
o_ "o ot e o P
y(2) ’ p(2) ’ p(l)(v(l)/h(l))Z’
PO = P
P (v /h@)?’
TO_T TO_ T @ e
T*(l):/\i/\lv r<2) /\1> ﬁiﬁ(l)’ h:W’
T, - T, T, - T, p h

(m) @ M
m=t_ P o _ (I
ek POk ’

2 N> vz
C(l),u(l) a Y ~ ~
_ P . * v _ _
Pr= K.(]) ) & h(]) ) ;L - h(l) ) AT— Tz T1 (13)

In terms of these non-dimensional variables, the basic
Eqgs. (1)-(4), (6)—(9) can be expressed in the dimensionless form
as, (for simplicity, the notation is considered as x" = x;

y*(l) = £ =7 in region-I and x? = X; y(z) =y
@ = (" in region-II).
Region-I
ou) o)
R — 14
ox + ady (14)
ouV ouh ouh) o U Py
09 op n
or ox dy Ox 0x? 0y?
+ GrT (15)
ovh 0 ovH 0 oy _ 731,(1) N o>y N o* M (16)
or ox dy dy  oxr  9)?
or + or'y el or® _ 1 (o1 ﬂ*m (17)
or* Ox dy ~ Pr\ ox? 0y?
Region-I1
ou®  9H®
=0 18
ox + ady (18)
ou® u(z) 81,{_(2) + v<2) 814_(2) — 6[)(2) @ + @
or* Ox ay Ox Ox? 9y?
+ GrpR*m? T (19)
e L0 o2 e oy _ pd & g (20)
or Ox Ay dy ox? oy?
87-'*(2) + u(2) aT‘*(Z) + V(2> aT'*(Z)
or 0x dy
kmC, (T® T
_ m 14 ( 5 + 5 ) (21)
Pr Ox oy
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Using (13), the boundary and interface conditions (11) and
(12) for the velocity and temperature fields become

u =y =0 aty=—14ecos(A'x +0),

i — <z>:03ty:1+%<ix)
@ &)

m_Hu m_r _

' =—— W=—at¥=0,
mhr mhr

ou  ovl) 1 ou® o 0
o0 (LT Ly =
Ay "o mzhzr( Ay * Bx) wy

oph 1 op
ox  rm2h’ Ox
W =0aty=—1+e¢cos(

aty = (22)

Zx+0), T =1

aty—1+ scoslgi X)
o or®  k/oT® oT®
7 — 7+ =—
C oy oy ay T ox
aty=0 (23)

In the static fluid we have (see Vajravelu and Sastri, 1978)

o O pgh _ op, pgh®” o
T T Ox 2 T T ax pyor (24)

In view of (24). Egs. (15) and (19) becomes

ot oy ou o —p)  Oul
or ox dy ox 0x?
& u)

0y?

a(p(2> _ pv) + 82"{(2)

+ + GrT (25)

ou® e ou® O ou®
= = —_

or* Ox dy Ox Ox?
*u®
+ o2 + Grpl’m T (26)

3. Solutions

Eq. (14), (16)—(18), (20), (21), (25), and (26) are coupled non-
linear and are to be solved simultaneously. Due to the non-lin-
earity, analytical solutions are difficult; however approximate
solutions can be obtained using perturbation techniques.
Assuming that the solutions consist of a mean part and a
perturbed part, velocity, pressure and temperature can be
written as,

u(x,y, 1) = uo(y) + i (x,y, 1) (27)
v(xX, 0, 17) = vi(x,p, 1) (28)
p(x, 1) = po(x,3,1°) + py(x, 0, 17) (29)

T (x,3,67) = Toy(y) + T1(x,», 1) (30)

where the perturbed quantities u;,v;,p; and 77 are small com-
pared with the mean or zeroth order quantities. The asterisk
on 7,z and / is removed for the sake of simplicity in the follow-
ing process.

Using (27)—(30) in (14), (16)—(18), (20), (21), (25), and (26)
and separating mean and perturbed parts, gives the following
equations.

Zeroth order equations

Region-I
LT
=0 (31)
dy
2
d”“ +GrT) =0 (32)
dy?
Region-I1I
2 2)
d ﬁg =0 (33)
dy
2
d ”0 G m T = 0 (34)

where 0% (pg) fps) is taken to be zero (see Ostrach, 1952) for
= 1,2.
First order equations

Region-I
o oy
— 35
ox * ady (35)
Buﬁl) o 814(11) e du(()l) _ _Bp?) 82u§l) Bzugl)
ot o Ox 'ody Ox ox? 0y?
+Gr7" (36)
L -
ot O ox T Oy Ox? 0y?
3ﬁ1)+u<1>3ﬂ1)+v<1)d781)zi 327*1”4_327{11) (38)
ot o Ix dy Ox? 0y?
Region-I1
au(f) 0\)([2) _0 (39)
Ox oy
o | o ol o) o) ol
ot o 9x Uody ox 0x? 0y?
+ Grph*m*r? T<12) (40)
(2) 2 2 2, (2 (2)
O 0 ol O o) (41)
ot Ox Ay ox? oy?

o1 01?1l kG, (P10 2T
ot +i ox T dy ~ Pr 0x? dy (42)
In view of (27)—(30) the boundary and interface conditions
(22) and (23) can be split as follows,
Zeroth order boundary and interface conditions for veloc-
ity and temperature are

uf)l):O at y = —1, u(<)2>:0 aty =1,

1 dul” 1 du?

(1) (2) 0 0

= — = — aty=0 43
! mhr* " dy  om2hPr dy oy *3)
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7)) =0 aty=-1, 7¢'=1 aty=1,
dty)  k dty
=T i =0 “

First order boundary and interface conditions for velocity and
temperature are

(1) = —cos(Ax + 0) dZO v(ll) =0 aty=-—1,
y
2 @)
u) = ——Cosﬁl Y —dZ; L W =0 aty=1
B B
E)ugl) n {“)vgl) 1 8u22) n 81}22) At v—0
Ay ox  mhir\ Oy Ox I
o _ 1 op”
- ty= 45
ox rm2h® Ox aty=0 (43)
Ty
T\ = —cos(Jx + 0) dd; at y = —1,
ary)
I ST
70 _ 7@ o1y +8ﬂl> _k oty +6T<12) at y =0 (46)
Lo gy ox  h\ Oy Ox =

In order to solve (35)(42), for the first order quantities it is
convenient to introduce stream function y in the following
form

‘ 7 (j) ) )
== g 0 ey @)

The stream function approach reduces the number of
dependent variables to be solved and also eliminates pressure
from the list of variables. Differentiate (36) with respect to y
and differentiate (37) with respect to x and then subtract
(36) with (37) which will result in the elimination of pressure
p(l). Similar procedure is opted for the elimination of pressure
pb) from (40) and (41). Egs. (35)—(42) after the elimination of
pél) and p§2>, can be expressed in terms of the stream function
in the form

Region-I

l//,gclx)l + l//”} + u lJ/H\ - lr// + uO l//\w - 'r//(xlv)\x

- l//?w - 2wA’Xy}' + GrTﬁv“) =0 (48)
Ty +uy T + g T = <7*11w 7)) (49)
Region-I1
l/_/g\)t + l//HI + uéz llb\}t ¢(2 (Z)I#W\ - l//\n)

— Uk -2, + G Tﬁ? =0 (50)
- kmC,
1 2T 4 T = (19 4 12) 51

where a suffix x or y represents derivative with respect to x or
V.

The corresponding boundary and interface conditions on
velocity and temperature reduces to

l//“) = cos(Ax + 0)140 , YW =0 aty=—1,

Ix _
0902 o e
_ @ g -
w_ W o v ¢

v, mhr’ Vi mhr’ 28 lﬁ Comr !
y=0
7 7 1 1) 7 7 7 1
U = 0+ ) gl =0+ 6T

R R

+ GrpR AT ) aty=0 (52)

T\ = —cos(ix + H)T(;)
7 = gy

k(T3 + T5)
== aty=0 (53)

at y = —1,

1 2) 1
" =17, 1)+

l\x

7

Ly =™
We assume stream function and temperature in the follow-

ing form

l//(/) _ 8et(/\+((]l ( ) T(/ . /x+m/)¢(1 ( ) fOI'j: 172 (54)

from which we infer

i(Ax-+ot)

vi(x,p,1) = e v (y) - (59)

where i is the imaginary unit.
In view of (54), (48)—(51) becomes
Region-I

U (x»}” t) = ¢&e ul(.V)v

(1) i 9. (1) 2 ,7,(1)
Vi — (za) +iduy’ + 22 )lpr,

(la))z + l/luol‘ + il P+ 2 )lb(l) - Grqﬁi_l) =0 (56)

. , 1
z(a)¢(]) + Augl)¢(l) + 17'&)!//(1)) _ b (_A2¢(1) + ¢£11)> (57)

Region-I1

(2) (2) 23,2
lﬁw.}. - (za) +idug’ 4 24 )np <)

(zw)2 + i) 4+ i2 42 )W Grpimr¢? =0 (8)

i(0p® + 207 + 210y
_kmCy i), 40
=P (—* o7+ 97) 59)

Boundary and interface conditions (52) and (53) can be
written in terms of Y and ¢¥ as

(1) (1)
8;)} :cos(wt—O)%, Yy =0aty=—1,
W@ cos(wr) duf)z) @
= Do —0aty=1
Oy h dy 3 0aty
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n' e v Yo + iy

m2hr

lp(Z !//” + 17!//(1 aty:O

mhr  mhr’

iy uo‘ (lluo + i+ A )lﬁj') + l//il}z — Gro

1
— (i/llﬁ(z)u(()i) - (z/lu(z) + zcu)lp Dy l// @ 4 1//})1

rm2h’
— Gl‘ﬂm21’2h3¢(2)> aty=0 (60)
1)
¢V = —cos(wt — 0) dzjz’j(j at y=—1,
P = _cos(wi) de)2> aty=1

h dy

P =90 o+ ing = (404 ig%) aty=0 (o))

We restrict our attention to the real parts of the solutions
for the perturbed quantities ¥,¢,u; and v;.
Consider only small values of A on substituting

ZA” o DY) =D 1, (62)

into (56)—(60) we obtain to the order of 4, the following set of
ordinary differential equations
Zeroth order equations

2
il — iPrwg,y =0
dy’®
d41ﬁ410 _ dz'pzlo _ Grd¢10 —0
dy dy dy
d ¢y ioPr
dy2 - kmC, ¢ =0
d4l//420 dz‘//zo — Grpl 2ddyy -0 (63)
dy dy* dy

First order equations

d2¢2” — iwPr¢,, = iPr <uél)¢10 + dTU!//m)

Sl () ot

d2¢221 _doPr i P <uf)2)¢20 dﬂoz '//20)

dy kmC, kmC,

el G ) comestt:

(64)

Zeroth order boundary and interface conditions in terms of
stream function and temperature are

(1)
% = cos(wt — 0)%, Yo =0aty=—1,
dh cos(wt) du'?
—Z;O: 1(1 ) 0,11120*0&}71
dpyy 1 dy
’ lplO l//207

dy = mhr dy mhr

K _ 1 &Yz _
= 3 > aty=0

dy m2h°r dy

B B
ddf;() - iw% —Groyy = ﬁ (ddf;() iw dw;o Gr, ,Hh1 Z(bzo) at y =0

a1y

¢ = —cos(wt —0)—2 at y = —1,

10 ( ) dy
b = cos(wr) de)z) aty—1

20 = =

h dy
d k d

10 = Pps % n 520 aty=0 (65)

The first order boundary and interface conditions in terms
of stream function and temperature are

dy dy
d)l]:()’ yp=0aty=— Tyzl_oﬂpzlzo aty=1
_ ¥ dy, _L s, dz‘//ll _ 1 dz‘//zl

dy — mhr dy’ dy*  mhr dy?

~d”§)l) _ydirg d3'/’11 . diy,
i—— — iy —— +— — zw—
& Yo " dy dy 3 dy

1 d“o . d%o d Vo
( v zuo dy +— dy3

- Groy,

d
— i — Grﬁh3m2r2¢21) aty=0
dy

¢ =0aty=—1,¢,, =0 aty=1

b1 = b, dj,;l + iy = (djjl + i‘/’zo) aty=0 (66)

The set of Egs. (31)—(34) subjected to boundary and inter-
face conditions (43) and (44) have been solved exactly for u(’)
and Tf)’), and the set of Eqgs. (63) and (64) subject to boundary
and interface conditions (65) and (66) have been solved exactly
for y; and ¢,(j = 1,2). The solutions are given in the appendix
section. From these solutions, the first order quantities can be
put in the form,

v = (w +i)" =y ] b= (4, + i)
- Or +/L¢11 (/: 172) (67)
Suffix r denotes the real part and i denotes the imaginary part

Considering only the real part, the expression for first order
velocity and temperature become
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uY) (x,,0) = < cos(Ax + wr) % + Asin(Ax + wt) dl>

dy
(68)
W (x,p, 1) = e(— MW sin(Ax + 1) — 2y, cos(Zx + 1)) (69)
T (x,y, 1) = e(cos(Jx + wt)dy — 2sin(Jx + wit) ;) (70)

The total solutions for the velocity and temperature become
the summation of the mean and perturbed parts.

3.1. Skin friction and Nusselt number

The shearing stress ., at any point in the fluid is given in non-
dimensional form by

2\ au gy
Ty = (po—o [ 70

At the wavy walls y = —1+ gcos(Ax + 0) and
y =142 the skin friction T, becomes

dul” dul”

_ R i(Ax+0) 0 -1 1 -1 2
T4 rl—i-?e(e dyz( )+dy( ) (72)
and

1, duf du

= Re| - nH+—=q

=1 4+¢ e(he dyz ( )+ a0 ( )) (73)

() @

. O 0 _ [ duy

respectively, where 7°, = < e and 1) = (
y=-1 ¥

The dimensionless Nusselt number is given by

KTy — T) (dTy) o
d= — (22([) Tl) < 2}}()}) + Re(ge:(Mert)d)(/)(y)))

or

'’ dT)(y)
KT, — T)) dy
At the wavy walls y = —1 + ecos(Ax + 0)and y =1 +
Eq. (74) assumes the form

Nu=—

+ Re (se[(;""+“”>¢(j) (y)) (74)

& c,os(/ X

Nu_, = Nu(i1
+ ¢Re <e’(”+”) LT (=1) + eltran &“) (_1)> (75)
dy
and
Nuy = Ni’ + ¢Re <% d;]f) (1) + efteten %;2) (1)) (76)
respectively, where Nu’, = (‘12{])) and Nu) = (?)
y=— y=1

where Re represents the real part.

Velocity and temperature solutions are numerically evalu-
ated for several sets of values of the parameters such as, Gras-
hof number Gr, viscosity ratio m, width ratio &, conductivity
ratio k, frequency parameter w and traveling thermal temper-
ature 0. Also, the wall skin friction 7_,,7; and the wall Nusselt
number Nu_;,Nu; are calculated numerically and some of the
qualitative interesting features are presented graphically.

4. Results and discussion

Analytical solution for the unsteady mixed convection of two
immiscible viscous fluids in a vertical wavy channel is ana-
lyzed. The non-linear equations are solved by a linearization
technique wherein the flow is assumed to be in two parts; a
mean part and a perturbed part. Exact solutions are obtained
for the mean part and the perturbed part is solved using the
long wave approximation. The continuity of velocity, pressure
gradient along the flow direction, temperature, shear stress and
heat flux across the interface are assumed. The solutions of zer-
oth order velocity ug and the zeroth order temperature 7, are
applicable to the case of a channel both of whose walls are flat.
The solutions for mean part (uy, 7o) and perturbed part (uy, vy,
T)) are evaluated numerically and represented graphically for
various governing parameters in Figs. 2—14. In all the graphs
density ratio, the ratio of thermal expansion coefficient, ratio
of specific heat at constant pressure, Prandtl number, wave
number, amplitude parameter, wf and Ax are fixed as 1, 1, 1,
0.7, 0.02, 0.02, n/4,7/2 respectively for all the computations,
whereas the Grashof number, viscosity ratio, width ratio, con-
ductivity ratio, frequency parameter and traveling thermal
temperature 6 are fixed as 5, 1, 1, 1, 10, 0 respectively for all
the graphs except the varying the parameters which are shown
in Figs. 2-14.

The behavior of the non-dimensional velocity with changes
in the Grashof number Gr is shown in Fig. 2. The effect of the
Grashof number on zeroth order velocity u is to increase the
velocity in both the regions. The effect of the Grashof number
on the first order velocity u; is to increase the velocity in re-
gion-I (—1 < y < 0.2 approximately) and then decreases in re-
gion-II 0.2 < y <1 as seen in Fig. 2b. The behavior of total
fluid velocity u is same as that of zeroth order velocity as seen
in Fig. 2c. Physically, an increase in the value of the Grashof
number means an increase in the buoyancy force which sup-
ports the motion. Fig. 2d depicts the effect of velocity v per-
pendicular to the channel length on the Grashof number and
it is noticed that the velocity v diminishes sharply as the Gras-
hof number increases.

Fig. 3 shows the effect of viscosity ratio m(=pu"/u®) on
the velocity. As the viscosity ratio m increases the zeroth order
velocity increases in both the regions, whereas its effect is more
dominant in the region-II when compared to region-I as seen
in Fig. 3a for values of m > 1. Fig. 3b depicts the variations
of viscosity ratio m on the first order velocity. As the viscosity
ratio m increases, first order velocity u; increases from y = —1
to y = 0.4 (approximately) and it decreases from y = 0.4 to 1
and its effect is more dominant near the right wavy wall. The
effect of viscosity ratio on total fluid velocity « shows the sim-
ilar nature as that for zeroth order velocity as seen in Fig. 3c.
Physically, as m increases, the fluid becomes more viscous in
region-I and hence velocity is reduced in region-I when com-
pared to region-II. Hence the velocity is more operative in re-
gion-II for variations of viscosity ratio. Fig. 3d shows the
behavior of the fluid velocity v perpendicular to the channel
length. It is noticed that as the viscosity ratio increases, v de-
creases in both the regions and the effect of viscosity ratio
are more effective in region-II compared to region-I.

The viscosity ratio m(=puP/u®) does not affect the zeroth
order temperature profiles as seen in Fig. 4a. From Fig. 4b it is
seen that the first order temperature 7 increases as the
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Figure 2 Velocity profiles for different values of Grashof number. (a) zeroth order, (b) first order, (c) total velocity in u and (d) totla
velocity in v.
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Figure 3  Velocity profiles for different values of viscosity ratio. (a) zeroth order, (b) first order, (c) total velocity in u and (d) totla
velocity in v.

viscosity ratio increases to the order of 1073, The effect of vis- The effect of width ratio parameter i(=h®/hD) on
cosity ratio on the total temperature 7 is almost identical to velocity is similar to the effect of viscosity ratio as shown in
that of zeroth order temperature as seen in Fig. 4c. Fig. 5. As the width ratio / increases zeroth order velocity
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Figure 4 Temperature profiles for different values of viscosity ratio. (a) zeroth order (b) first order and (c) total temperature.
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Figure 5 Velocity profiles for different values of width ratio. (a) zeroth order, (b) first order, (c) total velocity in « and (d) total velocity in

V.
increases in both the regions, however its effect is more dom- y = 0.4 approximately while for values of 0.4 <y <1 the
inant in the region-II compared to region-I as seen in Fig. 5a. fluid velocity u; decreases, and the effect of width ratio is

The effect of width ratio % on first order velocity u; (Fig. 5b) more effective on the right wavy wall as seen in Fig. Sb. It
shows that as h increases, u; increases from y = —1 to is observed from Fig. 5c that the total fluid velocity u is sim-
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Figure 6 Temperature profiles for different values of width ratio. (a) zeroth order, (b) first order and (c) total temperature.
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Figure 7  Velocity profiles for different values of conductivity ratio. (a) zeroth order, (b) first order, (c) total velocity in « and (d) total
velocity in v.

ilar to that on the zeroth order velocity uy. The effect of width The effect of width ratio / on the zeroth order temperature
ratio on velocity v decreases as the width ratio / increases as is to decrease the temperature in both regions as seen in
seen in Fig. 5d. Fig. 6a. The first order temperature decreases to the order
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Figure 9  Velocity profiles for different values of frequency parameter. (a) zeroth order, (b) first order, (c) total velocity in u and (d) cross
velocity v.

of 107 in both regions as width ratio / increases as seen in The effect of conductivity ratio k( = k(z)/k(l)) on the velocity
Fig. 6b. The effect of width ratio /& on the total temperature is similar to the effect of Grashof number as seen in Fig. 7.
T is similar to zeroth order temperature as seen in Fig. 6c. Fig. 7a shows that as the conductivity ratio k increases the
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Figure 11
and (d) total velocity in v.

zeroth order velocity increase in both the regions. The first order
velocity u; increases as the conductivity ratio k increases in re-

1.0

profiles for different values of frequency parameter. (a) zeroth order, (b) first order and (c) total temperature.

Lo

Velocity profiles for different values of traveling thermal temperature 6. (a) zeroth order, (b) first order, (c) total velocity in u

gion-I and decreases in region-II as seen in Fig. 7b. The effect
of conductivity ratio k on the total velocity u is similar to the
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zeroth order velocity ug as seen in Fig. 7c. The behavior of the
fluid velocity v perpendicular to the channel length decreases
as conductivity ratio k increases as seen in Fig. 7d.

The effect of the conductivity ratio k on zeroth order tem-
perature T is to increase the temperature in both the regions
as seen in Fig. 8a. The first order temperature 7 increases
as the conductivity ratio k increases in region-I (i.e. from
y=—1 to y=0.5 approximately) and decreases from
y = 0.5to 1 as seen in Fig. 8b. Here also the effect of conduc-
tivity ratio k on total temperature 7 is similar to the effect on
zeroth order temperature.

The effect of the frequency parameter w on the zeroth order
velocity u is invariant as seen in Fig. 9a. The effect of fre-
quency parameter on first order velocity u; decreases in re-
gion-I (—1 < y < 0 approximately) and increases in region-II
(0 < y < 1 approximately) as seen in Fig. 9b. There is no effect
of the frequency parameter on total velocity u as seen in
Fig. 9c. Fig. 9d shows the variations of velocity v perpendicu-
lar to the channel length. The velocity v increases as the fre-
quency parameter o increases to the order of 107%.

The effect of frequency parameter w is invariant on zeroth
order temperature as seen in Fig. 10a. As the frequency param-
eter o increases, the first order temperature decreases in both
the regions as seen in Fig. 10b. Here also the effect of fre-
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quency parameter o is invariant on the total temperature as
seen in Fig. 10c.

The variations of traveling thermal temperature  on zeroth
order velocity is invariant as seen in Fig. 11a. The first order
velocity u; decreases near the left wall (—1 < y < —0.4 approx-
imately) and increases from y = —0.4 to 1 (approximately) as
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Figure 13  Nusselt number profiles.
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traveling thermal temperature 0 increases as seen in Fig. 11b.
The values for first order velocity #; remain the same for
0 = 0,7/2 and 7,37/2. As the traveling thermal temperature 6
increases, total velocity u decreases slightly near the left wall
and the effect of traveling thermal temperature is invariant
from y = —0.5 to 1 as seen in Fig. 1lc. Fig. 11d shows the
variations of velocity v perpendicular to the channel length.
The velocity v increases as traveling thermal temperature 6
increases to the order of 107, The values for velocity v remain
the same for 0 = 0,7/2 and =, 37/2.

The variations of traveling thermal temperature 6 on zeroth
order temperature is invariant as seen in Fig. 12a. Fig. 12b

shows the variations of first order temperature. The first order
temperature decreases as traveling thermal temperature 0 in-
creases to the order of 107, Here also the values of 8 = 0,7/
2 and n,37/2 remain the same as seen in Fig. 12b. There is
no effect of traveling thermal temperature 0 on total tempera-
ture as seen in Fig. 12c.

The Nusselt number Nu is shown in Fig. 13. It is observed
that the effect of Grashof number Gr is invariant on Nusselt
number. The Nusselt number at the left wavy wall Nu_; is
invariant and Nusselt number at the right wavy wall Nu; de-
creases as viscosity ratio m increases. As the width ratio / in-
creases the Nusselt number at the left wall decreases and
increases at the right wall. The Nusselt number increases at
the left wall and decreases at the right wall as the conductivity
ratio k increases.

Fig. 14 shows the behavior of skin friction t at the channel
walls. The effect of increase in Grashof number is to increase
the skin friction at the left wall and decreases at the right wall.
The effect of viscosity ratio m, width ratio 4 and conductivity
ratio k increases, skin friction increases at the left wall, whereas
it decreases at the right wall.

Table 1 shows the variations of temperature on Grashof
number. The effect of Grashof number is invariant on zeroth
order temperature. As the Grashof number increases first or-
der temperature and total temperature increases to the order
of 107* as seen Table 1.

5. Conclusions

The Grashof number, viscosity ratio, width ratio, and conduc-
tivity ratio enhance the velocity parallel to the flow direction
and reversal effect is observed on the fluid velocity perpendic-
ular to the channel length. The frequency parameter and trav-
eling thermal temperature is invariant on the velocity parallel
to the flow direction and promotes the velocity perpendicular
to the flow direction. The Grashof number and viscosity ratio
are not operative on the temperature whereas width ratio re-
duces the temperature and conductivity ratio increases the
temperature field. The Nusselt number remains invariant on
Grashof number and viscosity ratio whereas the Nusselt num-
ber decreases at the left wall and increases at the right wall as
width ratio increases and conductivity ratio decreases. The
Grashof number, viscosity ratio, width ratio and conductivity
ratio promote the skin friction at the left wall and suppresses at
the right wall.

Table 1 Temperature values for different values of Grashof number.

y TO Tl T

Gr = 5,15,20 Gr =35 Gr =15 Gr =20 Gr =5 Gr =15 Gr =20
—1 0 0.005 0.005 0.005 0.005 0.005 0.005
—0.8 0.1 0.00353 0.00354 0.00354 0.10353 0.10354 0.10354
—0.6 0.2 0.00256 0.00257 0.00257 0.20256 0.20257 0.20257
—0.4 0.3 0.00195 0.00196 0.00197 0.30195 0.30196 0.30197
-0.2 0.4 0.00162 0.00163 0.00163 0.40162 0.40163 0.40163
0 0.5 0.00151 0.00152 0.00153 0.50151 0.50152 0.50153
0.2 0.6 0.00162 0.00163 0.00163 0.60162 0.60163 0.60163
0.4 0.7 0.00195 0.00196 0.00196 0.70195 0.70196 0.70196
0.6 0.8 0.00256 0.00256 0.00257 0.80256 0.80256 0.80257
0.8 0.9 0.00353 0.00353 0.00353 0.90353 0.90353 0.90353
1 1 0.005 0.005 0.005 1.005 1.005 1.005
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Appendix A. Solutions n = w_r(l +i), ¢=c1, ¢= M2

Ty =yt up

1) =y + o,
=Ly by Hdiy+do, uy) =6y + 1P+ dyy + dy
1o = cscosh(my) + ¢ sinh(ny),
¢y = c7c08h(n2y) + s sinh(n,y),
V1o = ds + dsy + dy cosh (my) + dg sinh (my) + I5 sinh (n,y)
+ lgcosh (n1y),
Vo = do + dioy + dyy cosh(myy) + dys sinh(my) + I7 sinh(ny)
+ Iy cosh(n;y),
¢11 = cocosh(my) + cig sinh(niy) + i(py + p,y + p3 cosh(my y)
+ p, sinh(m, y) 4 psy cosh (i y) + pey sinh(n;y) + p,»*
x cosh(ny) + pgy” sinh(my) + pey® cosh(my) + gy’
x sinh(my) + pyyy* cosh(my) + pypy* sinh(my)),
¢y = cnicosh(nmyy) + cipsinh(moy) +i(py; + pray + pis
x cosh(my) + pygsinh(my) + p;y cosh(my) + pigy
x sinh(n2p) + p1oy? cosh (1) + pyy? sinh () + pyyy*
x cosh(n2p) + pyry’ sinh(n2y) + pasy* cosh(moy) + pyyy*
x sinh(nyy)),
Yy, = dis + disy + discosh(m,y) + dig sinh(m, p) 4 i(psy”
+ Py’ + pagy* + paoy cosh(m ) + psey sinh(m )
+ ps1y? cosh(my) + psy” sinh(miy) + ps3y° cosh(m y)
+ psay’ sinh(m1y) + pssy* cosh(my) + psey” sinh(m,y)
+ psy cosh(nyp) + psg sinh(n1y) + psyy cosh(niy) + pgy
x sinh(my) + pg,y?* cosh(n,y) + pe,y* sinh(n,y) + pey?
x cosh(n;y) 4 pe,y’ sinh(n; ) 4 pesy* cosh(nyy) + peey?
x sinh(n,y)),
Wy = di7 + digy + dig cosh(my) + dyg sinh(m,y) + i(fzzy2
+ /233" + fouy* + fasy cosh(myy) + faey sinh(myy) + fr)?
x cosh(ny) + fogy? sinh(my) + foo)® cosh(my) + fao)?
sinh(m,y) + f31* cosh(m,y) + fi* sinh(m,y) + f33
cosh(nyy) + fa4 sinh(nyy) + fisy cosh(nyy) + fr6y
sinh(1,) + f37° cosh(n2y) + f33” sinh(n,p) + f30)°
x cosh(nay) + faoy sinh(my) + fuy* cosh(my) + fuy*
x sinh(n,y)).
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X
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h he
A= Grp’m*r*; ¢ = T ©° %7
Gre Gre
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Primary categories of fluid flow interface conditions between fluid-fluid and porous-fluid layers.
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