
Journal of Algebra 321 (2009) 2916–2925

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Cohomology of split group extensions and characteristic
classes

Nansen Petrosyan

Department of Mathematics, Catholic University of Leuven, Kortrijk, Belgium

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 July 2008
Available online 25 February 2009
Communicated by Michel Broué

Keywords:
Spectral sequence
Group cohomology

There are characteristic classes that are the obstructions to the
vanishing of the differentials in the Lyndon–Hochschild–Serre
spectral sequence of a split extension of an integral lattice L by
a group G . These characteristic classes exist in the rth page of the
spectral sequence provided that the differentials di = 0 for all i < r.
When L decomposes into a sum of G-sublattices, we show that
there are defining relations between the characteristic classes of L
and the characteristic classes of its summands.
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1. Introduction

Suppose G is a group and L is a finite rank integral ZG-lattice. Let Γ = L � G be the semidirect
product group induced by the action of G on L. Our objective is to analyze the split group exten-
sion 0 → L → Γ → G → 1 and its associated Lyndon–Hochschild–Serre spectral sequence {E∗,d∗}.
In [1] we showed that when G is a cyclic group of prime order, the spectral sequence with integral
coefficients collapses at E2 without extension problems. In fact, our proof stated in [1] applies not
only to integral coefficients, but to all coefficient modules in a certain category which we denote
by M F (L, G). This category is essential in the definition of characteristic classes (see Theorem 2.2). It
consists of all finite rank FΓ -lattices M on which L acts trivially, where F is a given principal ideal
domain. In particular, F as a trivial FΓ -module is an object of M F (L, G).

Let us now suppose that L decomposes into a sum of ZG-sublattices; L = L′ ⊕ L′′ . Let {E ′∗,d′∗} and
{E ′′∗,d′′∗} be the Lyndon–Hochschild–Serre spectral sequences associated to the respective semidirect
product groups L′

� G and L′′
� G . The goal of the present paper is to find necessary and sufficient

conditions on the latter defined spectral sequences such that {E∗,d∗} has no nonzero differentials up
to a given page.
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In Section 2, we define characteristic classes vt
r(L), introduced by Charlap, Vasquez and Sah (see [2]

and [3]), that are the obstructions to the vanishing of the differentials in {E∗,d∗}. These classes exist
and lie in the images of the differentials d0,t

r : E0,t
r (Ht(L, F )) → Er,t−r+1

r (Ht(L, F )) provided that the
differentials d∗,t

i vanish for all i < r and for all coefficient modules in M F (L, G). Our main result is
the following decomposition theorem.

Theorem 1.1. Let G be any group. Assume L′ and L′′ are ZG-lattices of finite rank and L = L′ ⊕ L′′ . Let r � 2
and t � 0.

(a) Suppose vi
k(L′) = v j

k(L′′) = 0 for all i, j � t and for all k < r. Then ds,m
2 = · · · = ds,m

r−1 = 0 for all s � 0, all
m � t, and all coefficient modules in M F (L, G). Additionally,

vt
r(L) =

∑
i+ j=t

((
C ′ r

j

)
∗
(

vi
r(L′)

) + (−1)i(C ′′ r
i

)
∗
(

v j
r (L′′)

))
.

(b) Suppose vt
k(L) = 0 for all k < r. Then d′ s,t

k = d′′ s,t
k = 0 for all s � 0, all k < r, and all coefficient modules

in M F (L, G). Additionally,

vt
r(L′) = D ′ r∗

(
vt

r(L)
)

and vt
r(L′′) = D ′′ r∗

(
vt

r(L)
)
.

In Section 3, we define the F G-equivariant homomorphisms C ′ r
j , C ′′ r

i , D ′ r , and D ′′ r that induce

the maps (C ′ r
j )∗ : E ′ s,i−r+1

2 → Es,t−r+1
2 , (C ′′ r

i )∗ : E ′′ s, j−r+1
2 → Es,t−r+1

2 , D ′ r∗ : Es,t−r+1
2 → E ′ s,t−r+1

2 , and

D ′′ r∗ : Es,t−r+1
2 → E ′′ s,t−r+1

2 , respectively. The homomorphisms C ′ 2
j and C ′′ 2

i were first considered by
Charlap and Vasquez in [2]. They showed that the sum formula holds when r = 2. We use a different
approach to generalize this result to all pages of the spectral sequence and also to prove a converse.

The problem of establishing the collapse of {E∗,d∗} in general can be a difficult one. The spectral
sequence can have nonzero differentials even when G is abelian. For instance, Totaro proved in [4]
that for any prime number p and G = C2

p , there is a semidirect product group Γ = L � C2
p such that

in the associated Lyndon–Hochschild–Serre spectral sequence with Zp coefficients there always exist
nonzero differentials at E p or later.

A question, first posed by Adem (see [1]), that is still open is whether the spectral sequence
collapses integrally at E2 without extension problems when G is an arbitrary finite cyclic group. In
view of our results, we can make the following:

Conjecture 1.2. Let Cn be a cyclic group of order n and let L be a finite rank integral lattice. The Lyndon–
Hochschild–Serre spectral sequence {E∗,d∗} of any split group extension 0 → L → Γ → Cn → 1 collapses
at E2 for all coefficient modules in M F (L, Cn).

Note that part (a) of Theorem 1.1 reduces this conjecture to the case where L is an indecomposable
ZCn-lattice (see Corollary 4.2).

2. Preliminary results

Henceforth, let G be any group and let L be any finite rank integral ZG-lattice. Denote by Γ the
associated semidirect product L � G . Suppose F is a principal ideal domain. For each FΓ -module M
we have the Lyndon–Hochschild–Serre spectral sequence

E p,q
2 (M) = H p(

G, Hq(L, M)
) �⇒ H p+q(Γ, M).

In the proof of our main result, we make use of the multiplicative structure of this spectral se-
quence. Namely, any Γ -pairing of FΓ -modules A, B , and C ,
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· : A ⊗F B → C,

determines an F -pairing

E p,q
r (A) ⊗F Es,t

r (B) → E p+s,q+t
r (C).

In addition, for the differential dr and for each a ∈ E p,q
r (A) and b ∈ Es,t

r (B) we have the product
formula

dp+s,q+t
r (a · b) = dp,q

r (a) · b + (−1)p+qa · ds,t
r (b).

We denote by M F (L, G) the category of all FΓ -modules M , such that M is a finitely gener-
ated free F -module and L acts trivially on M . In particular, F with a trivial Γ -action is a module
in this category. M F (L, G) has the property that if M ∈ M F (L, G), then Hi(L, M) and Hi(L, M) ∼=
HomF (Hi(L, F ), M) are also in M F (L, G). Observe that the projection of Γ onto G induces an equiv-
alence between this category and the category of all finite rank F G-lattices.

Let t � 0 and r � 2. Set M = Ht(L, F ) ∼= ∧t
(L) ⊗ F . Assume d0,t

k = 0 for all 2 � k � r − 1. By
applying the Universal Coefficient Theorem it follows

E0,t
r

(
Ht(L, F )

) = E0,t
2

(
Ht(L, F )

)
= H0(G, Ht(L, Ht(L, F )

))
∼= H0(G,HomF

(
Ht(L, F ), Ht(L, F )

))
(by UCT)

= HomF G
(

Ht(L, F ), Ht(L, F )
)

∼= HomF G

(∧t
(L) ⊗ F ,

∧t
(L) ⊗ F

)
.

Definition 2.1. With the preceding assumptions, let idt : ∧t
(L)⊗ F → ∧t

(L)⊗ F be the identity homo-
morphism. Identifying along the above isomorphisms, denote by [ f ] the class in E0,t

r (Ht(L, F )) corre-
sponding to a map f ∈ HomF G(

∧t
(L) ⊗ F ,

∧t
(L) ⊗ F ). Then vt

r(L) := d0,t
r ([idt]) ∈ Er,t−r+1

r (Ht(L, F )) is
said to be a characteristic class of the spectral sequence {Er,dr}.

Characteristic classes were first considered by Charlap and Vasquez in [2], but only in the case
when r = 2. Sah in [3] extended their definition to all r � 2 by proving the following key theorem.

Theorem 2.2. (See Sah, 1972, [3].) Let {E∗,d∗} be the Lyndon–Hochschild–Serre spectral sequence of the ex-
tension 0 → L → Γ → G → 1. Suppose there exist integers r � 2 and t � 0 such that ds,t

2 = · · · = ds,t
r−1 = 0

for all s � 0 and for all coefficient modules in M F (L, G).

(a) There is a canonical epimorphism

θ : Es,0
r

(
Ht(L, M)

) → Es,t
r (M) for all s � 0 and for all M ∈ M F (L, G).

(b) We have

ds,t
r (x) = (−1)s y · vt

r(L),

for all x ∈ Es,t
r (M), all M ∈ M F (L, G), and all y ∈ Es,0

r (Ht(L, M)) with θ(y) = x.
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(c) Let σ : H → G be a group homomorphism which converts L into a ZH-module. Assume ds,t
2 = · · · =

ds,t
r−1 = 0 holds for all s � 0 and for all objects in M F (L, H). The characteristic class wt

r(L) for the category
M F (L, H) is then the image of vt

r(L) under the map induced on the spectral sequences.

Note that, with the assumptions of the theorem, characteristic classes vt
r(L) are obstructions to

the vanishing of the differentials ds,t
r for all integers s � 0. The following corollary is an immediate

consequence of Sah’s theorem.

Corollary 2.3. Let t � 0. The Lyndon–Hochschild–Serre spectral sequence {E∗,d∗} has ds,t
r = 0 for all s � 0, all

r < n, and all M ∈ M F (L, G) if and only if the edge differentials d0,t
r : E0,t

r (Ht(L, F )) → Er,t−r+1
r (Ht(L, F ))

are zero for all r < n.

Corollary 2.4. Suppose ϕ : L → Γ is the natural inclusion. Given an integer t � 0, the following statements
are equivalent.

(a) In {E∗,d∗}, the differentials ds,t
r vanish for all r, s � 0 and all M ∈ M F (L, G).

(b) ϕ∗ : Ht(Γ, M) → Ht(L, M) maps onto Ht(L, M)G for all M ∈ M F (L, G).
(c) ϕ∗ : Ht(Γ, Ht(L, F )) → Ht(L, Ht(L, F )) maps onto the G-invariants Ht(L, Ht(L, F ))G .

Proof. Clearly (b) implies (c). Note that the map ϕ∗ is given by the composition

Ht(Γ, M) � E0,t∞ (M) = E0,t
t+2(M) ⊂ · · · ⊂ E0,t

2 (M) = Ht(L, M)G ⊂ Ht(L, M).

If ds,t
r = 0 for all r, s � 0 and all M ∈ M F (L, G), then E0,t∞ (M) = E0,t

t+2(M) = · · · = E0,t
2 (M) for all M ∈

M F (L, G). Hence, (a) implies (b). To prove that (a) follows from (c), assume ϕ∗ : Ht(Γ, Ht(L, F )) →
Ht(L, Ht(L, F ))G is onto. Then by the above composition we have E0,t∞ (Ht(L, F )) = E0,t

t+2(Ht(L, F )) =
· · · = E0,t

2 (Ht(L, F )). This shows that d0,t
r : E0,t

r (Ht(L, F )) → Er,t−r+1
r (Ht(L, F )) is zero for all r � 2. By

the previous corollary ds,t
r = 0 for all s � 0, r � 2, and M ∈ M F (L, G). �

3. Decomposition theorem

Suppose L is a direct sum of ZG-sublattices L′ and L′′ . In this section we derive relations between
the characteristic classes of L and the characteristic classes of L′ and L′′ .

For convenience, we use
∧∗

(L) to denote
∧∗

(L) ⊗ F . Recall that there is a standard F G-module
decomposition

∧n
(L) ∼=

⊕
i+ j=n

∧i
(L′) ⊗

∧ j
(L′′).

Definition 3.1. Given integers i, j � 0 and r � 1, define F G-equivariant homomorphisms

C ′ r
j : HomF

(∧i
(L′),

∧i+r−1
(L′)

)
→ HomF

(∧i+ j
(L),

∧i+ j+r−1
(L)

)

by

C ′ r
j ( f )(x ⊗ y) =

{
f (x) ⊗ y if x ∈ ∧i

(L′) and y ∈ ∧ j
(L′′),

0 otherwise,

and
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C ′′ r
i : HomF

(∧ j
(L′′),

∧ j+r−1
(L′′)

)
→ HomF

(∧i+ j
(L),

∧i+ j+r−1
(L)

)

by

C ′′ r
i ( f )(x ⊗ y) =

{
x ⊗ f (y) if x ∈ ∧i

(L′) and y ∈ ∧ j
(L′′),

0 otherwise.

Let Γ ′ = L′
� G and Γ ′′ = L′′

� G . There are associated split exact sequences of groups

0 → L′ → Γ ′ → G → 1 and 0 → L′′ → Γ ′′ → G → 1.

Suppose v∗∗(L′) and v∗∗(L′′) are the respective characteristic classes of the Lyndon–Hochschild–Serre
spectral sequences {E ′∗,d′∗} and {E ′′∗,d′′∗} corresponding to these extensions. Let ι′ : L′ → L be the natu-
ral inclusion and let p′ : L → L′ be the natural projection. Similarly, define ι′′ : L′′ → L and p′′ : L → L′′ .
As a straightforward application of the definitions, we obtain the following lemma.

Lemma 3.2. The map C ′ r
0 : HomF (

∧i
(L′),

∧i+r−1
(L′)) → HomF (

∧i
(L),

∧i+r−1
(L)) is given by the compo-

sition p′ ∗ ◦ ι′∗ , where

HomF

(∧i
(L′),

∧i+r−1
(L′)

)
ι′∗−→ HomF

(∧i
(L′),

∧i+r−1
(L)

)
p′ ∗

−→ HomF

(∧i
(L),

∧i+r−1
(L)

)
,

and C ′′ r
0 is the composition p′′ ∗ ◦ ι′′∗ , where

HomF

(∧ j
(L′′),

∧ j+r−1
(L′′)

)
ι′′∗−→ HomF

(∧ j
(L′′),

∧ j+r−1
(L)

)
p′′ ∗
−→ HomF

(∧ j
(L),

∧ j+r−1
(L)

)
.

Proof. Suppose f ∈ HomF (
∧i

(L′),
∧i+r−1

(L′)). For any x ∈ ∧i
(L′) and y ∈ ∧0

(L′′), (p′ ∗ ◦ ι′∗)( f )(x ⊗
y) = y(ι′∗( f )(x)) = y( f (x)⊗ 1) = f (x)⊗ y = C ′ r

0 ( f )(x ⊗ y). The second assertion of the lemma follows
analogously. �
Definition 3.3. Given integers i, j � 0 and r � 1, let

∧i+r−1 p′ : ∧i+r−1
(L) → ∧i+r−1

(L′) and∧ j+r−1 p′′ : ∧ j+r−1
(L) → ∧ j+r−1

(L′′) be the maps induced by the projections p′ and p′′ , respec-
tively. Define F G-equivariant homomorphisms

D ′ r : HomF

(∧i
(L),

∧i+r−1
(L)

)
→ HomF

(∧i
(L′),

∧i+r−1
(L′)

)

by

D ′ r( f )(x) =
∧i+r−1

p′( f (x ⊗ 1)
)

for all x ∈
∧i

(L′),

and

D ′′ r : HomF

(∧ j
(L),

∧ j+r−1
(L)

)
→ HomF

(∧ j
(L′′),

∧ j+r−1
(L′′)

)

by

D ′′ r( f )(y) =
∧ j+r−1

p′′( f (1 ⊗ y)
)

for all y ∈
∧ j

(L′′).
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Lemma 3.4. The map D ′ r is given by the composition p′∗ ◦ ι′ ∗ , where

Hom
(∧i

(L),
∧i+r−1

(L)
)

ι′ ∗−→ Hom
(∧i

(L′),
∧i+r−1

(L)
) p′∗−→ Hom

(∧i
(L′),

∧i+r−1
(L′)

)
,

and D ′′ r is the composition p′′∗ ◦ ι′′ ∗ , where

Hom
(∧ j

(L),
∧ j+r−1

(L)
)

ι′′ ∗−→ Hom
(∧ j

(L′′),
∧ j+r−1

(L)
) p′′∗−→ Hom

(∧ j
(L′′),

∧ j+r−1
(L′′)

)
.

Proof. This is an immediate consequence of the definitions of D ′ r and D ′′ r . �
Proposition 3.5. Let i � 0 and r � 2. Suppose E ′ s,t

r (M) = E ′ s,t
2 (M) and Es,t

r (Hi(L, F )) = Es,t
2 (Hi(L, F )) when

(s, t) = (0, i) and when (s, t) = (r, i − r + 1), for M = Hi(L′, F ) and for M = Hi(L, F ). Then d0,i
r ◦ (C ′ 1

0 )∗ =
(C ′ r

0 )∗ ◦ d′ 0,i
r and d′ 0,i

r ◦ D ′ 1∗ = D ′ r∗ ◦ d0,i
r .

Proof. The first claim asserts that the following diagram commutes.

H0(G, Hi(L′, Hi(L′, F )))
d′ 0,i

r−−−−→ Hr(G, Hi−r+1(L′, Hi(L′, F )))

(C ′ 1
0 )∗

⏐⏐� (C ′ r
0 )∗

⏐⏐�
H0(G, Hi(L, Hi(L, F )))

d0,i
r−−−−→ Hr(G, Hi−r+1(L, Hi(L, F )))

By Lemma 3.2, we know that the map (C ′ ∗
0 )∗ is induced by the inclusion ι′ : L′ → L and the projection

p′ : L → L′ . Hence, this diagram is the outer square of the commutative diagram below.

H0(G, Hi(L′, Hi(L′, F )))
d′ 0,i

r−−−−→ Hr(G, Hi−r+1(L′, Hi(L′, F )))

ι′∗
⏐⏐� ι′∗

⏐⏐�
H0(G, Hi(L′, Hi(L, F )))

d′ 0,i
r−−−−→ Hr(G, Hi−r+1(L′, Hi(L, F )))

p′ ∗
⏐⏐� p′ ∗

⏐⏐�
H0(G, Hi(L, Hi(L, F )))

d0,i
r−−−−→ Hr(G, Hi−r+1(L, Hi(L, F )))

The second claim follows by a similar argument using Lemma 3.4. �
As previously noted, the category M F (L, G) can be identified with the category of all finite rank

F G-lattices. In view of this, we will not distinguish between M F (L′, G), M F (L′′, G), and M F (L, G).

Lemma 3.6. There are natural morphisms of spectral sequences π ′ ∗ : E ′
r → Er , φ′ ∗ : Er → E ′

r and
π ′′ ∗ : E ′′

r → Er , φ′′ ∗ : Er → E ′′
r , such that for all r � 2, all s � 0, and all coefficient modules in M F (L, G),

d′ s,t
r = φ′ ∗ ◦ ds,t

r ◦ π ′ ∗ and d′′ s,t
r = φ′′ ∗ ◦ ds,t

r ◦ π ′′ ∗.

Proof. We observe that the map ι′ induces a natural inclusion φ′ : Γ ′ → Γ and the map p′ induces
a natural projection π ′ : Γ → Γ ′ such that the composition π ′ ◦ φ′ is the identity map on Γ ′ . Let
ϕ : L → Γ and ϕ′ : L′ → Γ ′ be the canonical inclusions. It follows that φ′ ◦ ϕ′ = ϕ ◦ ι′ and π ′ ◦ ϕ =
ϕ′ ◦ p′ . Hence, the homomorphisms φ′ and π ′ give rise to spectral sequence morphisms φ′ ∗ : E∗ → E ′∗
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and π ′ ∗ : E ′∗ → E∗ , such that φ′ ∗ ◦ π ′ ∗ is the identity morphism on {E ′∗,d′∗}. Then, d′ s,t
r = φ′ ∗ ◦ π ′ ∗ ◦

d′ s,t
r = φ′ ∗ ◦ ds,t

r ◦ π ′ ∗ . Analogously, ι′′ and p′′ induce an inclusion φ′′ : Γ ′′ → Γ and a projection
π ′′ : Γ → Γ ′′ , respectively, such that the composition π ′′ ◦ φ′′ is the identity map on Γ ′′ and d′′ s,t

r =
φ′′ ∗ ◦ ds,t

r ◦ π ′′ ∗ . �
We are now ready to prove our main result.

Theorem 3.7. Recall that G is an arbitrary group, and that L is a ZG-lattice of finite rank that decomposes into
a direct sum of the ZG-lattices L′ and L′′ . Let r � 2 and t � 0.

(a) Suppose vi
k(L′) = v j

k(L′′) = 0 for all i, j � t and for all k < r. Then ds,m
2 = · · · = ds,m

r−1 = 0 for all s � 0, all
m � t, and all coefficient modules in M F (L, G). Additionally,

vt
r(L) =

∑
i+ j=t

((
C ′ r

j

)
∗
(

vi
r(L′)

) + (−1)i(C ′′ r
i

)
∗
(

v j
r (L′′)

))
.

(b) Suppose vt
k(L) = 0 for all k < r. Then d′ s,t

k = d′′ s,t
k = 0 for all s � 0, all k < r, and all coefficient modules

in M F (L, G). Additionally,

vt
r(L′) = D ′ r∗

(
vt

r(L)
)

and vt
r(L′′) = D ′′ r∗

(
vt

r(L)
)
.

Proof. To show part (a), we will use induction on k � 2 to prove that vm
k (L) satisfies the sum formula

for all m � t and all k � r. For each k < r, since vi
k(L′) = v j

k(L′′) = 0 for all i, j � t , this will imply
vm

k (L) = 0 and hence, by Theorem 2.2(b), ds,m
k = 0 for all s � 0, all m � t , and all M ∈ M F (L, G).

Suppose ds,m
2 = · · · = ds,m

k−1 = 0 for all s � 0, all m � t , and all M ∈ M F (L, G). Recall that vm
k (L) =

d0,m
k ([idm]), where idm ∈ HomF G(

∧m
(L),

∧m
(L)) is the identity map. Similarly, vi

k(L′) = d′ 0,i
k ([id′ i])

and v j
k(L′′) = d′′ 0, j

k ([id′′ j]). Consider the decomposition idm = ∑
i+ j=midi j , where idi j : ∧i+ j

(L) →∧i+ j
(L) is the F -linear map given by

idi j(x ⊗ y) =
{

x ⊗ y if x ∈ ∧i
(L′) and y ∈ ∧ j

(L′′),
0 otherwise.

Given i, j � 0, let x ∈ ∧i
(L′) and y ∈ ∧ j

(L′′). Then, idi j(x⊗ y) = x⊗ y = (x⊗1)∧(1⊗ y) = C ′ 1
0 (id′ i)(x⊗

1) ∧ C ′′ 1
0 (id′′ j)(1 ⊗ y). This implies [idi j] = (C ′ 1

0 )∗([id′ i]) · (C ′′ 1
0 )∗([id′′ j]) ∈ H0(G, Hi+ j(L, Hi+ j(L, F ))),

and thus

[
idm] =

∑
i+ j=m

(
C ′ 1

0

)
∗
([

id′ i]) · (C ′′ 1
0

)
∗
([

id′′ j]).
By applying the product formula for the differentials, we compute

vm
k (L) = d0,m

k

( ∑
i+ j=m

(
C ′ 1

0

)
∗
([

id′ i]) · (C ′′ 1
0

)
∗
([

id′′ j]))

=
∑

i+ j=m

d0,m
k

((
C ′ 1

0

)
∗
([

id′ i]) · (C ′′ 1
0

)
∗
([

id′′ j]))

=
∑

i+ j=m

(
d0,i

k

((
C ′ 1

0

)
∗
([

id′ i])) · (C ′′ 1
0

)
∗
([

id′′ j]) + (−1)i(C ′ 1
0

)
∗
([

id′ i]) · d0, j
k

((
C ′′ 1

0

)
∗
([

id′′ j])))
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3.5=
∑

i+ j=m

((
C ′k

0

)
∗
(
d′ 0,i

k

([
id′ i])) · (C ′′ 1

0

)
∗
([

id′′ j]) + (−1)i(C ′ 1
0

)
∗
([

id′ i]) · (C ′′k
0

)
∗
(
d′′ 0, j

k

([
id′′ j])))

=
∑

i+ j=m

((
C ′k

0

)
∗
(

vi
k(L′)

) · (C ′′ 1
0

)
∗
([

id′′ j]) + (−1)i(C ′ 1
0

)
∗
([

id′ i]) · (C ′′k
0

)
∗
(

v j
k(L′′)

))

=
∑

i+ j=m

((
C ′k

j

)
∗
(

vi
k(L′)

) + (−1)i(C ′′k
i

)
∗
(

v j
k(L′′)

))
.

The last equality follows from the definitions of C ′ ∗∗ and C ′′ ∗∗ and the fact that id′ i and id′′ j are
identity maps.

To prove (b), we will use induction on k � 2 to show that vt
k(L′) = D ′ r∗ (vt

k(L)) and vt
k(L′′) =

D ′′ r∗ (vt
k(L)) for all k � r. By Theorem 2.2, for each k < r and for all s � 0 this will imply that

d′ s,t
k = d′′ s,t

k = 0 for all coefficient modules in M F (L, G). Note that this assertion also follows from
Lemma 3.6.

For the identity map id′ t : ∧t
(L′) → ∧t

(L′), we have id′ t(x) = x = ∧t p′(x ⊗ 1) = ∧t p′(idt(x ⊗
1)) = D ′ 1(idt)(x) for all x ∈ ∧t

(L′). This implies [id′ t] = D ′ 1∗ ([idt]) ∈ E ′ 0,t
k (Ht(L′, F )). Thus, it follows

vt
k(L′) = d′ 0,t

k

([
id′ t]) = d′ 0,t

k ◦ D ′ 1∗
([

idt]) 3.5= D ′k∗ ◦ d0,t
k

([
idt]) = D ′k∗

(
vt

k(L)
)
.

By an analogous argument, vt
k(L′′) = D ′′k∗ (vt

k(L)). �
Remark 3.8. Using the same assumptions as in Theorem 3.7(a), the sum formula can be simplified.
Since E ′ r,i−r+1

r = E ′′ r, j−r+1
r = 0, vi

r(L′) = v j
r (L′′) = 0 hold a priori for all i, j < r − 1. It is an easy

exercise to check that d′ 0,r−1
r = 0 and d′′ 0,r−1

r = 0 for all M ∈ M F (L, G), since they are differentials
with target in the 0th row (see Proposition 1, [3]). Therefore, vr−1

r (L′) = vr−1
r (L′′) = 0 and we have

vt
r(L) =

∑
i+ j=t

((
C ′ r

j

)
∗
(

vi
r(L′)

) + (−1)i(C ′′ r
i

)
∗
(

v j
r (L′′)

))

=
∑

i+ j=t−r

(
C ′ r

j

)
∗
(

vi+r
r (L′)

) +
∑

i+ j=t−r

(−1)i(C ′′ r
i

)
∗
(

v j+r
r (L′′)

)

=
∑

i+ j=t−r

((
C ′ r

j

)
∗
(

vi+r
r (L′)

) + (−1)i(C ′′ r
i

)
∗
(

v j+r
r (L′′)

))
.

4. Some corollaries

Theorem 3.7 has particularly interesting applications if characteristic classes of the ZG-lattices L′ ,
L′′ , and L are viewed as obstructions to the vanishing of the differentials in the associated Lyndon–
Hochschild–Serre spectral sequences. We use the same notation as before.

Corollary 4.1. Let r � 2. If vi
k(L′) = v j

k(L′′) = 0 for all i, j ∈ [k, r] and for all k < r, then ds,m
2 = · · · = ds,m

r−1 = 0
for all s � 0, all m � r, and all M ∈ M F (L, G). Moreover,

vr
r(L) = (

C ′ r
0

)
∗
(

vr
r(L′)

) + (
C ′′ r

0

)
∗
(

vr
r(L′′)

)
.

Proof. This is a direct consequence of Theorem 3.7 and the preceding remark. �
A consequence of Lemma 3.6 is the fact that when the differentials in the Lyndon–Hochschild–

Serre spectral sequence {E∗,d∗} are all zero, the same is true for the spectral sequences corresponding
to the ZG-sublattices L′ and L′′ . The next corollary gives us a converse.
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Corollary 4.2. Suppose vt
p(L′) = vt

q(L′′) = 0 for all p � dim(L′), all q � dim(L′′), and all t � 0. Then ds,t
k = 0

for all M ∈ M F (L, G), all s, t � 0, and all k � 2. Moreover, if in addition {E∗,d∗} has no extension problems,
then for every n � 0 and for all M ∈ M F (L, G) we have

Hn(Γ, M) =
⊕

i+ j=n

Hi(G, H j(L, M)
)
.

Proof. Since vt
p(L′) = d′ 0,t

p ([id′ t]) ∈ E p,t−p+1
p (Ht(L′, F )), this class lies in the image of the map

d′ 0,t
p : H0(G, Ht(L′, Ht(L′, F )

)) → H p(
G, Ht−p+1(L′, Ht(L′, F )

))
.

Note that d′ 0,t
p = 0 when t > dim(L′) or p > t + 1. If p = t + 1, then d′ 0,t

t+1 = 0, since it is a differential
with a target in the 0th row (see Proposition 1, [3]). Therefore, if v∗

p(L′) = 0 for all p � dim(L′), then
all characteristic classes of the spectral sequence {E ′∗,d′∗} are zero. A similar argument shows that all
characteristic classes of {E ′′∗,d′′∗} are zero when v∗

q(L′′) = 0 for all q � dim(L′′). �
Corollary 4.3. Let t � 0. Set Γ ′ = L′

� G and Γ ′′ = L′′
� G. Let ϕ′ : L′ → Γ ′ , ϕ′′ : L′′ → Γ ′′ , and ϕ : L → Γ

be the natural inclusions.

(a) If ϕ′ ∗ : Hm(Γ ′, Hm(L′, F )) → Hm(L′, Hm(L′, F ))G and ϕ′′ ∗ : Hm(Γ ′′, Hm(L′′, F )) → Hm(L′′,
Hm(L′′, F ))G are surjective for all m � t, then ϕ∗ : Hm(Γ, M) → Hm(L, M)G is surjective for all m � t
and for all M ∈ M F (L, G).

(b) If ϕ∗ : Ht(Γ, M) → Ht(L, M)G is surjective, then ϕ′ ∗ : Ht(Γ ′, M) → Ht(L′, M)G and
ϕ′′ ∗ : Ht(Γ ′′, M) → Ht(L′′, M)G are surjective for all M ∈ M F (L, G).

Proof. To prove (a), we observe that Corollary 2.4 implies vi
r(L′) = v j

r (L′′) = 0 for all r � 0 and for
all i, j � t . Then, by Theorem 3.7, ds,m

r = 0 for all r, s � 0, all m � t , and all coefficient modules in
M F (L, G). Applying again Corollary 2.4 finishes the proof.

For part (b), let ι′ ∗ : Ht(L, M)G → Ht(L′, M)G , φ′ ∗ : Ht(Γ, M) → Ht(Γ ′, M), and p′ ∗ : Ht(L′, M)G →
Ht(L, M)G be the induced maps of the inclusions ι′ : L′ → L, φ′ : Γ ′ → Γ , and the projection
p′ : L → L′ , respectively. Then, we have ϕ′ ∗ ◦ φ′ ∗ = ι′ ∗ ◦ ϕ∗ . Since ι′ ∗ ◦ p′ ∗ is the identity map on
Ht(L′, M)G , ι′ ∗ is surjective and hence ι′ ∗ ◦ ϕ∗ is surjective. The previous equality shows that ϕ′ ∗ is
also surjective. Similarly, it follows that ϕ′′ ∗ is surjective. �

Given an arbitrary finite rank integral ZG-lattice L, Lieberman’s result (see Theorem 4, [3]) states
that in the associated Lyndon–Hochschild–Serre spectral sequence {E∗,d∗}, for any s, t � 0 and r � 2,
the image of the differential ds,t

r is a torsion group annihilated by the integers mt−r+1(mr−1 − 1) for
all m ∈ Z. Using this fact, it was proved in [3] that if F is a field of nonzero characteristic p, then
ds,t

r = 0 for all s, t � 0 and all r < p. The next corollary follows from combining this result with the
sum formula of Remark 3.8.

Corollary 4.4. Let F be a field of nonzero characteristic p. Assume L′ and L′′ are ZG-lattices of finite rank and
L = L′ ⊕ L′′ .

(a) ds,t
r = 0 for all s, t � 0, all r < p, and all M ∈ M F (L, G).

(b) ds,t
p (x) = (−1)s y ·∑i+ j=t−p((C ′ p

j )∗(vi+p
p (L′))+ (−1)i(C ′′ p

i )∗(v j+p
p (L′′))) for all M ∈ M F (L, G), for all

x ∈ Es,t
p (M), and for all y ∈ Es,0

p (Ht(L, M)) such that θ(y) = x.
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