Journal of Algebra 321 (2009) 2916-2925

Cohomology of split group extensions and characteristic classes

Nansen Petrosyan

Department of Mathematics, Catholic University of Leuven, Kortrijk, Belgium

ARTICLE INFO

Article history: Received 7 July 2008 Available online 25 February 2009 Communicated by Michel Broué

Keywords: Spectral sequence Group cohomology

ABSTRACT

There are characteristic classes that are the obstructions to the vanishing of the differentials in the Lyndon–Hochschild–Serre spectral sequence of a split extension of an integral lattice *L* by a group *G*. These characteristic classes exist in the *r*th page of the spectral sequence provided that the differentials $d_i = 0$ for all i < r. When *L* decomposes into a sum of *G*-sublattices, we show that there are defining relations between the characteristic classes of *L* and the characteristic classes of its summands.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Suppose *G* is a group and *L* is a finite rank integral $\mathbb{Z}G$ -lattice. Let $\Gamma = L \rtimes G$ be the semidirect product group induced by the action of *G* on *L*. Our objective is to analyze the split group extension $0 \rightarrow L \rightarrow \Gamma \rightarrow G \rightarrow 1$ and its associated Lyndon–Hochschild–Serre spectral sequence $\{E_*, d_*\}$. In [1] we showed that when *G* is a cyclic group of prime order, the spectral sequence with integral coefficients collapses at E_2 without extension problems. In fact, our proof stated in [1] applies not only to integral coefficients, but to all coefficient modules in a certain category which we denote by $\mathcal{M}_F(L, G)$. This category is essential in the definition of characteristic classes (see Theorem 2.2). It consists of all finite rank $F\Gamma$ -lattices *M* on which *L* acts trivially, where *F* is a given principal ideal domain. In particular, *F* as a trivial $F\Gamma$ -module is an object of $\mathcal{M}_F(L, G)$.

Let us now suppose that *L* decomposes into a sum of $\mathbb{Z}G$ -sublattices; $L = L' \oplus L''$. Let $\{E'_*, d'_*\}$ and $\{E''_*, d''_*\}$ be the Lyndon–Hochschild–Serre spectral sequences associated to the respective semidirect product groups $L' \rtimes G$ and $L'' \rtimes G$. The goal of the present paper is to find necessary and sufficient conditions on the latter defined spectral sequences such that $\{E_*, d_*\}$ has no nonzero differentials up to a given page.

0021-8693/\$ – see front matter $\hfill \ensuremath{\mathbb{C}}$ 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2009.02.009

E-mail address: nansen.petrosyan@kuleuven-kortrijk.be.

In Section 2, we define characteristic classes $v_t^r(L)$, introduced by Charlap, Vasquez and Sah (see [2] and [3]), that are the obstructions to the vanishing of the differentials in $\{E_*, d_*\}$. These classes exist and lie in the images of the differentials $d_r^{0,t} : E_r^{0,t}(H_t(L,F)) \rightarrow E_r^{r,t-r+1}(H_t(L,F))$ provided that the differentials $d_i^{*,t}$ vanish for all i < r and for all coefficient modules in $\mathcal{M}_F(L,G)$. Our main result is the following decomposition theorem.

Theorem 1.1. Let G be any group. Assume L' and L'' are $\mathbb{Z}G$ -lattices of finite rank and $L = L' \oplus L''$. Let $r \ge 2$ and $t \ge 0$.

(a) Suppose $v_k^i(L') = v_k^j(L'') = 0$ for all $i, j \le t$ and for all k < r. Then $d_2^{s,m} = \cdots = d_{r-1}^{s,m} = 0$ for all $s \ge 0$, all $m \le t$, and all coefficient modules in $\mathcal{M}_F(L, G)$. Additionally,

$$v_r^t(L) = \sum_{i+j=t} \left(\left(C_j'^r \right)_* \left(v_r^i(L') \right) + (-1)^i \left(C_i''^r \right)_* \left(v_r^j(L'') \right) \right).$$

(b) Suppose $v_k^t(L) = 0$ for all k < r. Then $d_k^{\prime s,t} = d_k^{\prime s,t} = 0$ for all $s \ge 0$, all k < r, and all coefficient modules in $\mathcal{M}_F(L, G)$. Additionally,

$$v_r^t(L') = D_*'^r(v_r^t(L))$$
 and $v_r^t(L'') = D_*''^r(v_r^t(L)).$

In Section 3, we define the *FG*-equivariant homomorphisms $C_j^{'r}$, $C_i^{'r}$, $D^{'r}$, and $D^{''r}$ that induce the maps $(C_j^{'r})_*: E_2^{'s,i-r+1} \rightarrow E_2^{s,t-r+1}$, $(C_i^{''r})_*: E_2^{''s,j-r+1} \rightarrow E_2^{'s,t-r+1}$, $D_*^{'r}: E_2^{s,t-r+1} \rightarrow E_2^{'s,t-r+1}$, and $D_*^{''r}: E_2^{s,t-r+1} \rightarrow E_2^{''s,t-r+1}$, respectively. The homomorphisms $C_j^{'2}$ and $C_i^{''2}$ were first considered by Charlap and Vasquez in [2]. They showed that the sum formula holds when r = 2. We use a different approach to generalize this result to all pages of the spectral sequence and also to prove a converse.

The problem of establishing the collapse of $\{E_*, d_*\}$ in general can be a difficult one. The spectral sequence can have nonzero differentials even when *G* is abelian. For instance, Totaro proved in [4] that for any prime number *p* and $G = C_p^2$, there is a semidirect product group $\Gamma = L \rtimes C_p^2$ such that in the associated Lyndon–Hochschild–Serre spectral sequence with \mathbb{Z}_p coefficients there always exist nonzero differentials at E_p or later.

A question, first posed by Adem (see [1]), that is still open is whether the spectral sequence collapses integrally at E_2 without extension problems when G is an arbitrary finite cyclic group. In view of our results, we can make the following:

Conjecture 1.2. Let C_n be a cyclic group of order n and let L be a finite rank integral lattice. The Lyndon-Hochschild–Serre spectral sequence $\{E_*, d_*\}$ of any split group extension $0 \rightarrow L \rightarrow \Gamma \rightarrow C_n \rightarrow 1$ collapses at E_2 for all coefficient modules in $\mathcal{M}_F(L, C_n)$.

Note that part (a) of Theorem 1.1 reduces this conjecture to the case where *L* is an indecomposable $\mathbb{Z}C_n$ -lattice (see Corollary 4.2).

2. Preliminary results

Henceforth, let *G* be any group and let *L* be any finite rank integral $\mathbb{Z}G$ -lattice. Denote by Γ the associated semidirect product $L \rtimes G$. Suppose *F* is a principal ideal domain. For each $F\Gamma$ -module *M* we have the Lyndon–Hochschild–Serre spectral sequence

$$E_2^{p,q}(M) = H^p(G, H^q(L, M)) \implies H^{p+q}(\Gamma, M).$$

In the proof of our main result, we make use of the multiplicative structure of this spectral sequence. Namely, any Γ -pairing of $F\Gamma$ -modules A, B, and C,

$$\cdot : A \otimes_F B \to C$$
,

determines an F-pairing

$$E_r^{p,q}(A) \otimes_F E_r^{s,t}(B) \to E_r^{p+s,q+t}(C).$$

In addition, for the differential d_r and for each $a \in E_r^{p,q}(A)$ and $b \in E_r^{s,t}(B)$ we have the product formula

$$d_r^{p+s,q+t}(a \cdot b) = d_r^{p,q}(a) \cdot b + (-1)^{p+q} a \cdot d_r^{s,t}(b).$$

We denote by $\mathcal{M}_F(L, G)$ the category of all $F\Gamma$ -modules M, such that M is a finitely generated free F-module and L acts trivially on M. In particular, F with a trivial Γ -action is a module in this category. $\mathcal{M}_F(L, G)$ has the property that if $M \in \mathcal{M}_F(L, G)$, then $H_i(L, M)$ and $H^i(L, M) \cong$ $\operatorname{Hom}_F(H_i(L, F), M)$ are also in $\mathcal{M}_F(L, G)$. Observe that the projection of Γ onto G induces an equivalence between this category and the category of all finite rank FG-lattices.

Let $t \ge 0$ and $r \ge 2$. Set $M = H_t(L, F) \cong \bigwedge^t(L) \otimes F$. Assume $d_k^{0,t} = 0$ for all $2 \le k \le r - 1$. By applying the Universal Coefficient Theorem it follows

$$E_r^{0,t}(H_t(L, F)) = E_2^{0,t}(H_t(L, F))$$

= $H^0(G, H^t(L, H_t(L, F)))$
 $\cong H^0(G, \operatorname{Hom}_F(H_t(L, F), H_t(L, F)))$ (by UCT)
= $\operatorname{Hom}_{FG}(H_t(L, F), H_t(L, F))$
 $\cong \operatorname{Hom}_{FG}(\bigwedge^t(L) \otimes F, \bigwedge^t(L) \otimes F).$

Definition 2.1. With the preceding assumptions, let $\operatorname{id}^t : \bigwedge^t(L) \otimes F \to \bigwedge^t(L) \otimes F$ be the identity homomorphism. Identifying along the above isomorphisms, denote by [f] the class in $E_r^{0,t}(H_t(L, F))$ corresponding to a map $f \in \operatorname{Hom}_{FG}(\bigwedge^t(L) \otimes F, \bigwedge^t(L) \otimes F)$. Then $v_r^t(L) := d_r^{0,t}([\operatorname{id}^t]) \in E_r^{r,t-r+1}(H_t(L, F))$ is said to be a *characteristic class* of the spectral sequence $\{E_r, d_r\}$.

Characteristic classes were first considered by Charlap and Vasquez in [2], but only in the case when r = 2. Sah in [3] extended their definition to all $r \ge 2$ by proving the following key theorem.

Theorem 2.2. (See Sah, 1972, [3].) Let $\{E_*, d_*\}$ be the Lyndon–Hochschild–Serre spectral sequence of the extension $0 \to L \to \Gamma \to G \to 1$. Suppose there exist integers $r \ge 2$ and $t \ge 0$ such that $d_2^{s,t} = \cdots = d_{r-1}^{s,t} = 0$ for all $s \ge 0$ and for all coefficient modules in $\mathcal{M}_F(L, G)$.

(a) There is a canonical epimorphism

 $\theta: E_r^{s,0}(H^t(L,M)) \to E_r^{s,t}(M)$ for all $s \ge 0$ and for all $M \in \mathcal{M}_F(L,G)$.

(b) We have

$$d_r^{s,t}(x) = (-1)^s y \cdot v_r^t(L),$$

for all $x \in E_r^{s,t}(M)$, all $M \in \mathcal{M}_F(L, G)$, and all $y \in E_r^{s,0}(H^t(L, M))$ with $\theta(y) = x$.

2918

(c) Let $\sigma : H \to G$ be a group homomorphism which converts L into a $\mathbb{Z}H$ -module. Assume $d_2^{s,t} = \cdots = d_{r-1}^{s,t} = 0$ holds for all $s \ge 0$ and for all objects in $\mathcal{M}_F(L, H)$. The characteristic class $w_r^t(L)$ for the category $\mathcal{M}_F(L, H)$ is then the image of $v_r^t(L)$ under the map induced on the spectral sequences.

Note that, with the assumptions of the theorem, characteristic classes $v_r^t(L)$ are obstructions to the vanishing of the differentials $d_r^{s,t}$ for all integers $s \ge 0$. The following corollary is an immediate consequence of Sah's theorem.

Corollary 2.3. Let $t \ge 0$. The Lyndon–Hochschild–Serre spectral sequence $\{E_*, d_*\}$ has $d_r^{s,t} = 0$ for all $s \ge 0$, all r < n, and all $M \in \mathcal{M}_F(L, G)$ if and only if the edge differentials $d_r^{0,t} : E_r^{0,t}(H_t(L, F)) \to E_r^{r,t-r+1}(H_t(L, F))$ are zero for all r < n.

Corollary 2.4. Suppose $\varphi : L \to \Gamma$ is the natural inclusion. Given an integer $t \ge 0$, the following statements are equivalent.

(a) In $\{E_*, d_*\}$, the differentials $d_r^{s,t}$ vanish for all $r, s \ge 0$ and all $M \in \mathcal{M}_F(L, G)$. (b) $\varphi^* : H^t(\Gamma, M) \to H^t(L, M)$ maps onto $H^t(L, M)^G$ for all $M \in \mathcal{M}_F(L, G)$. (c) $\varphi^* : H^t(\Gamma, H_t(L, F)) \to H^t(L, H_t(L, F))$ maps onto the *G*-invariants $H^t(L, H_t(L, F))^G$.

Proof. Clearly (b) implies (c). Note that the map φ^* is given by the composition

$$H^{t}(\Gamma, M) \twoheadrightarrow E_{\infty}^{0,t}(M) = E_{t+2}^{0,t}(M) \subset \cdots \subset E_{2}^{0,t}(M) = H^{t}(L, M)^{G} \subset H^{t}(L, M).$$

If $d_r^{s,t} = 0$ for all $r, s \ge 0$ and all $M \in \mathcal{M}_F(L, G)$, then $E_{\infty}^{0,t}(M) = E_{t+2}^{0,t}(M) = \cdots = E_2^{0,t}(M)$ for all $M \in \mathcal{M}_F(L, G)$. Hence, (a) implies (b). To prove that (a) follows from (c), assume $\varphi^* : H^t(\Gamma, H_t(L, F)) \to H^t(L, H_t(L, F))^G$ is onto. Then by the above composition we have $E_{\infty}^{0,t}(H_t(L, F)) = E_{t+2}^{0,t}(H_t(L, F)) = \cdots = E_2^{0,t}(H_t(L, F))$. This shows that $d_r^{0,t} : E_r^{0,t}(H_t(L, F)) \to E_r^{r,t-r+1}(H_t(L, F))$ is zero for all $r \ge 2$. By the previous corollary $d_r^{s,t} = 0$ for all $s \ge 0, r \ge 2$, and $M \in \mathcal{M}_F(L, G)$. \Box

3. Decomposition theorem

Suppose *L* is a direct sum of $\mathbb{Z}G$ -sublattices *L'* and *L''*. In this section we derive relations between the characteristic classes of *L* and the characteristic classes of *L'* and *L''*.

For convenience, we use $\bigwedge^*(L)$ to denote $\bigwedge^*(L) \otimes F$. Recall that there is a standard *FG*-module decomposition

$$\bigwedge^{n}(L) \cong \bigoplus_{i+j=n} \bigwedge^{i}(L') \otimes \bigwedge^{j}(L'').$$

Definition 3.1. Given integers $i, j \ge 0$ and $r \ge 1$, define *FG*-equivariant homomorphisms

$$C_j'^r$$
: Hom_F $\left(\bigwedge^i(L'),\bigwedge^{i+r-1}(L')\right) \to \operatorname{Hom}_F\left(\bigwedge^{i+j}(L),\bigwedge^{i+j+r-1}(L)\right)$

by

$$C_j'^r(f)(x \otimes y) = \begin{cases} f(x) \otimes y & \text{if } x \in \bigwedge^i(L') \text{ and } y \in \bigwedge^j(L''), \\ 0 & \text{otherwise,} \end{cases}$$

and

N. Petrosyan / Journal of Algebra 321 (2009) 2916-2925

$$C_i''^r$$
: Hom_{*F*} $\left(\bigwedge^{j}(L''), \bigwedge^{j+r-1}(L'')\right) \to \operatorname{Hom}_{F}\left(\bigwedge^{i+j}(L), \bigwedge^{i+j+r-1}(L)\right)$

by

$$C_i^{\prime\prime r}(f)(x \otimes y) = \begin{cases} x \otimes f(y) & \text{if } x \in \bigwedge^i(L') \text{ and } y \in \bigwedge^j(L''), \\ 0 & \text{otherwise.} \end{cases}$$

Let $\Gamma' = L' \rtimes G$ and $\Gamma'' = L'' \rtimes G$. There are associated split exact sequences of groups

$$0 \to L' \to \Gamma' \to G \to 1$$
 and $0 \to L'' \to \Gamma'' \to G \to 1$.

Suppose $v_*^*(L')$ and $v_*^*(L'')$ are the respective characteristic classes of the Lyndon–Hochschild–Serre spectral sequences $\{E'_*, d'_*\}$ and $\{E''_*, d''_*\}$ corresponding to these extensions. Let $\iota' : L' \to L$ be the natural inclusion and let $p' : L \to L'$ be the natural projection. Similarly, define $\iota'' : L' \to L$ and $p'' : L \to L''$. As a straightforward application of the definitions, we obtain the following lemma.

Lemma 3.2. The map $C_0'^r$: Hom_{*F*}($\bigwedge^i(L')$, $\bigwedge^{i+r-1}(L')$) \rightarrow Hom_{*F*}($\bigwedge^i(L)$, $\bigwedge^{i+r-1}(L)$) is given by the composition $p'^* \circ \iota'_*$, where

$$\operatorname{Hom}_{F}\left(\bigwedge^{i}(L'),\bigwedge^{i+r-1}(L')\right) \xrightarrow{\iota'_{*}} \operatorname{Hom}_{F}\left(\bigwedge^{i}(L'),\bigwedge^{i+r-1}(L)\right) \xrightarrow{p'^{*}} \operatorname{Hom}_{F}\left(\bigwedge^{i}(L),\bigwedge^{i+r-1}(L)\right),$$

and $C_0^{\prime\prime r}$ is the composition $p^{\prime\prime *} \circ \iota_*^{\prime\prime}$, where

$$\operatorname{Hom}_{F}\left(\bigwedge^{j}(L''),\bigwedge^{j+r-1}(L'')\right) \xrightarrow{\iota_{*}''} \operatorname{Hom}_{F}\left(\bigwedge^{j}(L''),\bigwedge^{j+r-1}(L)\right) \xrightarrow{p''*} \operatorname{Hom}_{F}\left(\bigwedge^{j}(L),\bigwedge^{j+r-1}(L)\right).$$

Proof. Suppose $f \in \text{Hom}_F(\bigwedge^i(L'), \bigwedge^{i+r-1}(L'))$. For any $x \in \bigwedge^i(L')$ and $y \in \bigwedge^0(L''), (p'^* \circ \iota'_*)(f)(x \otimes y) = y(\iota'_*(f)(x)) = y(f(x) \otimes 1) = f(x) \otimes y = C'^r_0(f)(x \otimes y)$. The second assertion of the lemma follows analogously. \Box

Definition 3.3. Given integers $i, j \ge 0$ and $r \ge 1$, let $\bigwedge^{i+r-1} p' : \bigwedge^{i+r-1}(L) \to \bigwedge^{i+r-1}(L')$ and $\bigwedge^{j+r-1} p'' : \bigwedge^{j+r-1}(L) \to \bigwedge^{j+r-1}(L'')$ be the maps induced by the projections p' and p'', respectively. Define *FG*-equivariant homomorphisms

$$D'^{r}$$
: Hom_F $\left(\bigwedge^{i}(L),\bigwedge^{i+r-1}(L)\right) \to$ Hom_F $\left(\bigwedge^{i}(L'),\bigwedge^{i+r-1}(L')\right)$

by

$$D'^r(f)(x) = \bigwedge^{i+r-1} p'(f(x \otimes 1)) \text{ for all } x \in \bigwedge^i(L'),$$

and

$$D''^{r}$$
: Hom_F $\left(\bigwedge^{j}(L), \bigwedge^{j+r-1}(L)\right) \to \operatorname{Hom}_{F}\left(\bigwedge^{j}(L''), \bigwedge^{j+r-1}(L'')\right)$

by

$$D''^{r}(f)(y) = \bigwedge_{j=1}^{j+r-1} p''(f(1 \otimes y)) \text{ for all } y \in \bigwedge_{j=1}^{j} (L'').$$

2920

Lemma 3.4. The map D'^r is given by the composition $p'_* \circ \iota'^*$, where

$$\operatorname{Hom}\left(\bigwedge^{i}(L),\bigwedge^{i+r-1}(L)\right) \xrightarrow{\iota'^{*}} \operatorname{Hom}\left(\bigwedge^{i}(L'),\bigwedge^{i+r-1}(L)\right) \xrightarrow{p'_{*}} \operatorname{Hom}\left(\bigwedge^{i}(L'),\bigwedge^{i+r-1}(L')\right),$$

and D''^r is the composition $p''_* \circ \iota''^*$, where

$$\operatorname{Hom}\left(\bigwedge^{j}(L),\bigwedge^{j+r-1}(L)\right) \xrightarrow{\iota''^{*}} \operatorname{Hom}\left(\bigwedge^{j}(L''),\bigwedge^{j+r-1}(L)\right) \xrightarrow{p_{*}''} \operatorname{Hom}\left(\bigwedge^{j}(L''),\bigwedge^{j+r-1}(L'')\right).$$

Proof. This is an immediate consequence of the definitions of D'^r and D''^r . \Box

Proposition 3.5. Let $i \ge 0$ and $r \ge 2$. Suppose $E_r^{\prime s,t}(M) = E_2^{\prime s,t}(M)$ and $E_r^{s,t}(H_i(L, F)) = E_2^{s,t}(H_i(L, F))$ when (s, t) = (0, i) and when (s, t) = (r, i - r + 1), for $M = H_i(L', F)$ and for $M = H_i(L, F)$. Then $d_r^{0,i} \circ (C_0'^1)_* = (C_0'^r)_* \circ d_r'^{0,i}$ and $d_r'^{0,i} \circ D_*'^{1} = D_*'^r \circ d_r^{0,i}$.

Proof. The first claim asserts that the following diagram commutes.

$$\begin{split} H^0(G, H^i(L', H_i(L', F))) & \stackrel{d_r^{(0,i)}}{\longrightarrow} & H^r(G, H^{i-r+1}(L', H_i(L', F))) \\ & (C_0^{(1)})_* \downarrow & (C_0^{(r)})_* \downarrow \\ & H^0(G, H^i(L, H_i(L, F))) & \stackrel{d_r^{0,i}}{\longrightarrow} & H^r(G, H^{i-r+1}(L, H_i(L, F))) \end{split}$$

By Lemma 3.2, we know that the map $(C_0^{\prime*})_*$ is induced by the inclusion $\iota' : L' \to L$ and the projection $p' : L \to L'$. Hence, this diagram is the outer square of the commutative diagram below.

$$\begin{split} H^{0}(G, H^{i}(L', H_{i}(L', F))) & \xrightarrow{d_{r}^{\prime 0,i}} & H^{r}(G, H^{i-r+1}(L', H_{i}(L', F))) \\ & \iota_{*}^{\prime} \downarrow & \iota_{*}^{\prime} \downarrow \\ H^{0}(G, H^{i}(L', H_{i}(L, F))) & \xrightarrow{d_{r}^{\prime 0,i}} & H^{r}(G, H^{i-r+1}(L', H_{i}(L, F))) \\ & p^{\prime *} \downarrow & p^{\prime *} \downarrow \\ H^{0}(G, H^{i}(L, H_{i}(L, F))) & \xrightarrow{d_{r}^{0,i}} & H^{r}(G, H^{i-r+1}(L, H_{i}(L, F))) \end{split}$$

The second claim follows by a similar argument using Lemma 3.4. \Box

As previously noted, the category $\mathcal{M}_F(L, G)$ can be identified with the category of all finite rank *FG*-lattices. In view of this, we will not distinguish between $\mathcal{M}_F(L', G)$, $\mathcal{M}_F(L'', G)$, and $\mathcal{M}_F(L, G)$.

Lemma 3.6. There are natural morphisms of spectral sequences $\pi'^* : E'_r \to E_r$, $\phi'^* : E_r \to E'_r$ and $\pi''^* : E''_r \to E_r$, $\phi''^* : E_r \to E''_r$, such that for all $r \ge 2$, all $s \ge 0$, and all coefficient modules in $\mathcal{M}_F(L, G)$,

$$d_r'^{s,t} = \phi'^* \circ d_r^{s,t} \circ \pi'^*$$
 and $d_r''^{s,t} = \phi''^* \circ d_r^{s,t} \circ \pi''^*$.

Proof. We observe that the map ι' induces a natural inclusion $\phi' : \Gamma' \to \Gamma$ and the map p' induces a natural projection $\pi' : \Gamma \to \Gamma'$ such that the composition $\pi' \circ \phi'$ is the identity map on Γ' . Let $\varphi : L \to \Gamma$ and $\varphi' : L' \to \Gamma'$ be the canonical inclusions. It follows that $\phi' \circ \varphi' = \varphi \circ \iota'$ and $\pi' \circ \varphi = \varphi' \circ p'$. Hence, the homomorphisms ϕ' and π' give rise to spectral sequence morphisms $\phi'' : E_* \to E'_*$ and $\pi'^*: E'_* \to E_*$, such that $\phi'^* \circ \pi'^*$ is the identity morphism on $\{E'_*, d'_*\}$. Then, $d'^{s,t}_r = \phi'^* \circ \pi'^* \circ d'^{r,t}_r = \phi'^* \circ \pi'^* \circ \pi'^*$. Analogously, ι'' and p'' induce an inclusion $\phi'': \Gamma'' \to \Gamma$ and a projection $\pi'': \Gamma \to \Gamma''$, respectively, such that the composition $\pi'' \circ \phi''$ is the identity map on Γ'' and $d''^{s,t}_r = \phi''^* \circ d^{s,t}_r \circ \pi''^*$. \Box

We are now ready to prove our main result.

Theorem 3.7. Recall that *G* is an arbitrary group, and that *L* is a $\mathbb{Z}G$ -lattice of finite rank that decomposes into a direct sum of the $\mathbb{Z}G$ -lattices *L'* and *L''*. Let $r \ge 2$ and $t \ge 0$.

(a) Suppose $v_k^i(L') = v_k^j(L'') = 0$ for all $i, j \le t$ and for all k < r. Then $d_2^{s,m} = \cdots = d_{r-1}^{s,m} = 0$ for all $s \ge 0$, all $m \le t$, and all coefficient modules in $\mathcal{M}_F(L, G)$. Additionally,

$$v_r^t(L) = \sum_{i+j=t} \left(\left(C_j'^r \right)_* \left(v_r^i(L') \right) + (-1)^i \left(C_i''^r \right)_* \left(v_r^j(L'') \right) \right).$$

(b) Suppose $v_k^t(L) = 0$ for all k < r. Then $d_k^{\prime s,t} = d_k^{\prime s,t} = 0$ for all $s \ge 0$, all k < r, and all coefficient modules in $\mathcal{M}_F(L, G)$. Additionally,

$$v_r^t(L') = D_*'^r(v_r^t(L))$$
 and $v_r^t(L'') = D_*''^r(v_r^t(L))$.

Proof. To show part (a), we will use induction on $k \ge 2$ to prove that $v_k^m(L)$ satisfies the sum formula for all $m \le t$ and all $k \le r$. For each k < r, since $v_k^i(L') = v_k^j(L'') = 0$ for all $i, j \le t$, this will imply $v_k^m(L) = 0$ and hence, by Theorem 2.2(b), $d_k^{s,m} = 0$ for all $s \ge 0$, all $m \le t$, and all $M \in \mathcal{M}_F(L, G)$.

 $v_k^m(L) = 0$ and hence, by Theorem 2.2(b), $d_k^{s,m} = 0$ for all $s \ge 0$, all $m \le t$, and all $M \in \mathcal{M}_F(L, G)$. Suppose $d_2^{s,m} = \cdots = d_{k-1}^{s,m} = 0$ for all $s \ge 0$, all $m \le t$, and all $M \in \mathcal{M}_F(L, G)$. Recall that $v_k^m(L) = d_k^{0,m}([id^m])$, where $id^m \in \operatorname{Hom}_{FG}(\bigwedge^m(L), \bigwedge^m(L))$ is the identity map. Similarly, $v_k^i(L') = d_k^{0,i}([id''])$ and $v_k^j(L'') = d_k'^{0,i}([id''])$. Consider the decomposition $id^m = \sum_{i+j=m} id_{ij}$, where $id_{ij} : \bigwedge^{i+j}(L) \to \bigwedge^{i+j}(L)$ is the *F*-linear map given by

$$\operatorname{id}_{ij}(x \otimes y) = \begin{cases} x \otimes y & \text{if } x \in \bigwedge^i(L') \text{ and } y \in \bigwedge^j(L''), \\ 0 & \text{otherwise.} \end{cases}$$

Given $i, j \ge 0$, let $x \in \bigwedge^{i}(L')$ and $y \in \bigwedge^{j}(L'')$. Then, $\operatorname{id}_{ij}(x \otimes y) = x \otimes y = (x \otimes 1) \land (1 \otimes y) = C'^{1}_{0}(\operatorname{id}'^{i})(x \otimes 1) \land C''^{1}_{0}(\operatorname{id}''^{j})(1 \otimes y)$. This implies $[\operatorname{id}_{ij}] = (C'^{1}_{0})_{*}([\operatorname{id}'^{i}]) \cdot (C''^{1}_{0})_{*}([\operatorname{id}''^{j}]) \in H^{0}(G, H^{i+j}(L, H_{i+j}(L, F)))$, and thus

$$[\mathrm{id}^{m}] = \sum_{i+j=m} (C_{0}^{\prime 1})_{*} ([\mathrm{id}^{\prime i}]) \cdot (C_{0}^{\prime \prime 1})_{*} ([\mathrm{id}^{\prime \prime j}]).$$

By applying the product formula for the differentials, we compute

$$\begin{split} v_k^m(L) &= d_k^{0,m} \left(\sum_{i+j=m} (C_0'^1)_* ([\mathrm{id}'^i]) \cdot (C_0''^1)_* ([\mathrm{id}''^j]) \right) \\ &= \sum_{i+j=m} d_k^{0,m} ((C_0'^1)_* ([\mathrm{id}'^i]) \cdot (C_0''^1)_* ([\mathrm{id}''^j])) \\ &= \sum_{i+j=m} (d_k^{0,i} ((C_0'^1)_* ([\mathrm{id}'^i])) \cdot (C_0''^1)_* ([\mathrm{id}''^j]) + (-1)^i (C_0'^1)_* ([\mathrm{id}'^i]) \cdot d_k^{0,j} ((C_0''^1)_* ([\mathrm{id}''^j]))) \end{split}$$

$$\begin{split} &\overset{3.5}{=} \sum_{i+j=m} \left(\left(C_0'^k \right)_* \left(d_k'^{0,i} \left(\left[\mathrm{id}'^i \right] \right) \right) \cdot \left(C_0''^1 \right)_* \left(\left[\mathrm{id}''^j \right] \right) + (-1)^i \left(C_0'^1 \right)_* \left(\left[\mathrm{id}''^i \right] \right) \cdot \left(C_0''^k \right)_* \left(d_k''^{0,j} \left(\left[\mathrm{id}''^j \right] \right) \right) \right) \\ &= \sum_{i+j=m} \left(\left(C_0'^k \right)_* \left(v_k^i(L') \right) \cdot \left(C_0''^1 \right)_* \left(\left[\mathrm{id}''^j \right] \right) + (-1)^i \left(C_0'^1 \right)_* \left(\left[\mathrm{id}'^i \right] \right) \cdot \left(C_0''^k \right)_* \left(v_k^j(L'') \right) \right) \\ &= \sum_{i+j=m} \left(\left(C_j'^k \right)_* \left(v_k^i(L') \right) + (-1)^i \left(C_i''^k \right)_* \left(v_k^j(L'') \right) \right). \end{split}$$

The last equality follows from the definitions of $C_*^{\prime*}$ and $C_*^{\prime\prime*}$ and the fact that $\mathrm{id}^{\prime i}$ and $\mathrm{id}^{\prime\prime j}$ are identity maps.

To prove (b), we will use induction on $k \ge 2$ to show that $v_k^t(L') = D_*'r(v_k^t(L))$ and $v_k^t(L'') = D_*''r(v_k^t(L))$ for all $k \le r$. By Theorem 2.2, for each k < r and for all $s \ge 0$ this will imply that $d_k'^{s,t} = d_k''^{s,t} = 0$ for all coefficient modules in $\mathcal{M}_F(L, G)$. Note that this assertion also follows from Lemma 3.6.

For the identity map $\operatorname{id}'^t : \bigwedge^t(L') \to \bigwedge^t(L')$, we have $\operatorname{id}'^t(x) = x = \bigwedge^t p'(x \otimes 1) = \bigwedge^t p'(\operatorname{id}^t(x \otimes 1)) = D'^1(\operatorname{id}^t)(x)$ for all $x \in \bigwedge^t(L')$. This implies $[\operatorname{id}'^t] = D'^1_*([\operatorname{id}^t]) \in E'^{0,t}_k(H_t(L', F))$. Thus, it follows

$$v_k^t(L') = d_k'^{0,t} \left(\left[\mathrm{id}'^t \right] \right) = d_k'^{0,t} \circ D_*'^1 \left(\left[\mathrm{id}^t \right] \right) \stackrel{3.5}{=} D_*'^k \circ d_k^{0,t} \left(\left[\mathrm{id}^t \right] \right) = D_*'^k \left(v_k^t(L) \right)$$

By an analogous argument, $v_k^t(L'') = D_*''^k(v_k^t(L))$. \Box

Remark 3.8. Using the same assumptions as in Theorem 3.7(a), the sum formula can be simplified. Since $E_r^{\prime r,i-r+1} = E_r^{\prime r,j-r+1} = 0$, $v_r^i(L') = v_r^j(L'') = 0$ hold a priori for all i, j < r - 1. It is an easy exercise to check that $d_r^{\prime 0,r-1} = 0$ and $d_r^{\prime 0,r-1} = 0$ for all $M \in \mathcal{M}_F(L, G)$, since they are differentials with target in the 0th row (see Proposition 1, [3]). Therefore, $v_r^{r-1}(L') = v_r^{r-1}(L'') = 0$ and we have

$$\begin{split} \mathbf{v}_{r}^{t}(L) &= \sum_{i+j=t} \left(\left(C_{j}^{\prime r} \right)_{*} \left(\mathbf{v}_{r}^{i}(L^{\prime}) \right) + (-1)^{i} \left(C_{i}^{\prime \prime r} \right)_{*} \left(\mathbf{v}_{r}^{j}(L^{\prime \prime}) \right) \right) \\ &= \sum_{i+j=t-r} \left(C_{j}^{\prime r} \right)_{*} \left(\mathbf{v}_{r}^{i+r}(L^{\prime}) \right) + \sum_{i+j=t-r} (-1)^{i} \left(C_{i}^{\prime \prime r} \right)_{*} \left(\mathbf{v}_{r}^{j+r}(L^{\prime \prime}) \right) \\ &= \sum_{i+j=t-r} \left(\left(C_{j}^{\prime r} \right)_{*} \left(\mathbf{v}_{r}^{i+r}(L^{\prime}) \right) + (-1)^{i} \left(C_{i}^{\prime \prime r} \right)_{*} \left(\mathbf{v}_{r}^{j+r}(L^{\prime \prime}) \right) \right). \end{split}$$

4. Some corollaries

Theorem 3.7 has particularly interesting applications if characteristic classes of the $\mathbb{Z}G$ -lattices L', L'', and L are viewed as obstructions to the vanishing of the differentials in the associated Lyndon–Hochschild–Serre spectral sequences. We use the same notation as before.

Corollary 4.1. Let $r \ge 2$. If $v_k^i(L') = v_k^j(L'') = 0$ for all $i, j \in [k, r]$ and for all k < r, then $d_2^{s,m} = \cdots = d_{r-1}^{s,m} = 0$ for all $s \ge 0$, all $m \le r$, and all $M \in \mathcal{M}_F(L, G)$. Moreover,

$$v_r^r(L) = (C_0'^r)_* (v_r^r(L')) + (C_0''^r)_* (v_r^r(L'')).$$

Proof. This is a direct consequence of Theorem 3.7 and the preceding remark.

A consequence of Lemma 3.6 is the fact that when the differentials in the Lyndon–Hochschild– Serre spectral sequence $\{E_*, d_*\}$ are all zero, the same is true for the spectral sequences corresponding to the $\mathbb{Z}G$ -sublattices L' and L''. The next corollary gives us a converse. **Corollary 4.2.** Suppose $v_p^t(L') = v_q^t(L'') = 0$ for all $p \leq \dim(L')$, all $q \leq \dim(L'')$, and all $t \geq 0$. Then $d_k^{s,t} = 0$ for all $M \in \mathcal{M}_F(L, G)$, all $s, t \geq 0$, and all $k \geq 2$. Moreover, if in addition $\{E_*, d_*\}$ has no extension problems, then for every $n \geq 0$ and for all $M \in \mathcal{M}_F(L, G)$ we have

$$H^{n}(\Gamma, M) = \bigoplus_{i+j=n} H^{i}(G, H^{j}(L, M)).$$

Proof. Since $v_p^t(L') = d_p'^{0,t}([\mathrm{id}'^t]) \in E_p^{p,t-p+1}(H_t(L', F))$, this class lies in the image of the map

$$d_{p}^{\prime 0,t}: H^{0}(G, H^{t}(L', H_{t}(L', F))) \to H^{p}(G, H^{t-p+1}(L', H_{t}(L', F))).$$

Note that $d'_p{}^{0,t} = 0$ when $t > \dim(L')$ or p > t + 1. If p = t + 1, then $d'_{t+1}{}^{0,t} = 0$, since it is a differential with a target in the 0th row (see Proposition 1, [3]). Therefore, if $v_p{}^*(L') = 0$ for all $p \leq \dim(L')$, then all characteristic classes of the spectral sequence $\{E'_*, d'_*\}$ are zero. A similar argument shows that all characteristic classes of $\{E''_*, d''_*\}$ are zero when $v_a{}^*(L'') = 0$ for all $q \leq \dim(L'')$. \Box

Corollary 4.3. Let $t \ge 0$. Set $\Gamma' = L' \rtimes G$ and $\Gamma'' = L'' \rtimes G$. Let $\varphi' : L' \to \Gamma', \varphi'' : L'' \to \Gamma''$, and $\varphi : L \to \Gamma$ be the natural inclusions.

- (a) If $\varphi'^* : H^m(\Gamma', H_m(L', F)) \to H^m(L', H_m(L', F))^G$ and $\varphi''^* : H^m(\Gamma'', H_m(L'', F)) \to H^m(L'', H_m(L'', F))^G$ are surjective for all $m \leq t$, then $\varphi^* : H^m(\Gamma, M) \to H^m(L, M)^G$ is surjective for all $m \leq t$ and for all $M \in \mathcal{M}_F(L, G)$.
- (b) If φ^* : $H^t(\Gamma, M) \to H^t(L, M)^G$ is surjective, then φ'^* : $H^t(\Gamma', M) \to H^t(L', M)^G$ and φ''^* : $H^t(\Gamma'', M) \to H^t(L'', M)^G$ are surjective for all $M \in \mathcal{M}_F(L, G)$.

Proof. To prove (a), we observe that Corollary 2.4 implies $v_r^i(L') = v_r^j(L'') = 0$ for all $r \ge 0$ and for all $i, j \le t$. Then, by Theorem 3.7, $d_r^{s,m} = 0$ for all $r, s \ge 0$, all $m \le t$, and all coefficient modules in $\mathcal{M}_F(L, G)$. Applying again Corollary 2.4 finishes the proof.

For part (b), let $\iota'^* : H^t(L, M)^G \to H^t(L', M)^G$, $\phi'^* : H^t(\Gamma, M) \to H^t(\Gamma', M)$, and $p'^* : H^t(L', M)^G \to H^t(L, M)^G$ be the induced maps of the inclusions $\iota' : L' \to L$, $\phi' : \Gamma' \to \Gamma$, and the projection $p' : L \to L'$, respectively. Then, we have $\varphi'^* \circ \phi'^* = \iota'^* \circ \varphi^*$. Since $\iota'^* \circ p'^*$ is the identity map on $H^t(L', M)^G$, ι'^* is surjective and hence $\iota'^* \circ \varphi^*$ is surjective. The previous equality shows that φ'^* is also surjective. Similarly, it follows that φ''^* is surjective. \Box

Given an arbitrary finite rank integral $\mathbb{Z}G$ -lattice *L*, Lieberman's result (see Theorem 4, [3]) states that in the associated Lyndon–Hochschild–Serre spectral sequence $\{E_*, d_*\}$, for any $s, t \ge 0$ and $r \ge 2$, the image of the differential $d_r^{s,t}$ is a torsion group annihilated by the integers $m^{t-r+1}(m^{r-1}-1)$ for all $m \in \mathbb{Z}$. Using this fact, it was proved in [3] that if *F* is a field of nonzero characteristic *p*, then $d_r^{s,t} = 0$ for all $s, t \ge 0$ and all r < p. The next corollary follows from combining this result with the sum formula of Remark 3.8.

Corollary 4.4. Let *F* be a field of nonzero characteristic *p*. Assume *L'* and *L''* are $\mathbb{Z}G$ -lattices of finite rank and $L = L' \oplus L''$.

- (a) $d_r^{s,t} = 0$ for all $s, t \ge 0$, all r < p, and all $M \in \mathcal{M}_F(L, G)$.
- (b) $d_p^{s,t}(x) = (-1)^s y \cdot \sum_{i+j=t-p} ((C_j'^p)_* (v_p^{i+p}(L')) + (-1)^i (C_i''^p)_* (v_p^{j+p}(L'')))$ for all $M \in \mathcal{M}_F(L, G)$, for all $x \in E_p^{s,t}(M)$, and for all $y \in E_p^{s,0}(H^t(L, M))$ such that $\theta(y) = x$.

Acknowledgments

I am thankful to Alejandro Adem for suggesting to me to study the cohomology of semidirect product groups and for always giving good advice. I also thank Jim Davis and Karel Dekimpe for their many conversations. Lastly, I would like to thank the referee for many helpful comments and suggestions which led to a better exposition of the results in the article.

References

- [1] A. Adem, J. Ge, J. Pan, N. Petrosyan, Compatible actions and cohomology of crystallographic groups, J. Algebra 320 (2008) 341-353.
- [2] L. Charlap, A. Vasquez, Characteristic classes for modules over groups I, Trans. Amer. Math. Soc. 137 (1969) 533-549.
- [3] C.-H. Sah, Cohomology of split group extensions, J. Algebra 29 (1974) 255-302.
- [4] B. Totaro, Cohomology of semidirect product groups, J. Algebra 182 (1996) 469-475.