Cohomology of split group extensions and characteristic classes

Nansen Petrosyan
Department of Mathematics, Catholic University of Leuven, Kortrijk, Belgium

A R T I C L E IN F O

Article history:

Received 7 July 2008
Available online 25 February 2009
Communicated by Michel Broué

Keywords:

Spectral sequence
Group cohomology

Abstract

There are characteristic classes that are the obstructions to the vanishing of the differentials in the Lyndon-Hochschild-Serre spectral sequence of a split extension of an integral lattice L by a group G. These characteristic classes exist in the r th page of the spectral sequence provided that the differentials $d_{i}=0$ for all $i<r$. When L decomposes into a sum of G-sublattices, we show that there are defining relations between the characteristic classes of L and the characteristic classes of its summands.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Suppose G is a group and L is a finite rank integral $\mathbb{Z} G$-lattice. Let $\Gamma=L \rtimes G$ be the semidirect product group induced by the action of G on L. Our objective is to analyze the split group extension $0 \rightarrow L \rightarrow \Gamma \rightarrow G \rightarrow 1$ and its associated Lyndon-Hochschild-Serre spectral sequence $\left\{E_{*}, d_{*}\right\}$. In [1] we showed that when G is a cyclic group of prime order, the spectral sequence with integral coefficients collapses at E_{2} without extension problems. In fact, our proof stated in [1] applies not only to integral coefficients, but to all coefficient modules in a certain category which we denote by $\mathcal{M}_{F}(L, G)$. This category is essential in the definition of characteristic classes (see Theorem 2.2). It consists of all finite rank $F \Gamma$-lattices M on which L acts trivially, where F is a given principal ideal domain. In particular, F as a trivial $F \Gamma$-module is an object of $\mathcal{M}_{F}(L, G)$.

Let us now suppose that L decomposes into a sum of $\mathbb{Z} G$-sublattices; $L=L^{\prime} \oplus L^{\prime \prime}$. Let $\left\{E_{*}^{\prime}, d_{*}^{\prime}\right\}$ and $\left\{E_{*}^{\prime \prime}, d_{*}^{\prime \prime}\right\}$ be the Lyndon-Hochschild-Serre spectral sequences associated to the respective semidirect product groups $L^{\prime} \rtimes G$ and $L^{\prime \prime} \rtimes G$. The goal of the present paper is to find necessary and sufficient conditions on the latter defined spectral sequences such that $\left\{E_{*}, d_{*}\right\}$ has no nonzero differentials up to a given page.

[^0]In Section 2, we define characteristic classes $v_{r}^{t}(L)$, introduced by Charlap, Vasquez and Sah (see [2] and [3]), that are the obstructions to the vanishing of the differentials in $\left\{E_{*}, d_{*}\right\}$. These classes exist and lie in the images of the differentials $d_{r}^{0, t}: E_{r}^{0, t}\left(H_{t}(L, F)\right) \rightarrow E_{r}^{r, t-r+1}\left(H_{t}(L, F)\right)$ provided that the differentials $d_{i}^{*, t}$ vanish for all $i<r$ and for all coefficient modules in $\mathcal{M}_{F}(L, G)$. Our main result is the following decomposition theorem.

Theorem 1.1. Let G be any group. Assume L^{\prime} and $L^{\prime \prime}$ are $\mathbb{Z} G$-lattices of finite rank and $L=L^{\prime} \oplus L^{\prime \prime}$. Let $r \geqslant 2$ and $t \geqslant 0$.
(a) Suppose $v_{k}^{i}\left(L^{\prime}\right)=v_{k}^{j}\left(L^{\prime \prime}\right)=0$ for all $i, j \leqslant t$ and for all $k<r$. Then $d_{2}^{s, m}=\cdots=d_{r-1}^{s, m}=0$ for all $s \geqslant 0$, all $m \leqslant t$, and all coefficient modules in $\mathcal{M}_{F}(L, G)$. Additionally,

$$
v_{r}^{t}(L)=\sum_{i+j=t}\left(\left(C_{j}^{\prime r}\right)_{*}\left(v_{r}^{i}\left(L^{\prime}\right)\right)+(-1)^{i}\left(C_{i}^{\prime \prime r}\right)_{*}\left(v_{r}^{j}\left(L^{\prime \prime}\right)\right)\right) .
$$

(b) Suppose $v_{k}^{t}(L)=0$ for all $k<r$. Then $d_{k}^{\prime s, t}=d_{k}^{\prime \prime s, t}=0$ for all $s \geqslant 0$, all $k<r$, and all coefficient modules in $\mathcal{M}_{F}(L, G)$. Additionally,

$$
v_{r}^{t}\left(L^{\prime}\right)=D_{*}^{\prime r}\left(v_{r}^{t}(L)\right) \quad \text { and } \quad v_{r}^{t}\left(L^{\prime \prime}\right)=D_{*}^{\prime \prime r}\left(v_{r}^{t}(L)\right)
$$

In Section 3, we define the $F G$-equivariant homomorphisms $C_{j}^{\prime r}, C_{i}^{\prime \prime r}, D^{\prime r}$, and $D^{\prime \prime r}$ that induce the maps $\left(C_{j}^{\prime r}\right)_{*}: E_{2}^{\prime s, i-r+1} \rightarrow E_{2}^{s, t-r+1},\left(C_{i}^{\prime \prime r}\right)_{*}: E_{2}^{\prime \prime s, j-r+1} \rightarrow E_{2}^{s, t-r+1}, D_{*}^{\prime r}: E_{2}^{s, t-r+1} \rightarrow E_{2}^{\prime s, t-r+1}$, and $D_{*}^{\prime \prime r}: E_{2}^{s, t-r+1} \rightarrow E_{2}^{\prime \prime s, t-r+1}$, respectively. The homomorphisms $C_{j}^{\prime 2}$ and $C_{i}^{\prime \prime 2}$ were first considered by Charlap and Vasquez in [2]. They showed that the sum formula holds when $r=2$. We use a different approach to generalize this result to all pages of the spectral sequence and also to prove a converse.

The problem of establishing the collapse of $\left\{E_{*}, d_{*}\right\}$ in general can be a difficult one. The spectral sequence can have nonzero differentials even when G is abelian. For instance, Totaro proved in [4] that for any prime number p and $G=C_{p}^{2}$, there is a semidirect product group $\Gamma=L \rtimes C_{p}^{2}$ such that in the associated Lyndon-Hochschild-Serre spectral sequence with \mathbb{Z}_{p} coefficients there always exist nonzero differentials at E_{p} or later.

A question, first posed by Adem (see [1]), that is still open is whether the spectral sequence collapses integrally at E_{2} without extension problems when G is an arbitrary finite cyclic group. In view of our results, we can make the following:

Conjecture 1.2. Let C_{n} be a cyclic group of order n and let L be a finite rank integral lattice. The Lyndon-Hochschild-Serre spectral sequence $\left\{E_{*}, d_{*}\right\}$ of any split group extension $0 \rightarrow L \rightarrow \Gamma \rightarrow C_{n} \rightarrow 1$ collapses at E_{2} for all coefficient modules in $\mathcal{M}_{F}\left(L, C_{n}\right)$.

Note that part (a) of Theorem 1.1 reduces this conjecture to the case where L is an indecomposable $\mathbb{Z} C_{n}$-lattice (see Corollary 4.2).

2. Preliminary results

Henceforth, let G be any group and let L be any finite rank integral $\mathbb{Z} G$-lattice. Denote by Γ the associated semidirect product $L \rtimes G$. Suppose F is a principal ideal domain. For each $F \Gamma$-module M we have the Lyndon-Hochschild-Serre spectral sequence

$$
E_{2}^{p, q}(M)=H^{p}\left(G, H^{q}(L, M)\right) \quad \Longrightarrow \quad H^{p+q}(\Gamma, M) .
$$

In the proof of our main result, we make use of the multiplicative structure of this spectral sequence. Namely, any Γ-pairing of F-modules A, B, and C,

$$
\because A \otimes_{F} B \rightarrow C,
$$

determines an F-pairing

$$
E_{r}^{p, q}(A) \otimes_{F} E_{r}^{s, t}(B) \rightarrow E_{r}^{p+s, q+t}(C) .
$$

In addition, for the differential d_{r} and for each $a \in E_{r}^{p, q}(A)$ and $b \in E_{r}^{s, t}(B)$ we have the product formula

$$
d_{r}^{p+s, q+t}(a \cdot b)=d_{r}^{p, q}(a) \cdot b+(-1)^{p+q} a \cdot d_{r}^{s, t}(b) .
$$

We denote by $\mathcal{M}_{F}(L, G)$ the category of all $F \Gamma$-modules M, such that M is a finitely generated free F-module and L acts trivially on M. In particular, F with a trivial Γ-action is a module in this category. $\mathcal{M}_{F}(L, G)$ has the property that if $M \in \mathcal{M}_{F}(L, G)$, then $H_{i}(L, M)$ and $H^{i}(L, M) \cong$ $\operatorname{Hom}_{F}\left(H_{i}(L, F), M\right)$ are also in $\mathcal{M}_{F}(L, G)$. Observe that the projection of Γ onto G induces an equivalence between this category and the category of all finite rank $F G$-lattices.

Let $t \geqslant 0$ and $r \geqslant 2$. Set $M=H_{t}(L, F) \cong \bigwedge^{t}(L) \otimes F$. Assume $d_{k}^{0, t}=0$ for all $2 \leqslant k \leqslant r-1$. By applying the Universal Coefficient Theorem it follows

$$
\begin{aligned}
E_{r}^{0, t}\left(H_{t}(L, F)\right) & =E_{2}^{0, t}\left(H_{t}(L, F)\right) \\
& =H^{0}\left(G, H^{t}\left(L, H_{t}(L, F)\right)\right) \\
& \cong H^{0}\left(G, \operatorname{Hom}_{F}\left(H_{t}(L, F), H_{t}(L, F)\right)\right) \quad(\text { by UCT }) \\
& =\operatorname{Hom}_{F G}\left(H_{t}(L, F), H_{t}(L, F)\right) \\
& \cong \operatorname{Hom}_{F G}\left(\bigwedge^{t}(L) \otimes F, \bigwedge^{t}(L) \otimes F\right) .
\end{aligned}
$$

Definition 2.1. With the preceding assumptions, let id ${ }^{t}: \bigwedge^{t}(L) \otimes F \rightarrow \bigwedge^{t}(L) \otimes F$ be the identity homomorphism. Identifying along the above isomorphisms, denote by [f] the class in $E_{r}^{0, t}\left(H_{t}(L, F)\right)$ corresponding to a map $f \in \operatorname{Hom}_{F G}\left(\bigwedge^{t}(L) \otimes F, \bigwedge^{t}(L) \otimes F\right)$. Then $v_{r}^{t}(L):=d_{r}^{0, t}\left(\left[\mathrm{id}^{t}\right]\right) \in E_{r}^{r, t-r+1}\left(H_{t}(L, F)\right)$ is said to be a characteristic class of the spectral sequence $\left\{E_{r}, d_{r}\right\}$.

Characteristic classes were first considered by Charlap and Vasquez in [2], but only in the case when $r=2$. Sah in [3] extended their definition to all $r \geqslant 2$ by proving the following key theorem.

Theorem 2.2. (See Sah, 1972, [3].) Let $\left\{E_{*}, d_{*}\right\}$ be the Lyndon-Hochschild-Serre spectral sequence of the extension $0 \rightarrow L \rightarrow \Gamma \rightarrow G \rightarrow 1$. Suppose there exist integers $r \geqslant 2$ and $t \geqslant 0$ such that $d_{2}^{s, t}=\cdots=d_{r-1}^{s, t}=0$ for all $s \geqslant 0$ and for all coefficient modules in $\mathcal{M}_{F}(L, G)$.
(a) There is a canonical epimorphism

$$
\theta: E_{r}^{s, 0}\left(H^{t}(L, M)\right) \rightarrow E_{r}^{s, t}(M) \quad \text { for all } s \geqslant 0 \text { and for all } M \in \mathcal{M}_{F}(L, G) .
$$

(b) We have

$$
d_{r}^{s, t}(x)=(-1)^{s} y \cdot v_{r}^{t}(L),
$$

for all $x \in E_{r}^{s, t}(M)$, all $M \in \mathcal{M}_{F}(L, G)$, and all $y \in E_{r}^{s, 0}\left(H^{t}(L, M)\right)$ with $\theta(y)=x$.
(c) Let $\sigma: H \rightarrow G$ be a group homomorphism which converts L into a $\mathbb{Z} H$-module. Assume $d_{2}^{s, t}=\cdots=$ $d_{r-1}^{s, t}=0$ holds for all $s \geqslant 0$ and for all objects in $\mathcal{M}_{F}(L, H)$. The characteristic class $w_{r}^{t}(L)$ for the category $\mathcal{M}_{F}(L, H)$ is then the image of $v_{r}^{t}(L)$ under the map induced on the spectral sequences.

Note that, with the assumptions of the theorem, characteristic classes $v_{r}^{t}(L)$ are obstructions to the vanishing of the differentials $d_{r}^{s, t}$ for all integers $s \geqslant 0$. The following corollary is an immediate consequence of Sah's theorem.

Corollary 2.3. Let $t \geqslant 0$. The Lyndon-Hochschild-Serre spectral sequence $\left\{E_{*}, d_{*}\right\}$ has $d_{r}^{s, t}=0$ for all $s \geqslant 0$, all $r<n$, and all $M \in \mathcal{M}_{F}(L, G)$ if and only if the edge differentials $d_{r}^{0, t}: E_{r}^{0, t}\left(H_{t}(L, F)\right) \rightarrow E_{r}^{r, t-r+1}\left(H_{t}(L, F)\right)$ are zero for all $r<n$.

Corollary 2.4. Suppose $\varphi: L \rightarrow \Gamma$ is the natural inclusion. Given an integer $t \geqslant 0$, the following statements are equivalent.
(a) In $\left\{E_{*}, d_{*}\right\}$, the differentials $d_{r}^{s, t}$ vanish for all $r, s \geqslant 0$ and all $M \in \mathcal{M}_{F}(L, G)$.
(b) $\varphi^{*}: H^{t}(\Gamma, M) \rightarrow H^{t}(L, M)$ maps onto $H^{t}(L, M)^{G}$ for all $M \in \mathcal{M}_{F}(L, G)$.
(c) $\varphi^{*}: H^{t}\left(\Gamma, H_{t}(L, F)\right) \rightarrow H^{t}\left(L, H_{t}(L, F)\right)$ maps onto the G-invariants $H^{t}\left(L, H_{t}(L, F)\right)^{G}$.

Proof. Clearly (b) implies (c). Note that the map φ^{*} is given by the composition

$$
H^{t}(\Gamma, M) \rightarrow E_{\infty}^{0, t}(M)=E_{t+2}^{0, t}(M) \subset \cdots \subset E_{2}^{0, t}(M)=H^{t}(L, M)^{G} \subset H^{t}(L, M) .
$$

If $d_{r}^{s, t}=0$ for all $r, s \geqslant 0$ and all $M \in \mathcal{M}_{F}(L, G)$, then $E_{\infty}^{0, t}(M)=E_{t+2}^{0, t}(M)=\cdots=E_{2}^{0, t}(M)$ for all $M \in$ $\mathcal{M}_{F}(L, G)$. Hence, (a) implies (b). To prove that (a) follows from (c), assume $\varphi^{*}: H^{t}\left(\Gamma, H_{t}(L, F)\right) \rightarrow$ $H^{t}\left(L, H_{t}(L, F)\right)^{G}$ is onto. Then by the above composition we have $E_{\infty}^{0, t}\left(H_{t}(L, F)\right)=E_{t+2}^{0, t}\left(H_{t}(L, F)\right)=$ $\cdots=E_{2}^{0, t}\left(H_{t}(L, F)\right)$. This shows that $d_{r}^{0, t}: E_{r}^{0, t}\left(H_{t}(L, F)\right) \rightarrow E_{r}^{r, t-r+1}\left(H_{t}(L, F)\right)$ is zero for all $r \geqslant 2$. By the previous corollary $d_{r}^{s, t}=0$ for all $s \geqslant 0, r \geqslant 2$, and $M \in \mathcal{M}_{F}(L, G)$.

3. Decomposition theorem

Suppose L is a direct sum of $\mathbb{Z} G$-sublattices L^{\prime} and $L^{\prime \prime}$. In this section we derive relations between the characteristic classes of L and the characteristic classes of L^{\prime} and $L^{\prime \prime}$.

For convenience, we use $\Lambda^{*}(L)$ to denote $\Lambda^{*}(L) \otimes F$. Recall that there is a standard $F G$-module decomposition

$$
\bigwedge^{n}(L) \cong \bigoplus_{i+j=n} \bigwedge^{i}\left(L^{\prime}\right) \otimes \bigwedge^{j}\left(L^{\prime \prime}\right)
$$

Definition 3.1. Given integers $i, j \geqslant 0$ and $r \geqslant 1$, define $F G$-equivariant homomorphisms

$$
C_{j}^{\prime r}: \operatorname{Hom}_{F}\left(\bigwedge^{i}\left(L^{\prime}\right), \bigwedge^{i+r-1}\left(L^{\prime}\right)\right) \rightarrow \operatorname{Hom}_{F}\left(\bigwedge^{i+j}(L), \bigwedge^{i+j+r-1}(L)\right)
$$

by

$$
C_{j}^{\prime r}(f)(x \otimes y)= \begin{cases}f(x) \otimes y & \text { if } x \in \bigwedge^{i}\left(L^{\prime}\right) \text { and } y \in \bigwedge^{j}\left(L^{\prime \prime}\right), \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
C_{i}^{\prime \prime r}: \operatorname{Hom}_{F}\left(\bigwedge^{j}\left(L^{\prime \prime}\right), \bigwedge^{j+r-1}\left(L^{\prime \prime}\right)\right) \rightarrow \operatorname{Hom}_{F}\left(\bigwedge^{i+j}(L), \bigwedge^{i+j+r-1}(L)\right)
$$

by

$$
C_{i}^{\prime \prime r}(f)(x \otimes y)= \begin{cases}x \otimes f(y) & \text { if } x \in \bigwedge^{i}\left(L^{\prime}\right) \text { and } y \in \bigwedge^{j}\left(L^{\prime \prime}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Let $\Gamma^{\prime}=L^{\prime} \rtimes G$ and $\Gamma^{\prime \prime}=L^{\prime \prime} \rtimes G$. There are associated split exact sequences of groups

$$
0 \rightarrow L^{\prime} \rightarrow \Gamma^{\prime} \rightarrow G \rightarrow 1 \quad \text { and } \quad 0 \rightarrow L^{\prime \prime} \rightarrow \Gamma^{\prime \prime} \rightarrow G \rightarrow 1
$$

Suppose $v_{*}^{*}\left(L^{\prime}\right)$ and $v_{*}^{*}\left(L^{\prime \prime}\right)$ are the respective characteristic classes of the Lyndon-Hochschild-Serre spectral sequences $\left\{E_{*}^{\prime}, d_{*}^{\prime}\right\}$ and $\left\{E_{*}^{\prime \prime}, d_{*}^{\prime \prime}\right\}$ corresponding to these extensions. Let $\iota^{\prime}: L^{\prime} \rightarrow L$ be the natural inclusion and let $p^{\prime}: L \rightarrow L^{\prime}$ be the natural projection. Similarly, define $\iota^{\prime \prime}: L^{\prime \prime} \rightarrow L$ and $p^{\prime \prime}: L \rightarrow L^{\prime \prime}$. As a straightforward application of the definitions, we obtain the following lemma.

Lemma 3.2. The map $C_{0}^{\prime r}: \operatorname{Hom}_{F}\left(\bigwedge^{i}\left(L^{\prime}\right), \bigwedge^{i+r-1}\left(L^{\prime}\right)\right) \rightarrow \operatorname{Hom}_{F}\left(\bigwedge^{i}(L), \bigwedge^{i+r-1}(L)\right)$ is given by the composition $p^{\prime *} \circ \iota_{*}^{\prime}$, where

$$
\operatorname{Hom}_{F}\left(\bigwedge^{i}\left(L^{\prime}\right), \bigwedge^{i+r-1}\left(L^{\prime}\right)\right) \xrightarrow{l_{*}^{\prime}} \operatorname{Hom}_{F}\left(\bigwedge^{i}\left(L^{\prime}\right), \bigwedge^{i+r-1}(L)\right) \xrightarrow{p^{\prime *}} \operatorname{Hom}_{F}\left(\bigwedge^{i}(L), \bigwedge^{i+r-1}(L)\right)
$$

and $C_{0}^{\prime \prime r}$ is the composition $p^{\prime \prime *} \circ \iota_{*}^{\prime \prime}$, where

$$
\operatorname{Hom}_{F}\left(\bigwedge^{j}\left(L^{\prime \prime}\right), \bigwedge^{j+r-1}\left(L^{\prime \prime}\right)\right) \xrightarrow{\iota_{*}^{\prime \prime}} \operatorname{Hom}_{F}\left(\bigwedge^{j}\left(L^{\prime \prime}\right), \bigwedge^{j+r-1}(L)\right) \xrightarrow{p^{\prime *}} \operatorname{Hom}_{F}\left(\bigwedge^{j}(L), \bigwedge^{j+r-1}(L)\right)
$$

Proof. Suppose $f \in \operatorname{Hom}_{F}\left(\bigwedge^{i}\left(L^{\prime}\right), \bigwedge^{i+r-1}\left(L^{\prime}\right)\right)$. For any $x \in \bigwedge^{i}\left(L^{\prime}\right)$ and $y \in \bigwedge^{0}\left(L^{\prime \prime}\right)$, $\left(p^{*} \circ \iota_{*}^{\prime}\right)(f)(x \otimes$ $y)=y\left(\iota_{*}^{\prime}(f)(x)\right)=y(f(x) \otimes 1)=f(x) \otimes y=C_{0}^{\prime r}(f)(x \otimes y)$. The second assertion of the lemma follows analogously.

Definition 3.3. Given integers $i, j \geqslant 0$ and $r \geqslant 1$, let $\bigwedge^{i+r-1} p^{\prime}: \bigwedge^{i+r-1}(L) \rightarrow \bigwedge^{i+r-1}\left(L^{\prime}\right)$ and $\bigwedge^{j+r-1} p^{\prime \prime}: \bigwedge^{j+r-1}(L) \rightarrow \bigwedge^{j+r-1}\left(L^{\prime \prime}\right)$ be the maps induced by the projections p^{\prime} and $p^{\prime \prime}$, respectively. Define $F G$-equivariant homomorphisms

$$
D^{\prime r}: \operatorname{Hom}_{F}\left(\bigwedge^{i}(L), \bigwedge^{i+r-1}(L)\right) \rightarrow \operatorname{Hom}_{F}\left(\bigwedge^{i}\left(L^{\prime}\right), \bigwedge^{i+r-1}\left(L^{\prime}\right)\right)
$$

by

$$
D^{\prime r}(f)(x)=\bigwedge^{i+r-1} p^{\prime}(f(x \otimes 1)) \quad \text { for all } x \in \bigwedge^{i}\left(L^{\prime}\right)
$$

and

$$
D^{\prime \prime r}: \operatorname{Hom}_{F}\left(\bigwedge^{j}(L), \bigwedge^{j+r-1}(L)\right) \rightarrow \operatorname{Hom}_{F}\left(\bigwedge^{j}\left(L^{\prime \prime}\right), \bigwedge^{j+r-1}\left(L^{\prime \prime}\right)\right)
$$

by

$$
D^{\prime \prime r}(f)(y)=\bigwedge^{j+r-1} p^{\prime \prime}(f(1 \otimes y)) \quad \text { for all } y \in \bigwedge^{j}\left(L^{\prime \prime}\right)
$$

Lemma 3.4. The map $D^{\prime r}$ is given by the composition $p_{*}^{\prime} \circ \iota^{\prime *}$, where

$$
\operatorname{Hom}\left(\bigwedge^{i}(L), \bigwedge^{i+r-1}(L)\right) \xrightarrow{t^{\prime *}} \operatorname{Hom}\left(\bigwedge^{i}\left(L^{\prime}\right), \bigwedge^{i+r-1}(L)\right) \xrightarrow{p_{*}^{\prime}} \operatorname{Hom}\left(\bigwedge^{i}\left(L^{\prime}\right), \bigwedge^{i+r-1}\left(L^{\prime}\right)\right)
$$

and $D^{\prime \prime r}$ is the composition $p_{*}^{\prime \prime} \circ \iota^{\prime \prime *}$, where

$$
\operatorname{Hom}\left(\bigwedge^{j}(L), \bigwedge^{j+r-1}(L)\right) \xrightarrow{t^{\prime \prime *}} \operatorname{Hom}\left(\bigwedge^{j}\left(L^{\prime \prime}\right), \bigwedge^{j+r-1}(L)\right) \xrightarrow{p_{*}^{\prime \prime}} \operatorname{Hom}\left(\bigwedge^{j}\left(L^{\prime \prime}\right), \bigwedge^{j+r-1}\left(L^{\prime \prime}\right)\right) .
$$

Proof. This is an immediate consequence of the definitions of $D^{\prime r}$ and $D^{\prime \prime r}$.
Proposition 3.5. Let $i \geqslant 0$ and $r \geqslant 2$. Suppose $E_{r}^{\prime s, t}(M)=E_{2}^{\prime s, t}(M)$ and $E_{r}^{s, t}\left(H_{i}(L, F)\right)=E_{2}^{s, t}\left(H_{i}(L, F)\right)$ when $(s, t)=(0, i)$ and when $(s, t)=(r, i-r+1)$, for $M=H_{i}\left(L^{\prime}, F\right)$ and for $M=H_{i}(L, F)$. Then $d_{r}^{0, i} \circ\left(C_{0}^{\prime 1}\right)_{*}=$ $\left(C_{0}^{\prime r}\right)_{*} \circ d_{r}^{\prime 0, i}$ and $d_{r}^{\prime 0, i} \circ D_{*}^{\prime \prime}=D_{*}^{\prime r} \circ d_{r}^{0, i}$.

Proof. The first claim asserts that the following diagram commutes.

$$
\begin{gathered}
H^{0}\left(G, H^{i}\left(L^{\prime}, H_{i}\left(L^{\prime}, F\right)\right)\right) \xrightarrow{d_{r}^{0, i}} H^{r}\left(G, H^{i-r+1}\left(L^{\prime}, H_{i}\left(L^{\prime}, F\right)\right)\right) \\
\left(\left(C_{0}^{\prime}\right)_{*} \downarrow\right. \\
H^{0}\left(G, H^{i}\left(L, H_{i}(L, F)\right)\right) \xrightarrow{\left(C_{0}^{\prime r}\right)_{*} \downarrow} \downarrow
\end{gathered}
$$

By Lemma 3.2, we know that the map $\left(C_{0}^{\prime *}\right)_{*}$ is induced by the inclusion $\iota^{\prime}: L^{\prime} \rightarrow L$ and the projection $p^{\prime}: L \rightarrow L^{\prime}$. Hence, this diagram is the outer square of the commutative diagram below.

The second claim follows by a similar argument using Lemma 3.4.
As previously noted, the category $\mathcal{M}_{F}(L, G)$ can be identified with the category of all finite rank $F G$-lattices. In view of this, we will not distinguish between $\mathcal{M}_{F}\left(L^{\prime}, G\right), \mathcal{M}_{F}\left(L^{\prime \prime}, G\right)$, and $\mathcal{M}_{F}(L, G)$.

Lemma 3.6. There are natural morphisms of spectral sequences $\pi^{\prime *}: E_{r}^{\prime} \rightarrow E_{r}, \phi^{* *}: E_{r} \rightarrow E_{r}^{\prime}$ and $\pi^{\prime \prime *}: E_{r}^{\prime \prime} \rightarrow E_{r}, \phi^{\prime \prime *}: E_{r} \rightarrow E_{r}^{\prime \prime}$, such that for all $r \geqslant 2$, all $s \geqslant 0$, and all coefficient modules in $\mathcal{M}_{F}(L, G)$,

$$
d_{r}^{\prime s, t}=\phi^{\prime *} \circ d_{r}^{s, t} \circ \pi^{\prime *} \text { and } d_{r}^{\prime \prime s, t}=\phi^{\prime \prime *} \circ d_{r}^{s, t} \circ \pi^{\prime \prime *} .
$$

Proof. We observe that the map ι^{\prime} induces a natural inclusion $\phi^{\prime}: \Gamma^{\prime} \rightarrow \Gamma$ and the map p^{\prime} induces a natural projection $\pi^{\prime}: \Gamma \rightarrow \Gamma^{\prime}$ such that the composition $\pi^{\prime} \circ \phi^{\prime}$ is the identity map on Γ^{\prime}. Let $\varphi: L \rightarrow \Gamma$ and $\varphi^{\prime}: L^{\prime} \rightarrow \Gamma^{\prime}$ be the canonical inclusions. It follows that $\phi^{\prime} \circ \varphi^{\prime}=\varphi \circ \iota^{\prime}$ and $\pi^{\prime} \circ \varphi=$ $\varphi^{\prime} \circ p^{\prime}$. Hence, the homomorphisms ϕ^{\prime} and π^{\prime} give rise to spectral sequence morphisms $\phi^{\prime *}: E_{*} \rightarrow E_{*}^{\prime}$
and $\pi^{\prime *}: E_{*}^{\prime} \rightarrow E_{*}$, such that $\phi^{\prime *} \circ \pi^{\prime *}$ is the identity morphism on $\left\{E_{*}^{\prime}, d_{*}^{\prime}\right\}$. Then, $d_{r}^{\prime s, t}=\phi^{\prime *} \circ \pi^{\prime *} \circ$ $d_{r}^{\prime s, t}=\phi^{\prime *} \circ d_{r}^{s, t} \circ \pi^{\prime *}$. Analogously, $\iota^{\prime \prime}$ and $p^{\prime \prime}$ induce an inclusion $\phi^{\prime \prime}: \Gamma^{\prime \prime} \rightarrow \Gamma$ and a projection $\pi^{\prime \prime}: \Gamma \rightarrow \Gamma^{\prime \prime}$, respectively, such that the composition $\pi^{\prime \prime} \circ \phi^{\prime \prime}$ is the identity map on $\Gamma^{\prime \prime}$ and $d_{r}^{\prime \prime s, t}=$ $\phi^{\prime *} \circ d_{r}^{s, t} \circ \pi^{\prime \prime *}$.

We are now ready to prove our main result.
Theorem 3.7. Recall that G is an arbitrary group, and that L is $a \mathbb{Z} G$-lattice of finite rank that decomposes into a direct sum of the $\mathbb{Z} G$-lattices L^{\prime} and $L^{\prime \prime}$. Let $r \geqslant 2$ and $t \geqslant 0$.
(a) Suppose $v_{k}^{i}\left(L^{\prime}\right)=v_{k}^{j}\left(L^{\prime \prime}\right)=0$ for all $i, j \leqslant t$ and for all $k<r$. Then $d_{2}^{s, m}=\cdots=d_{r-1}^{s, m}=0$ for all $s \geqslant 0$, all $m \leqslant t$, and all coefficient modules in $\mathcal{M}_{F}(L, G)$. Additionally,

$$
v_{r}^{t}(L)=\sum_{i+j=t}\left(\left(C_{j}^{\prime r}\right)_{*}\left(v_{r}^{i}\left(L^{\prime}\right)\right)+(-1)^{i}\left(C_{i}^{\prime \prime r}\right)_{*}\left(v_{r}^{j}\left(L^{\prime \prime}\right)\right)\right) .
$$

(b) Suppose $v_{k}^{t}(L)=0$ for all $k<r$. Then $d_{k}^{\prime s, t}=d_{k}^{\prime \prime s, t}=0$ for all $s \geqslant 0$, all $k<r$, and all coefficient modules in $\mathcal{M}_{F}(L, G)$. Additionally,

$$
v_{r}^{t}\left(L^{\prime}\right)=D_{*}^{\prime r}\left(v_{r}^{t}(L)\right) \quad \text { and } \quad v_{r}^{t}\left(L^{\prime \prime}\right)=D_{*}^{\prime \prime r}\left(v_{r}^{t}(L)\right) .
$$

Proof. To show part (a), we will use induction on $k \geqslant 2$ to prove that $v_{k}^{m}(L)$ satisfies the sum formula for all $m \leqslant t$ and all $k \leqslant r$. For each $k<r$, since $v_{k}^{i}\left(L^{\prime}\right)=v_{k}^{j}\left(L^{\prime \prime}\right)=0$ for all $i, j \leqslant t$, this will imply $v_{k}^{m}(L)=0$ and hence, by Theorem 2.2(b), $d_{k}^{s, m}=0$ for all $s \geqslant 0$, all $m \leqslant t$, and all $M \in \mathcal{M}_{F}(L, G)$.

Suppose $d_{2}^{s, m}=\cdots=d_{k-1}^{s, m}=0$ for all $s \geqslant 0$, all $m \leqslant t$, and all $M \in \mathcal{M}_{F}(L, G)$. Recall that $v_{k}^{m}(L)=$ $d_{k}^{0, m}\left(\left[\operatorname{id}^{m}\right]\right)$, where $\mathrm{id}^{m} \in \operatorname{Hom}_{F G}\left(\bigwedge^{m}(L), \bigwedge^{m}(L)\right)$ is the identity map. Similarly, $v_{k}^{i}\left(L^{\prime}\right)=d_{k}^{\prime 0, i}\left(\left[\mathrm{id}^{\prime}\right]\right)$ and $v_{k}^{j}\left(L^{\prime \prime}\right)=d_{k}^{\prime \prime 0, j}\left(\left[\mathrm{id}^{\prime \prime}\right]\right)$. Consider the decomposition $\mathrm{id}^{m}=\sum_{i+j=m} \mathrm{id}_{i j}$, where $\mathrm{id}_{i j}: \bigwedge^{i+j}(L) \rightarrow$ $\bigwedge^{i+j}(L)$ is the F-linear map given by

$$
\operatorname{id}_{i j}(x \otimes y)= \begin{cases}x \otimes y & \text { if } x \in \bigwedge^{i}\left(L^{\prime}\right) \text { and } y \in \bigwedge^{j}\left(L^{\prime \prime}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Given $i, j \geqslant 0$, let $x \in \bigwedge^{i}\left(L^{\prime}\right)$ and $y \in \bigwedge^{j}\left(L^{\prime \prime}\right)$. Then, id $_{i j}(x \otimes y)=x \otimes y=(x \otimes 1) \wedge(1 \otimes y)=C_{0}^{\prime 1}\left(\mathrm{id}^{\prime}{ }^{i}\right)(x \otimes$ 1) $\wedge C_{0}^{\prime \prime 1}\left(\mathrm{id}^{\prime \prime j}\right)(1 \otimes y)$. This implies $\left[\mathrm{id}_{i j}\right]=\left(C_{0}^{\prime 1}\right)_{*}\left(\left[\mathrm{id}^{\prime}\right]\right) \cdot\left(C_{0}^{\prime \prime 1}\right)_{*}\left(\left[\mathrm{id}^{\prime \prime}\right]\right) \in H^{0}\left(G, H^{i+j}\left(L, H_{i+j}(L, F)\right)\right)$, and thus

$$
\left[\mathrm{id}^{m}\right]=\sum_{i+j=m}\left(C_{0}^{\prime 1}\right)_{*}\left(\left[\mathrm{id}^{\prime i}\right]\right) \cdot\left(C_{0}^{\prime \prime 1}\right)_{*}\left(\left[\mathrm{id}^{\prime \prime j}\right]\right)
$$

By applying the product formula for the differentials, we compute

$$
\begin{aligned}
v_{k}^{m}(L) & =d_{k}^{0, m}\left(\sum_{i+j=m}\left(C_{0}^{\prime 1}\right)_{*}\left(\left[\mathrm{id}^{i}\right]\right) \cdot\left(C_{0}^{\prime \prime 1}\right)_{*}\left(\left[\mathrm{id}^{\prime \prime j}\right]\right)\right) \\
& =\sum_{i+j=m} d_{k}^{0, m}\left(\left(C_{0}^{1}\right)_{*}\left(\left[\mathrm{id}^{\prime}\right]\right) \cdot\left(C_{0}^{\prime \prime 1}\right)_{*}\left(\left[\mathrm{id}^{\prime \prime}\right]\right)\right) \\
& =\sum_{i+j=m}\left(d_{k}^{0, i}\left(\left(C_{0}^{\prime 1}\right)_{*}\left(\left[\mathrm{id}^{\prime}\right]\right)\right) \cdot\left(C_{0}^{\prime \prime 1}\right)_{*}\left(\left[\mathrm{id}^{\prime \prime j}\right]\right)+(-1)^{i}\left(C_{0}^{\prime 1}\right)_{*}\left(\left[\mathrm{id}^{\prime i}\right]\right) \cdot d_{k}^{0, j}\left(\left(C_{0}^{\prime \prime 1}\right)_{*}\left(\left[\mathrm{id}^{\prime \prime j}\right]\right)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{3.5}{=} \sum_{i+j=m}\left(\left(C_{0}^{\prime k}\right)_{*}\left(d_{k}^{\prime 0, i}\left(\left[\mathrm{id}^{\prime}\right]\right)\right) \cdot\left(C_{0}^{\prime \prime 1}\right)_{*}\left(\left[\mathrm{id}^{\prime \prime j}\right]\right)+(-1)^{i}\left(C_{0}^{\prime 1}\right)_{*}\left(\left[\mathrm{id}^{i}\right]\right) \cdot\left(C_{0}^{\prime \prime k}\right)_{*}\left(d_{k}^{\prime \prime 0, j}\left(\left[\mathrm{id}^{\prime \prime j}\right]\right)\right)\right) \\
& =\sum_{i+j=m}\left(\left(C_{0}^{\prime k}\right)_{*}\left(v_{k}^{i}\left(L^{\prime}\right)\right) \cdot\left(C_{0}^{\prime \prime 1}\right)_{*}\left(\left[\mathrm{id}^{\prime \prime j}\right]\right)+(-1)^{i}\left(C_{0}^{\prime 1}\right)_{*}\left(\left[\mathrm{id}^{\prime i}\right]\right) \cdot\left(C_{0}^{\prime \prime k}\right)_{*}\left(v_{k}^{j}\left(L^{\prime \prime}\right)\right)\right) \\
& =\sum_{i+j=m}\left(\left(C_{j}^{\prime k}\right)_{*}\left(v_{k}^{i}\left(L^{\prime}\right)\right)+(-1)^{i}\left(C_{i}^{\prime \prime k}\right)_{*}\left(v_{k}^{j}\left(L^{\prime \prime}\right)\right)\right)
\end{aligned}
$$

The last equality follows from the definitions of $C_{*}^{\prime *}$ and $C_{*}^{\prime \prime *}$ and the fact that $\mathrm{id}^{\prime i}$ and $\mathrm{id}^{\prime \prime}{ }^{j}$ are identity maps.

To prove (b), we will use induction on $k \geqslant 2$ to show that $v_{k}^{t}\left(L^{\prime}\right)=D_{*}^{\prime r}\left(v_{k}^{t}(L)\right)$ and $v_{k}^{t}\left(L^{\prime \prime}\right)=$ $D_{*}^{\prime \prime r}\left(v_{k}^{t}(L)\right)$ for all $k \leqslant r$. By Theorem 2.2, for each $k<r$ and for all $s \geqslant 0$ this will imply that $d_{k}^{\prime s, t}=d_{k}^{\prime \prime s, t}=0$ for all coefficient modules in $\mathcal{M}_{F}(L, G)$. Note that this assertion also follows from Lemma 3.6.

For the identity map id ${ }^{\prime t}: \bigwedge^{t}\left(L^{\prime}\right) \rightarrow \bigwedge^{t}\left(L^{\prime}\right)$, we have $\mathrm{id}^{\prime t}(x)=x=\bigwedge^{t} p^{\prime}(x \otimes 1)=\bigwedge^{t} p^{\prime}\left(\operatorname{id}^{t}(x \otimes\right.$ $1))=D^{\prime 1}\left(\mathrm{id}^{t}\right)(x)$ for all $x \in \bigwedge^{t}\left(L^{\prime}\right)$. This implies $\left[\mathrm{id}^{\prime t}\right]=D_{*}^{\prime 1}\left(\left[\mathrm{id}^{t}\right]\right) \in E_{k}^{\prime 0, t}\left(H_{t}\left(L^{\prime}, F\right)\right)$. Thus, it follows

$$
v_{k}^{t}\left(L^{\prime}\right)=d_{k}^{\prime 0, t}\left(\left[\mathrm{id}^{\prime t}\right]\right)=d_{k}^{\prime 0, t} \circ D_{*}^{\prime 1}\left(\left[\mathrm{id}^{t}\right]\right) \stackrel{3.5}{=} D_{*}^{\prime k} \circ d_{k}^{0, t}\left(\left[\mathrm{id}^{t}\right]\right)=D_{*}^{\prime k}\left(v_{k}^{t}(L)\right)
$$

By an analogous argument, $v_{k}^{t}\left(L^{\prime \prime}\right)=D_{*}^{\prime \prime k}\left(v_{k}^{t}(L)\right)$.
Remark 3.8. Using the same assumptions as in Theorem 3.7(a), the sum formula can be simplified. Since $E_{r}^{\prime r, i-r+1}=E_{r}^{\prime \prime r, j-r+1}=0, v_{r}^{i}\left(L^{\prime}\right)=v_{r}^{j}\left(L^{\prime \prime}\right)=0$ hold a priori for all $i, j<r-1$. It is an easy exercise to check that $d_{r}^{\prime 0, r-1}=0$ and $d_{r}^{\prime \prime 0, r-1}=0$ for all $M \in \mathcal{M}_{F}(L, G)$, since they are differentials with target in the 0th row (see Proposition 1, [3]). Therefore, $v_{r}^{r-1}\left(L^{\prime}\right)=v_{r}^{r-1}\left(L^{\prime \prime}\right)=0$ and we have

$$
\begin{aligned}
v_{r}^{t}(L) & =\sum_{i+j=t}\left(\left(C_{j}^{\prime r}\right)_{*}\left(v_{r}^{i}\left(L^{\prime}\right)\right)+(-1)^{i}\left(C_{i}^{\prime \prime r}\right)_{*}\left(v_{r}^{j}\left(L^{\prime \prime}\right)\right)\right) \\
& =\sum_{i+j=t-r}\left(C_{j}^{\prime r}\right)_{*}\left(v_{r}^{i+r}\left(L^{\prime}\right)\right)+\sum_{i+j=t-r}(-1)^{i}\left(C_{i}^{\prime \prime r}\right)_{*}\left(v_{r}^{j+r}\left(L^{\prime \prime}\right)\right) \\
& =\sum_{i+j=t-r}\left(\left(C_{j}^{\prime \prime}\right)_{*}\left(v_{r}^{i+r}\left(L^{\prime}\right)\right)+(-1)^{i}\left(C_{i}^{\prime \prime r}\right)_{*}\left(v_{r}^{j+r}\left(L^{\prime \prime}\right)\right)\right) .
\end{aligned}
$$

4. Some corollaries

Theorem 3.7 has particularly interesting applications if characteristic classes of the $\mathbb{Z} G$-lattices L^{\prime}, $L^{\prime \prime}$, and L are viewed as obstructions to the vanishing of the differentials in the associated Lyndon-Hochschild-Serre spectral sequences. We use the same notation as before.

Corollary 4.1. Let $r \geqslant 2$. If $v_{k}^{i}\left(L^{\prime}\right)=v_{k}^{j}\left(L^{\prime \prime}\right)=0$ for all $i, j \in[k, r]$ and for all $k<r$, then $d_{2}^{s, m}=\cdots=d_{r-1}^{s, m}=0$ for all $s \geqslant 0$, all $m \leqslant r$, and all $M \in \mathcal{M}_{F}(L, G)$. Moreover,

$$
v_{r}^{r}(L)=\left(C_{0}^{\prime r}\right)_{*}\left(v_{r}^{r}\left(L^{\prime}\right)\right)+\left(C_{0}^{\prime \prime r}\right)_{*}\left(v_{r}^{r}\left(L^{\prime \prime}\right)\right) .
$$

Proof. This is a direct consequence of Theorem 3.7 and the preceding remark.
A consequence of Lemma 3.6 is the fact that when the differentials in the Lyndon-HochschildSerre spectral sequence $\left\{E_{*}, d_{*}\right\}$ are all zero, the same is true for the spectral sequences corresponding to the $\mathbb{Z} G$-sublattices L^{\prime} and $L^{\prime \prime}$. The next corollary gives us a converse.

Corollary 4.2. Suppose $v_{p}^{t}\left(L^{\prime}\right)=v_{q}^{t}\left(L^{\prime \prime}\right)=0$ for all $p \leqslant \operatorname{dim}\left(L^{\prime}\right)$, all $q \leqslant \operatorname{dim}\left(L^{\prime \prime}\right)$, and all $t \geqslant 0$. Then $d_{k}^{s, t}=0$ for all $M \in \mathcal{M}_{F}(L, G)$, all $s, t \geqslant 0$, and all $k \geqslant 2$. Moreover, if in addition $\left\{E_{*}, d_{*}\right\}$ has no extension problems, then for every $n \geqslant 0$ and for all $M \in \mathcal{M}_{F}(L, G)$ we have

$$
H^{n}(\Gamma, M)=\bigoplus_{i+j=n} H^{i}\left(G, H^{j}(L, M)\right)
$$

Proof. Since $v_{p}^{t}\left(L^{\prime}\right)=d_{p}^{\prime 0, t}\left(\left[\operatorname{id}^{\prime t}\right]\right) \in E_{p}^{p, t-p+1}\left(H_{t}\left(L^{\prime}, F\right)\right)$, this class lies in the image of the map

$$
d_{p}^{\prime 0, t}: H^{0}\left(G, H^{t}\left(L^{\prime}, H_{t}\left(L^{\prime}, F\right)\right)\right) \rightarrow H^{p}\left(G, H^{t-p+1}\left(L^{\prime}, H_{t}\left(L^{\prime}, F\right)\right)\right)
$$

Note that $d_{p}^{\prime 0, t}=0$ when $t>\operatorname{dim}\left(L^{\prime}\right)$ or $p>t+1$. If $p=t+1$, then $d_{t+1}^{\prime 0, t}=0$, since it is a differential with a target in the 0 th row (see Proposition 1, [3]). Therefore, if $v_{p}^{*}\left(L^{\prime}\right)=0$ for all $p \leqslant \operatorname{dim}\left(L^{\prime}\right)$, then all characteristic classes of the spectral sequence $\left\{E_{*}^{\prime}, d_{*}^{\prime}\right\}$ are zero. A similar argument shows that all characteristic classes of $\left\{E_{*}^{\prime \prime}, d_{*}^{\prime \prime}\right\}$ are zero when $v_{q}^{*}\left(L^{\prime \prime}\right)=0$ for all $q \leqslant \operatorname{dim}\left(L^{\prime \prime}\right)$.

Corollary 4.3. Let $t \geqslant 0$. Set $\Gamma^{\prime}=L^{\prime} \rtimes G$ and $\Gamma^{\prime \prime}=L^{\prime \prime} \rtimes G$. Let $\varphi^{\prime}: L^{\prime} \rightarrow \Gamma^{\prime}, \varphi^{\prime \prime}: L^{\prime \prime} \rightarrow \Gamma^{\prime \prime}$, and $\varphi: L \rightarrow \Gamma$ be the natural inclusions.
(a) If $\varphi^{\prime *}: H^{m}\left(\Gamma^{\prime}, H_{m}\left(L^{\prime}, F\right)\right) \rightarrow H^{m}\left(L^{\prime}, H_{m}\left(L^{\prime}, F\right)\right)^{G}$ and $\varphi^{\prime \prime *}: H^{m}\left(\Gamma^{\prime \prime}, H_{m}\left(L^{\prime \prime}, F\right)\right) \rightarrow H^{m}\left(L^{\prime \prime}\right.$, $\left.H_{m}\left(L^{\prime \prime}, F\right)\right)^{G}$ are surjective for all $m \leqslant t$, then $\varphi^{*}: H^{m}(\Gamma, M) \rightarrow H^{m}(L, M)^{G}$ is surjective for all $m \leqslant t$ and for all $M \in \mathcal{M}_{F}(L, G)$.
(b) If $\varphi^{*}: H^{t}(\Gamma, M) \rightarrow H^{t}(L, M)^{G}$ is surjective, then $\varphi^{\prime *}: H^{t}\left(\Gamma^{\prime}, M\right) \rightarrow H^{t}\left(L^{\prime}, M\right)^{G}$ and $\varphi^{\prime \prime *}: H^{t}\left(\Gamma^{\prime \prime}, M\right) \rightarrow H^{t}\left(L^{\prime \prime}, M\right)^{G}$ are surjective for all $M \in \mathcal{M}_{F}(L, G)$.

Proof. To prove (a), we observe that Corollary 2.4 implies $v_{r}^{i}\left(L^{\prime}\right)=v_{r}^{j}\left(L^{\prime \prime}\right)=0$ for all $r \geqslant 0$ and for all $i, j \leqslant t$. Then, by Theorem 3.7, $d_{r}^{s, m}=0$ for all $r, s \geqslant 0$, all $m \leqslant t$, and all coefficient modules in $\mathcal{M}_{F}(L, G)$. Applying again Corollary 2.4 finishes the proof.

For part (b), let $\iota^{\prime *}: H^{t}(L, M)^{G} \rightarrow H^{t}\left(L^{\prime}, M\right)^{G}, \phi^{\prime *}: H^{t}(\Gamma, M) \rightarrow H^{t}\left(\Gamma^{\prime}, M\right)$, and $p^{\prime *}: H^{t}\left(L^{\prime}, M\right)^{G} \rightarrow$ $H^{t}(L, M)^{G}$ be the induced maps of the inclusions $\iota^{\prime}: L^{\prime} \rightarrow L, \phi^{\prime}: \Gamma^{\prime} \rightarrow \Gamma$, and the projection $p^{\prime}: L \rightarrow L^{\prime}$, respectively. Then, we have $\varphi^{\prime *} \circ \phi^{\prime *}=\iota^{\prime *} \circ \varphi^{*}$. Since $\iota^{\prime *} \circ p^{\prime *}$ is the identity map on $H^{t}\left(L^{\prime}, M\right)^{G}, \iota^{*}$ is surjective and hence $\iota^{\prime *} \circ \varphi^{*}$ is surjective. The previous equality shows that $\varphi^{\prime *}$ is also surjective. Similarly, it follows that $\varphi^{\prime \prime *}$ is surjective.

Given an arbitrary finite rank integral $\mathbb{Z} G$-lattice L, Lieberman's result (see Theorem 4, [3]) states that in the associated Lyndon-Hochschild-Serre spectral sequence $\left\{E_{*}, d_{*}\right\}$, for any $s, t \geqslant 0$ and $r \geqslant 2$, the image of the differential $d_{r}^{s, t}$ is a torsion group annihilated by the integers $m^{t-r+1}\left(m^{r-1}-1\right)$ for all $m \in \mathbb{Z}$. Using this fact, it was proved in [3] that if F is a field of nonzero characteristic p, then $d_{r}^{s, t}=0$ for all $s, t \geqslant 0$ and all $r<p$. The next corollary follows from combining this result with the sum formula of Remark 3.8.

Corollary 4.4. Let F be a field of nonzero characteristic p. Assume L^{\prime} and $L^{\prime \prime}$ are $\mathbb{Z} G$-lattices of finite rank and $L=L^{\prime} \oplus L^{\prime \prime}$.
(a) $d_{r}^{s, t}=0$ for all $s, t \geqslant 0$, all $r<p$, and all $M \in \mathcal{M}_{F}(L, G)$.
(b) $d_{p}^{s, t}(x)=(-1)^{s} y \cdot \sum_{i+j=t-p}\left(\left(C_{j}^{\prime p}\right)_{*}\left(v_{p}^{i+p}\left(L^{\prime}\right)\right)+(-1)^{i}\left(C_{i}^{\prime \prime p}\right)_{*}\left(v_{p}^{j+p}\left(L^{\prime \prime}\right)\right)\right)$ for all $M \in \mathcal{M}_{F}(L, G)$, for all $x \in E_{p}^{s, t}(M)$, and for all $y \in E_{p}^{s, 0}\left(H^{t}(L, M)\right)$ such that $\theta(y)=x$.

Acknowledgments

I am thankful to Alejandro Adem for suggesting to me to study the cohomology of semidirect product groups and for always giving good advice. I also thank Jim Davis and Karel Dekimpe for their many conversations. Lastly, I would like to thank the referee for many helpful comments and suggestions which led to a better exposition of the results in the article.

References

[1] A. Adem, J. Ge, J. Pan, N. Petrosyan, Compatible actions and cohomology of crystallographic groups, J. Algebra 320 (2008) 341-353.
[2] L. Charlap, A. Vasquez, Characteristic classes for modules over groups I, Trans. Amer. Math. Soc. 137 (1969) 533-549.
[3] C.-H. Sah, Cohomology of split group extensions, J. Algebra 29 (1974) 255-302.
[4] B. Totaro, Cohomology of semidirect product groups, J. Algebra 182 (1996) 469-475.

[^0]: E-mail address: nansen.petrosyan@kuleuven-kortrijk.be.

