
Physics Letters B 719 (2013) 440–447

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Holographic insulator/superconductor phase transition with Weyl corrections

Zixu Zhao a,b, Qiyuan Pan a,b,∗, Jiliang Jing a,b

a Institute of Physics and Department of Physics, Hunan Normal University, Changsha, Hunan 410081, China
b Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 November 2012
Received in revised form 13 January 2013
Accepted 16 January 2013
Available online 18 January 2013
Editor: M. Cvetič

We analytically investigate the phase transition between the holographic insulator and superconductor
with Weyl corrections by using the variational method for the Sturm–Liouville eigenvalue problem. We
find that similar to the curvature corrections, in p-wave model, the higher Weyl couplings make the
insulator/superconductor phase transition harder to occur. However, in s-wave case the Weyl corrections
do not influence the critical chemical potential, which is in contrast to the effect caused by the curvature
corrections. Moreover, we observe that the Weyl corrections will not affect the critical phenomena and
the critical exponent of the system always takes the mean-field value in both models. Our analytic results
are found to be in good agreement with the numerical findings.
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1. Introduction

The anti-de Sitter/conformal field theory (AdS/CFT) correspon-
dence [1], which relates a string theory in AdS spacetime to a
conformal field theory living on its boundary, has motivated the
development of dual gravity models to describe strongly corre-
lated systems in condensed matter physics [2]. It was suggested
that the gravitational duals to the high temperature superconduct-
ing systems consist of a black hole in an AdS spacetime with a
complex scalar field coupled to a U(1) gauge field [3]. When the
temperature of the black hole is below a critical temperature Tc ,
the bulk configuration becomes unstable and experiences a second
order phase transition, which exhibit the behavior of the super-
conductor in the boundary dual CFT [4]. Considering the potential
applications to the condensed matter physics, many authors have
constructed various s-, p- and d-wave holographic superconductor
models in the AdS black hole background, for reviews, see Ref. [5]
and references therein.

Besides the bulk AdS black hole spacetime, the AdS soliton
is a gravitational configuration which has lower energy than the
AdS space in the Poincaré coordinates, but has the same bound-
ary topology as the Ricci flat black hole and the AdS space in
the Poincaré coordinates [6]. Using a five-dimensional AdS soli-
ton background coupled to a Maxwell field and a scalar field,
Nishioka et al. first constructed a model describing an insula-
tor/superconductor phase transition at zero temperature in the
probe limit where the backreaction of matter fields on the space-
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time metric is neglected [7]. It is found that when the chemical
potential is sufficiently large beyond a critical value μc , the AdS
soliton becomes unstable to form scalar hair and a second order
phase transition can happen, which can be used to describe the
transition between the insulator and superconductor. Along this
line, there have been accumulated interest to study various insu-
lator and superconductor phase transitions in different theories of
gravity [8–12].

In the previous papers [13,14], we extended the gravitational
construction to include a Ricci flat AdS soliton in Gauss–Bonnet
gravity [15] and observed that the higher curvature corrections
make it harder for the insulator/superconductor phase transition to
occur. As a matter of fact, in order to understand the influences of
the 1/N or 1/λ (λ is the ’t Hooft coupling) corrections on the holo-
graphic dual models, it is interesting to consider the higher deriva-
tive correction related to the gauge field besides the curvature
correction to the gravity. Recently, Wu et al. constructed an s-wave
holographic dual model with Weyl corrections in order to explore
the effects beyond the large N limit on the holographic supercon-
ductor [16]. They found that the higher Weyl corrections make it
easier for the condensation to form, which is in strong contrast to
the higher curvature corrections [17]. In the Stückelberg mecha-
nism, rich physics in the phase transition of the holographic su-
perconductor with Weyl corrections has been observed [18]. More
recently, the authors of [19] studied the p-wave holographic super-
conductor model with Weyl corrections and their results showed
that the effect of Weyl corrections on the condensation is similar
to that of the s-wave model. Considering that the increasing in-
terest in investigation of Weyl corrections [16,18–20], in this work
we will consider the holographic insulator/superconductor phase
transition model with Weyl corrections to the usual Maxwell field
.
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[21] in the probe limit, which has not been constructed as far as
we know. Note that the variational method for the Sturm–Liouville
(S–L) eigenvalue problem [22], which was first developed by Siop-
sis and Therrien to analytically calculate the critical exponent near
the critical temperature [23], is very effective to obtain the re-
sults on the condensation and the critical phenomena both in AdS
black hole backgrounds [24] and AdS soliton backgrounds [10–12,
14]. Thus, we will generalize the S–L method to study holographic
insulator/superconductor phase transition with Weyl corrections in
the AdS soliton background. It is not trivial to analytically study
the condensation and the phase transition by taking into account
of the influence of the Weyl couplings. Besides to be used to
check numerical computation, the analytic investigation can clearly
present the critical exponent of the system at the critical point and
the influence of the Weyl correction terms on the phase transition.

The plan of the work is the following. In Section 2 we explore
the p-wave insulator/superconductor phase transition with Weyl
corrections. In particular, we calculated the critical chemical po-
tential of the system as well as the relations of condensed values
of operators and the charge density with respect to (μ − μc). In
Section 3 we discuss the s-wave case. We conclude in the last sec-
tion with our main results.

2. p-Wave insulator/superconductor phase transition with Weyl
corrections

In this section, we will study the model of the p-wave insula-
tor/superconductor phase transition with Weyl corrections in the
five-dimensional AdS soliton spacetime by considering an SU(2)

Yang–Mills action with Weyl corrections in the bulk theory [19]

S =
∫

d5x
√−g

[
1

2κ2

(
R + 12

L2

)

− 1

4ĝ2

(
F a
μν F aμν − 4γ Cμνρσ F a

μν F a
ρσ

)]
, (1)

where κ2 = 8πG5 is the five-dimensional gravitational constant, L
is the AdS radius, ĝ is the Yang–Mills coupling constant, and γ is
the so-called Weyl coupling parameter which satisfies −L2/16 <

γ < L2/24 [21]. F a
μν = ∂μ Aa

ν − ∂ν Aa
μ + εabc Ab

μ Ac
ν is the SU(2)

Yang–Mills field strength and εabc is the totally antisymmetric ten-
sor with ε123 = +1. The Aa

μ are the components of the mixed-
valued gauge fields A = Aa

μτ adxμ , where τ a are the three gener-

ators of the SU(2) algebra with commutation relation [τ a, τ b] =
εabcτ c .

In this Letter, we will construct the model of holographic in-
sulator/superconductor phase transition in the probe limit where
the backreaction of matter fields on the metric can be neglected.
Due to the scaling symmetries of the system for the case of the
p-wave [25], we can see from the action (1) that the probe limit
can be obtained safely if the coupling constant ĝ is large enough,
i.e., κ2/ĝ2 → 0. Without loss of generality, we will set ĝ = 1 and
work in this probe approximation.

In the probe limit, the background metric is a five-dimensional
AdS soliton

ds2 = −r2 dt2 + dr2

f (r)
+ f (r)dϕ2 + r2(dx2 + dy2), (2)

with

f (r) = r2

L2

(
1 − r4

s

r4

)
, (3)

where rs is the tip of the soliton which is a conical singularity in
this solution. It should be noted that we can remove the singularity
by imposing a period β = π L2/rs for the coordinate ϕ . In fact, this
soliton can be obtained from a five-dimensional AdS Schwarzschild
black hole by making use of two Wick rotations. Just as in Ref. [7],
we will take the AdS radius L = 1 in our discussion for clarity.
Since we are interested in the Weyl corrections to the holographic
insulator/superconductor phase transition, we will use the nonzero
components of the Weyl tensor Cμνρσ for this considered solution

C0i0 j = −r4
s δi j, C0r0r = r4

s

r4 − r4
s
,

C0ϕ0ϕ = r4
s

(
1 − r4

s

r4

)
, Crϕrϕ = 3r4

s

r4
,

Cir jr = − r4
s

r4 − r4
s
δi j, Ciϕ jϕ = −r4

s

(
1 − r4

s

r4

)
δi j,

Cijkl = r4
s δikδ jl, (4)

with i, j,k, l = x or y.
In order to construct a p-wave holographic insulator and super-

conductor, we adopt the ansatz of the gauge fields as [9,10,25]

A(r) = φ(r)τ 3 dt + ψ(r)τ 1 dx, (5)

where we regard the U (1) symmetry generated by τ 3 as the U (1)

subgroup of SU(2) and the gauge boson with nonzero component
ψ(r) along x-direction is charged under A3

t = φ(r). According to
AdS/CFT correspondence, ψ(r) is dual to the x-component of some
charged vector operator O on the boundary and φ(r) is dual to the
chemical potential. The condensation of ψ(r) will spontaneously
break the U (1) gauge symmetry and induce a phase transition,
which can be interpreted as a p-wave insulator and superconduc-
tor phase transition in the boundary field theory.

From the Yang–Mills action with Weyl corrections (1), we have
the following equations of motion(

1 + 8γ r4
s

r4

)
ψ ′′ +

[
1

r

(
1 − 24γ r4

s

r4

)
+ f ′

f

(
1 + 8γ r4

s

r4

)]
ψ ′

+
(

1 − 8γ r4
s

r4

)
φ2

r2 f
ψ = 0, (6)

(
1 + 8γ r4

s

r4

)
φ′′ +

[
1

r

(
1 − 24γ r4

s

r4

)
+ f ′

f

(
1 + 8γ r4

s

r4

)]
φ′

−
(

1 − 8γ r4
s

r4

)
ψ2

r2 f
φ = 0, (7)

where the prime denotes the derivative with respect to r.
In order to solve the above equations of motion, we have to im-

pose the appropriate boundary conditions for φ(r) and ψ(r) at the
tip r = rs and at the boundary r → ∞. The boundary conditions at
the tip r = rs are

ψ = α0 + α1(r − rs) + α2(r − rs)
2 + · · · ,

φ = β0 + β1(r − rs) + β2(r − rs)
2 + · · · , (8)

where αi and βi (i = 0,1,2, . . .) are the integration constants, and
we have imposed the Neumann-like boundary conditions to render
the physical quantities finite [7]. Obviously, we can find a constant
nonzero gauge field φ(rs) at r = rs , which is in strong contrast to
that of the AdS black hole where φ(r+) = 0 at the horizon.

At the asymptotic AdS boundary r → ∞, the solutions behave
like

ψ = ψ0 + ψ2
2

, φ = μ − ρ
2
, (9)
r r



442 Z. Zhao et al. / Physics Letters B 719 (2013) 440–447
Fig. 1. (Color online.) The condensate of the operator 〈O〉 = ψ2 and charge density ρ with respect to the chemical potential μ for different Weyl coupling parameters γ for
the p-wave holographic insulator and superconductor model. In each panel, the six lines from left to right correspond to increasing γ , i.e., γ = −0.06 (black), −0.04 (green),
−0.02 (red), 0 (black and dashed), 0.02 (orange) and 0.04 (blue) respectively.
where ψ0 and ψ2 may be identified as a source and the expec-
tation value of the dual operator, while μ and ρ are interpreted
as the chemical potential and charge density in the boundary field
theory, respectively. Making use the asymptotic condition ψ0 = 0,
we can obtain a normalizable solution since we are interested in
the case where the dual operator is not sourced. For simplicity, we
will scale rs = 1 in the following just as in [7].

2.1. Critical chemical potential

Let us change the coordinate and set z = 1/r. Under this trans-
formation, we can express the equations of motion (6) and (7) as

(
1 + 8γ z4)ψ ′′ +

[(
1 + 40γ z4)1

z
+ (

1 + 8γ z4) f ′

f

]
ψ ′

+ (
1 − 8γ z4) φ2

z2 f
ψ = 0, (10)

(
1 + 8γ z4)φ′′ +

[(
1 + 40γ z4)1

z
+ (

1 + 8γ z4) f ′

f

]
φ′

− (
1 − 8γ z4) ψ2

z2 f
φ = 0, (11)

where the prime now denotes the derivative with respect to z.
It is well-known that, adding the chemical potential to the AdS

soliton, the solution is unstable to develop a hair for the chemical
potential bigger than a critical value, i.e., μ > μc . On the other
hand, for lower chemical potential μ < μc , the scalar field is zero
and it can be interpreted as the insulator phase since in this model
the normal phase is described by an AdS soliton where the system
exhibits mass gap [7]. Thus, the turning point of the holographic
insulator/superconductor phase transition is the critical chemical
potential μc .

Since the scalar field ψ = 0 at the critical chemical potential
μc , so below the critical point Eq. (11) reduces to

(
1 + 8γ z4)φ′′ +

[(
1 + 40γ z4)1

z
+ (

1 + 8γ z4) f ′

f

]
φ′ = 0. (12)

Considering the Neumann-like boundary condition (8) for the
gauge field φ at the tip z = 1, we can get the physical solution
φ(z) = μ to Eq. (12) if μ < μc , which indicates that close to the
critical point ρ = 0 according to the asymptotic behavior in Eq. (9)
near the AdS boundary z = 0. This is consistent with the numer-
ical results in Fig. 1 which plots the condensate of the operator
〈O〉 = ψ2 and charge density ρ with respect to the chemical po-
tential μ for different Weyl coupling parameters γ , where ρ = 0
when μ < μc .

As μ → μc from below the critical point, Eq. (10) will become

(
1 + 8γ z4)ψ ′′ +

[(
1 + 40γ z4)1

z
+ (

1 + 8γ z4) f ′

f

]
ψ ′

+ (
1 − 8γ z4) μ2

z2 f
ψ = 0, (13)

which is the master equation to give the critical chemical potential
μc in the S–L method. Introducing a trial function F (z) near the
boundary z = 0 just as in [23]

ψ(z) ∼ 〈O〉z2 F (z), (14)

with the boundary condition F (0) = 1 and F ′(0) = 0, we can ob-
tain the equation of motion for F (z)(
T F ′)′ + (

U + μ2 V
)

F = 0, (15)

where

T (z) = z3(z4 − 1
)(

1 + 8γ z4),
U = 2

[
2z

(
z4 − 1

)(
1 + 24γ z4) + T f ′

zf

]
,

V = z(z4 − 1)(1 − 8γ z4)

f
. (16)

We find that, according to the Sturm–Liouville eigenvalue problem
[22], the minimum eigenvalue of μ2 can be obtained from varia-
tion of the following functional

μ2 =
∫ 1

0 (T F ′2 − U F 2)dz∫ 1
0 V F 2 dz

= 16[14(5 + 8γ ) − 35(3 + 8γ )a + 8(7 + 24γ )a2]
7[30(1 − 4γ ) − 8(5 − 24γ )a + 5(3 − 16γ )a2] , (17)

where we have used the trial function F (z) = 1 − az2 with a con-
stant a. For different Weyl coupling parameters γ , we can get
the minimum eigenvalues of μ2 and the corresponding values
of a, for example, μ2

min = 3.888 and a = 0.0264 for γ = −0.06,
μ2

min = 4.280 and a = 0.159 for γ = −0.04, μ2
min = 4.695 and

a = 0.259 for γ = −0.02, μ2 = 5.139 and a = 0.338 for γ = 0,
min
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μ2
min = 5.621 and a = 0.403 for γ = 0.02, and μ2

min = 6.147 and
a = 0.458 for γ = 0.04. Then, we have the critical chemical po-
tential μc = μmin [10]. In Table 1, we give the critical chemical
potential μc for chosen values of Weyl coupling parameters. In
order to compare with numerical results, we also present the crit-
ical chemical potential μc obtained by using the shooting method.
Obviously, one can find that the analytic results derived from S–L
method are in good agreement with the numerical calculation.

From Table 1, we also find that the critical chemical poten-
tial μc increases as we amplify the Weyl coupling parameter γ ,
which shows that the higher Weyl corrections in general will
make it harder for the phase transition between holographic in-
sulator and superconductor to be triggered, just as the influences
of the Gauss–Bonnet corrections on the p-wave holographic insula-
tor/superconductor phase transition [14]. This property agrees well
with the numerical finding shown in Fig. 1.

2.2. Critical phenomena

We will use the S–L method to deal with the effect of the Weyl
corrections on the critical phenomena for the phase transition be-
tween the p-wave holographic insulator and superconductor, es-
pecially the critical exponent for condensation operator and the
relation between the charge density and the chemical potential.

When μ → μc , the condensation of the operator 〈O〉 is very
small, we can expand φ(z) in 〈O〉 as

φ(z) ∼ μc + 〈O〉χ(z) + · · · , (18)

where we have introduced the boundary condition χ(1) = 0 at the
tip. It should be noted that Eq. (18) is true near the critical point
μc , but only above μc . Substituting the functions (14) and (18)
into (11), one can get the equation of motion for χ(z)

(
Q χ ′)′ − 〈O〉μc

(
z4 − 1

)(
1 − 8γ z4) zF 2

f
= 0, (19)

with a new function

Q (z) = (z4 − 1)(1 + 8γ z4)

z
. (20)

Obviously, the general solution for above equation takes the form

χ(z) = 〈O〉μcξ(z)

= 〈O〉μc

{
c1 +

z∫
1

[
c2 +

y∫
1

(
x4 − 1

)(
1 − 8γ x4) xF (x)2

f (x)
dx

]

× 1

Q (y)
dy

}
, (21)

where c1 and c2 are the integration constants which can be deter-
mined by the boundary condition of χ(z).

Near the boundary z = 0, we can also expand φ as

φ(z) 
 μ − ρz2


 μc + 〈O〉
[
χ(0) + χ ′(0)z + 1

2
χ ′′(0)z2 + · · ·

]
. (22)

From the coefficients of the z0 term in both sides of the above
formula, we can obtain

μ − μc 
 〈O〉χ(0), (23)

which gives
〈O〉 = 1

[μcξ(0)]1/2
(μ − μc)

1/2, (24)

where ξ(0) can be calculated via Eq. (21). For example, we can get
〈O〉 ≈ 1.607(μ − μc)

1/2 = 2.256(
μ
μc

− 1)1/2 for γ = −0.06 when
a = 0.0264, which is in good agreement with the numerical result
given in Fig. 1. It should be noted that for the case of γ = 0 when
a = 0.338, we obtain 〈O〉 ≈ 2.560(μ − μc)

1/2 = 3.855(
μ
μc

− 1)1/2,
which agrees with the result given in [9,10].

Notice that the relation (24) is valid for all cases considered
here, so the condensation 〈O〉 ∼ (μ−μc)

1/2 near the critical point
for various values of Weyl coupling parameters γ , which is con-
sistent with the numerical results shown in Fig. 1 that the phase
transition between the p-wave holographic insulator and supercon-
ductor with Weyl corrections belongs to the second order and the
critical exponent of the system takes the mean-field value 1/2.

Comparing the coefficients of the z1 term in Eq. (22), we find
that χ ′(0) → 0 which agrees well with the following relation by
making integration of both sides of Eq. (19)

[
χ ′(z)

z

]∣∣∣∣
z→0

= 〈O〉μc

1∫
0

(
z4 − 1

)(
1 − 8γ z4) zF 2

f
dz. (25)

Considering the coefficients of the z2 term in Eq. (22), we arrive
at

ρ = −1

2
〈O〉χ ′′(0) = Γ (γ )(μ − μc), (26)

where Γ (γ ) is only the function of the Weyl coupling parameter
γ which can be given by

Γ (γ ) = − 1

2ξ(0)

1∫
0

(
z4 − 1

)(
1 − 8γ z4) zF 2

f
dz. (27)

As an example, we calculate the case for γ = −0.06 and ob-
tain Γ (γ ) = 0.760 when a = 0.0264, i.e., the linear relation ρ =
0.760(μ − μc), which agrees well with the result shown in Fig. 1.
For the case of γ = 0 when a = 0.338, we have Γ (γ ) = 1.126
which results in ρ = 1.126(μ − μc), just as presented in [9,10].
Here we notice that the Weyl corrections will not change the lin-
ear relation between the charge density and the chemical potential
ρ ∼ (μ − μc), which is again in good agreement with the numeri-
cal result plotted in Fig. 1.

3. s-Wave insulator/superconductor phase transition with Weyl
corrections

In order to construct an s-wave holographic insulator and su-
perconductor with Weyl corrections in the AdS soliton spacetime,
we will consider a Maxwell field and a charged complex scalar
field coupled via the action [16,18]

S =
∫

d5x
√−g

[
1

2κ2

(
R + 12

L2

)
− 1

4

(
Fμν F μν

− 4γ Cμνρσ Fμν Fρσ

) − |∇ψ − iq Aψ |2 − m2|ψ |2
]
, (28)

where A is the gauge field, Fμν = ∂μ Aν − ∂ν Aμ is the field
strength tensor, q and m represent the charge and mass of the
scalar field ψ respectively. We will be working in the probe ap-
proximation, which is equivalent to letting q → ∞ by using the
scaling symmetries of the s-wave system, i.e., κ2/q2 → 0. Without
loss of generality, we can set q = 1 just as in Refs. [7,16].
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Table 1
The critical chemical potential μc obtained by the analytical S–L method and from numerical calculation with fixed Weyl coupling parameters for the p-wave holographic
insulator and superconductor model. Note that our result reduces to the result in Refs. [9,10] if γ → 0.

γ −0.06 −0.04 −0.02 0 0.02 0.04

Analytical 1.972 2.069 2.167 2.267 2.371 2.479
Numerical 1.968 2.066 2.165 2.265 2.368 2.476
Taking the ansatz of the matter fields as ψ = ψ(r) and A =
φ(r)dt , we can obtain the equations of motion from the action
(28) for the scalar field ψ and gauge field φ in the probe limit

ψ ′′ +
(

3

r
+ f ′

f

)
ψ ′ +

(
φ2

r2 f
− m2

f

)
ψ = 0, (29)

(
1 + 8γ r4

s

r4

)
φ′′ +

[
1

r

(
1 − 24γ r4

s

r4

)
+ f ′

f

(
1 + 8γ r4

s

r4

)]
φ′

− 2ψ2

f
φ = 0, (30)

where the prime denotes the derivative with respect to r.
Considering the boundary conditions at the tip r = rs , we

find that the solutions have the same form just as Eq. (8) for
the p-wave holographic insulator and superconductor model with
Weyl corrections. But near the boundary r → ∞, we get different
asymptotic behaviors

ψ = ψ−
r�− + ψ+

r�+ , φ = μ − ρ

r2
, (31)

with �± = 2 ± √
4 + m2. Provided �− is larger than the unitar-

ity bound, the coefficients ψ− and ψ+ both multiply normalizable
modes of the scalar field equations and they correspond to the
vacuum expectation values ψ− = 〈O−〉, ψ+ = 〈O+〉 of operators
dual to the scalar field according to the AdS/CFT correspondence.
We can impose boundary conditions that either ψ− or ψ+ vanish
[3,4].

3.1. Critical chemical potential

Introducing the variable z = 1/r, we can convert the equations
of motion (29) and (30) to be

ψ ′′ +
(

f ′

f
− 1

z

)
ψ ′ +

(
φ2

z2 f
− m2

z4 f

)
ψ = 0, (32)

(
1 + 8γ z4)φ′′ +

[(
1 + 40γ z4)1

z
+ (

1 + 8γ z4) f ′

f

]
φ′

− 2ψ2

z4 f
φ = 0. (33)

Here the prime denotes the derivative with respect to z.
At the critical chemical potential μc , the scalar field ψ = 0.

Thus, below the critical point Eq. (33) reduces to

(
1 + 8γ z4)φ′′ +

[(
1 + 40γ z4)1

z
+ (

1 + 8γ z4) f ′

f

]
φ′ = 0. (34)

Similar to the analysis in the previous section, we can obtain the
physical solution φ(z) = μ to Eq. (34) when μ < μc . Note that the
asymptotic behavior in Eq. (31), close to the critical point μc , this
solution implies that ρ = 0 near the AdS boundary z = 0, which is
in good agreement with numerical findings obtained from Figs. 2
and 3 where we plot the condensate of the operator 〈Oi〉 (i = + or
i = −) and charge density ρ with respect to the chemical potential
μ for different Weyl coupling parameters γ .

As μ → μc from below the critical point, the scalar field equa-
tion (32) becomes
ψ ′′ +
(

f ′

f
− 1

z

)
ψ ′ +

(
μ2

z2 f
− m2

z4 f

)
ψ = 0, (35)

which is the master equation to calculate the critical chemical po-
tential μc in the S–L method. It should be noted that, although
Eq. (34) for the gauge field φ depends on γ , but the Weyl cou-
pling parameters γ are absent in the master equation (35), which
leads that the Weyl corrections do not have any effect on the criti-
cal chemical potential μc for the fixed mass of the scalar field, just
as shown in Figs. 2 and 3. However, for the p-wave insulator and
superconductor phase transition with Weyl corrections, due to the
direct dependence of Eq. (6) for the scalar field ψ on γ , the Weyl
correction terms γ will appear in the master equation (13), this
results in the dependence of the critical chemical potential μc on
the Weyl coupling parameters γ in this case, which agrees well to
the numerical results. Thus, the Weyl corrections have completely
different effect on the critical chemical potential for the s-wave
and p-wave insulator/superconductor phase transitions.

On the other hand, the effect of Weyl corrections on the s-wave
insulator/superconductor phase transition is reminiscent of that
seen for the holographic insulator/superconductor phase transition
with F 4 corrections discussed in Ref. [11], where the Maxwell field
strength corrections F 4 do not influence the s-wave insulator and
superconductor phase transition. Thus, it is interesting to note that,
for the fixed mass of the scalar field, the critical chemical potential
μc is independent of the corrections to the Maxwell field, which
may be a quite general feature for the s-wave holographic insulator
and superconductor model.

For completeness, we still work on Eq. (35) to understand the
dependence of the critical chemical potential on the mass of the
scalar field analytically. Defining a trial function F (z) near the
boundary z = 0 as

ψ(z) ∼ 〈Oi〉z�i F (z), (36)

we can obtain the equation of motion for F (z)

(
M F ′)′ + M

[
�i(�i − 1)

z2
+ �i

z

(
f ′

f
− 1

z

)

+ 1

z4 f

(
μ2z2 − m2)]F = 0, (37)

where we have introduced a new function

M(z) = z2�i−3(z4 − 1
)
. (38)

The boundary conditions for F (z) are F (0) = 1 and F ′(0) = 0.
Following the Sturm–Liouville eigenvalue problem [22], we de-

duce the expression which can be used to estimate the minimum
eigenvalue of μ2

μ2 =
∫ 1

0 M(F ′2 − P F 2)dz∫ 1
0 W F 2 dz

, (39)

with

P = �i(�i − 1)

z2
+ �i

z

(
f ′

f
− 1

z

)
− m2

z4 f
,

W = M
2

. (40)

z f
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Fig. 2. (Color online.) The condensate of the operator 〈O+〉 and charge density ρ with respect to the chemical potential μ for different Weyl coupling parameters γ with
the mass of the scalar field m2 L2 = −15/4 for the s-wave holographic insulator and superconductor model. In each panel, the six lines from bottom to top correspond to
increasing γ , i.e., γ = −0.06 (black), −0.04 (green), −0.02 (red), 0 (black and dashed), 0.02 (orange) and 0.04 (blue) respectively.

Fig. 3. (Color online.) The condensate of the operator 〈O−〉 and charge density ρ with respect to the chemical potential μ for different Weyl coupling parameters γ with
the mass of the scalar field m2 L2 = −15/4 for the s-wave holographic insulator and superconductor model. In each panel, the six lines from bottom to top correspond to
increasing γ , i.e., γ = −0.06 (black), −0.04 (green), −0.02 (red), 0 (black and dashed), 0.02 (orange) and 0.04 (blue) respectively.
In the following calculation, we still assume the trial function to
be F (z) = 1 − az2, where a is a constant.

As an example, we will calculate the critical chemical potential
μc for the case of i = + and one can easily extend the study to
the case of i = −. From Eq. (39), we obtain

μ2 = Ξ(a,m)

Σ(a,m)
, (41)

with

Ξ(a,m) = −8 + m2 + 4
√

4 + m2

2

×
(

1

2 + √
4 + m2

− 2a

3 + √
4 + m2

+ a2

4 + √
4 + m2

)

− 4a2

12 + m2 + 6
√

4 + m2
,

Σ(a,m) = − 1

2(1 + √
4 + m2)

+ a

2 + √
4 + m2

− a2

2(3 + √
4 + m2)

. (42)

Hence we can get the minimum eigenvalue of μ2 and the corre-
sponding value of a for different values of the mass of scalar field,
for example, μ2
min = 11.607 and a = 0.440 for m2L2 = 0, μ2

min =
9.843 and a = 0.423 for m2L2 = −1, μ2

min = 7.936 and a = 0.401
for m2L2 = −2, μ2

min = 5.753 and a = 0.371 for m2L2 = −3, and
μ2

min = 3.574 and a = 0.330 for m2L2 = −15/4, which lead to the
critical chemical potential μc = μmin [10]. In Table 2, we give the
critical chemical potential μc for chosen values of the scalar field.
Comparing with numerical results, we find that the analytic results
derived from S–L method agree well with the numerical calcula-
tion.

From Table 2, we observe that, with the increase of the mass of
scalar field, the critical chemical potential μc becomes larger. This
property also agrees well with the numerical result [13]. However,
the Weyl corrections do not have any effect on the critical chemical
potential μc for the fixed mass of the scalar field, which can be
used to back up the numerical finding as shown in Figs. 2 and 3.

3.2. Critical phenomena

Consider that the condensation of the scalar operator 〈Oi〉 is so
small when μ → μc , we can therefore expand φ(z) in small 〈Oi〉
as

φ(z) ∼ μc + 〈Oi〉χ(z) + · · · , (43)
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Table 2
The critical chemical potential μc for the operator 〈O+〉 obtained by the analytical S–L method and from numerical calculation with chosen various masses of the scalar

field for the s-wave holographic insulator and superconductor model. In order to compare with the results in Ref. [7], we also present the critical chemical potential for
m2 L2 = −15/4. Note that the Weyl corrections do not have any effect on the critical chemical potential μc for the fixed mass of the scalar field.

m2 L2 0 −1 −2 −3 −15/4

Analytical 3.407 3.137 2.817 2.399 1.890
Numerical 3.404 3.135 2.815 2.396 1.888
with the boundary condition χ(1) = 0 at the tip. Just as stated for
Eq. (18) in the p-wave model, Eq. (43) is only valid right above the
critical point μc . Using the function defined in Eq. (20) and substi-
tuting the function (36) into Eq. (33), we can obtain the equation
of motion for χ(z)

(
Q χ ′)′ − 2〈Oi〉μc

z2�i−5(z4 − 1)F 2

f
= 0, (44)

and its general solution

χ(z) = 〈O〉μcζ(z)

= 〈O〉μc

{
c1 +

z∫
1

[
c2 + 2

y∫
1

x2�i−5(x4 − 1)F (x)2

f (x)
dx

]

× 1

Q (y)
dy

}
, (45)

where c1 and c2 are the integration constants which can be deter-
mined by the boundary condition of χ(z).

From the asymptotic behavior in Eq. (31), we can expand φ

when z → 0 as

φ(z) 
 μ − ρz2


 μc + 〈Oi〉
[
χ(0) + χ ′(0)z + 1

2
χ ′′(0)z2 + · · ·

]
. (46)

Thus, according to the coefficients of the z0 term, we get

μ − μc 
 〈Oi〉χ(0), (47)

which results in

〈Oi〉 = 1

[μcζ(0)]1/2
(μ − μc)

1/2, (48)

where ζ(0) can be determined by Eq. (45). For example, fixing
m2L2 = −15/4 and γ = −0.06, we can get 〈O+〉 ≈ 1.652(μ −
μc)

1/2 when a = 0.330, which agrees well with the numerical re-
sult given in Fig. 2. Especially, for the case of m2L2 = −15/4 and
γ = 0 when a = 0.330, we obtain 〈O+〉 ≈ 1.801(μ−μc)

1/2, which
is in good agreement with the result given in [7,10].

Since the expression (48) is valid for all cases considered here,
so near the critical point, both of the scalar operators 〈O+〉 and
〈O−〉 satisfy 〈Oi〉 ∼ (μ − μc)

1/2. This behavior holds for various
values of Weyl coupling parameters and masses of the scalar field.
The analytic result supports the numerical computation shown in
Figs. 2 and 3 that the phase transition between the s-wave holo-
graphic insulator and superconductor belongs to the second order
and the critical exponent of the system takes the mean-field value
1/2. The Weyl corrections will not influence the result.

Considering the coefficients of z1 terms in Eq. (46), we point
out that χ ′(0) → 0 if z → 0, which is consistent with the following
relation by integrating both sides of Eq. (44)

[
χ ′(z)

z

]∣∣∣∣
z→0

= 2〈Oi〉μc

1∫
z2�i−5(z4 − 1)F 2

f
dz. (49)
0

Comparing the coefficients of the z2 term in Eq. (46), we can
express ρ as

ρ = −1

2
〈Oi〉χ ′′(0) = Γ (γ ,m)(μ − μc), (50)

where Γ (γ ,m) is a function of the Weyl coupling parameter and
the scalar field mass

Γ (γ ,m) = − 1

ζ(0)

1∫
0

z2�i−5(z4 − 1)F 2

f
dz. (51)

For the scalar operator 〈O+〉, as an example, fixing m2L2 = −15/4
and γ = −0.06 when a = 0.330, we can get ρ = 1.119(μ − μc),
which is in good agreement with the result shown in Fig. 2. Note
that fixing m2L2 = −15/4 and γ = 0 when a = 0.330, we can get
ρ = 1.330(μ−μc) for considering the scalar operator 〈O+〉, which
is consistent with the result given in [10]. Here we observed again
that the Weyl corrections will not alter the result. Our analytic
finding of a linear relation between the charge density and the
chemical potential ρ ∼ (μ−μc) supports the numerical result pre-
sented in Figs. 2 and 3.

4. Conclusions

We have investigated analytically the condensation and criti-
cal phenomena of the phase transition between the holographic
insulator and superconductor with Weyl corrections in the probe
limit by using the S–L method in order to understand the influ-
ences of the 1/N or 1/λ corrections on the holographic dual model
in the AdS soliton background. Both in p-wave (the vector field)
and s-wave (the scalar field) models, we obtained analytically the
critical chemical potentials which are perfectly in agreement with
those obtained from numerical computations. We observed that
similar to the curvature corrections, in p-wave model, the higher
Weyl corrections will make it harder for the holographic insula-
tor/superconductor phase transition to be triggered. However, the
story is completely different if we study the s-wave model. In con-
trast to the effect of curvature corrections, we found for this case
that the critical chemical potentials are independent of the Weyl
correction terms, which tells us that the Weyl couplings will not
affect the properties of the holographic insulator/superconductor
phase transition. This behavior is reminiscent of that seen for the
holographic insulator and superconductor phase transition model
with F 4 corrections where the Maxwell field strength corrections
do not influence the s-wave insulator/superconductor phase tran-
sition [11]. Thus, we interestingly noted that the corrections to
the Maxwell field do not have any effect on the critical chemi-
cal potential, which may be a quite general feature for the s-wave
holographic insulator/superconductor phase transition.

Furthermore, we discussed analytically the type of phase transi-
tion and the relation between the charge density and the chemical
potential near the phase transition point. We found that the effect
of the Weyl corrections cannot modify the critical phenomena, and
found that the holographic insulator/superconductor phase transi-
tion belongs to the second order and the critical exponent of the
system always takes the mean-field value 1/2 in both p-wave and
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s-wave models. The results may be natural since the deviations
from the mean-field behaviors do not occur in the superconduc-
tors with these higher derivative corrections within the framework
of AdS/CFT correspondence [16,18–20]. Our analytic results can be
used to back up the numerical findings in the holographic insula-
tor and superconductor model with Weyl corrections.
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