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Abstract

Carsharing is today considered as an ecological and innovative solution to improve urban mobility. The one-way version, where
vehicles can be drop-off in any station, brings however some challenging open questions. The system has to be design as part of
the global transportation one and vehicle relocation operations must be included to get the higher level of service.

In this paper, we consider a one-way carsharing system where stations and their location are fixed. The optimization problem
consists in maximizing the total number of satisfied demands for a limited number of vehicles and relocation operations. We
propose a formal definition and a mathematical model using Integer Linear Programming (ILP). We show that the problem size is
strongly related to the number of possible relocation operations and a polynomial subcase is exhibited. Numerical results highlight
that vehicle relocations can be drastically reduced without deteriorating the quality of solutions. Our method can thus be easily
used in system management to evaluate possible implementation of vehicle relocation strategies.
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1. Introduction

In recent years, many efforts have been dedicated to understand how to organize our transportation systems. Due
to many externalities such as pollution, congestion or excessive energy consumption, new alternatives have to be
identified. Although public transports are a relevant option for mass transit, they are facing drawbacks with respect
to public perception and flexibility. Moreover, the network design has been often done many decades ago when the
urban setting and the demand distribution were different. We are now facing with a critical point where the network
appears completely saturated and presents difficulties to absorb the demand.
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Since the early 1990s, carsharing systems emerged in many cities as an ecological and innovative solution to
this dilemma. From a social and ecological point of view, carsharing reduces the average number of vehicles per
household (Martin et al., 2010; Ter Schure et al., 2012) and the total number of vehicles on the road. Shared vehicles
have higher utilization rates and are used more efficiently than private ones (Litman, 2000; Schuster et al., 2005).
Some studies observe that carsharing improves traffic fluidity and produces many positive environmental effects, such
as CO2 reductions (Martin and Shaheen, 2011).

The carsharing principle is to make available a fleet of vehicles distributed over a set of stations that can be used
by a wide group of users (Shaheen et al., 1999). The return station, where commuters can (or have to) drop-off a
vehicle, divides station-based systems into two categories. Round-trip systems require users to return vehicles to the
station they were picked up, whereas one-way systems allow a distinct return station. System flexibility has been
identified recently as the critical factor to join a carsharing system (Efthymiou et al., 2012), making this criterion a
strong development catalyst. Consequently, free-floating carsharing systems have came up a few years ago with a new
feature. There are no station and users can pick-up and drop-off the vehicles freely within a predefined area (Weikl
and Bogenberger, 2012). Of course, for one-way and free-floating systems, the higher the flexibility is, the harder it
is to manage the system.

The uneven nature of the trip pattern in urban areas leads to unbalanced situations that causes hard operational
problems. To ensure a good system efficiency, vehicle relocation operations have emerged as a good solution to
balance vehicle stock. As such, they have to be part of the system design, as well as the system management, bringing
then new research challenges.

The intuitive approach for solving the vehicle unbalance problem is to consider that periodic relocation operations
can be done by the operator. Kek et al. (2006) and Kek et al. (2009) have used discrete event simulation models to
help operators manage their systems while minimizing available resources (such as vehicles and staff members) and
ensuring a certain level of service. Fan et al. (2008) introduced a trip selection approach, deciding which vehicle
reservations should be accepted or denied and how many vehicles should be relocated or held to maximise profit.
More recently, Correia and Antunes (2012) developed a station location approach. The goal was to study the effect of
stations’ location on capturing more favorable trip pattern to balanced the vehicle distribution in the network. The idea
was to transfer the system unbalance to the clients by decreasing their possibility of accessing this system. The authors
concluded that the unbalance situation would lead to severe financial losses if all demand have to be satisfied, even
if the trip is very expensive. They also found that financial losses could be reduced by making appropriate choices
of the stations configuration (number, location and size), but profits could only be achieved with full control over trip
selection.

In this study, we address an opened system design problem and an innovative approach to solve it. Considering
potential one-way carsharing station locations and demands over time, what could be the optimal system configuration
capturing the higher number of demands ? The paper is organized as follow. The next section introduces more
precisely the optimization problem addressed in this work. Section 3 presents the problem modelling using time
expanded graphs (TEGs). Section 4 formulates the problem as an Integer Linear Program (ILP). Section 5 is devoted
to the study of a polynomial subcase. Section 6 is dedicated to experimentations and results on graph densities, solver
computation times and optimal distances. Finally, section 7 finishes with some conclusions and directions for further
research.

2. Problem definition

This section aims to present the optimization problem. Inputs, which consist mainly in the description of the travels
and the demands, are first described briefly, followed by the objectives. The section ends with a formal definition of
the optimal dimensioning problem.

2.1. Inputs

Let N = {l,---,N} be the set of N € N* stations. Since they are usually located in dense urban areas, their
respective number of parking spaces are considered limited. Let Z(i) € N* be the maximum station capacity of station
ieN.
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It is assumed that the system operates in a representative time period, such as a typical weekday or an average
week. Let H = {1,---,T} be this representative time period, discretized in 7 € N* time steps. Periods are also
supposed to be repeated, meaning that any time ¢ € N* is associated to #' € H with (t —¢#) mod T = 0.

All travel times are known between each couple of stations (i, j) € N’? at every departure time taken in 7. We call
in the next d(i, j, r) the amount of time steps needed to reach station j € N from station i € N when departure time is
t € H. It is assumed that, for any triple (i, j,£) € N> x H, 6(i, j,H) < T.

Similarly, a set of M demands are fixed: each of them is designated by D(i, j,¢) where i and j are two stations
picked in NV and ¢ is a time step belonging to H.

2.2. Objectives

A feasible solution of our optimization problem is given by a set of vehicles, each of them associated with its
position in the system at any-time during the period studied. The first objective is to maximize the total number of
satisfied demands, i.e. for which a vehicle is allocated. However, two other objectives must be taken into account:
each vehicle in the system is associated to a fixed cost, so that the total number of vehicles must be minimized. In the
same way, vehicle relocations are fundamental for increasing the number of satisfied demands with a fixed number
of vehicles. However, they cost an extra charge for the operator, and thus their number should also be limited. In the
following, the total number of vehicles and relocations are referred respectively by C and R.

2.3. Formal problem statements

A formal definition of our main optimization problem, referred as the basic carsharing problem with relocations
[Bcpr] can be stated as follows:

Basic carsharing problem with relocations [Bcpr]:

Inputs: A set of stations NV with their capacity Z(i), i € N, time periods set H = {1,--- , T}, travel times (i, j, t) for
each triplet (i, j, f) € N? x H, a set of M demands, fixed number of vehicles C and relocation operations R.

Question: What is the maximum number of demands m < M that can be captured by a vehicle routing of at most C
vehicles and R vehicle relocation operations during the considered period H?

We will show that [Bcpr] belongs to NP by modelling feasible solutions as a non classical flow problem.

3. Time Expanded Graph

Including time in a network flow model can be done using Time Expanded Graphs (TEGs) as suggested by Ahuja
et al. (1993). Carsharing stations are duplicated at every discrete time-step so that links (arcs) between stations could
represent time-dependent vehicle operations (staying parked, satisfying a demand or being relocated). Subsection 3.1
presents some basic notations, while subsection 3.2 describes precisely the partition of the arcs into 3 fixed sets. This
section terminates with the calculation of the total time associated to a path or a circuit in the graph.

3.1. Basic definitions

The Time Expanded Graph is a valued directed graph G = (X, A, u) such that nodes represent stations states over
the time period, i.e. X = N X H. Any arc a = (x,y) € A is associated to a possible move of a vehicle from node x to
y. The capacity u(a) is the maximum number of vehicles allowed on a.

Let the function  : X —» N with x = (i,f) — n(x) = i referring to the station of a node x € X. Similarly,
0 : X - H with x = (i,f) — 6(x) = tis the step-time of x. Let I''(G, x) and I'*(G, x) respectively denotes the
set of immediate predecessors and successors of a node x € Xin G, ie. T7(G,x) = {y € X | (y,x) € A} and
I''(G,x) ={y e X|(x,y) € A}. We simply note (G, x) = I'"(x) and I'*(G, x) = I'"(x) if no confusion is possible.
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3.2. Set of arcs
Arcs set A is partitioned into three sets A;, A, and A3 defined as follows.

e A, is a set of arcs associated to vehicles staying in a same station between two consecutive time steps. Formally,
A ={(x,y) € X? | n(x) = () and 6(y) = 6(x) + 1 mod T}. 1)

The capacity of any arc a = (x,y) € A; with i = n(x) = n(y) € N is u(a) = Z(i).
e Any arc a = (x,y) € A, corresponds to a positive demand from 7(x) to n(y) at time 6(x). The arrival time is
0(x) + 6(n(x), n(y), 8(x)) mod T. Arcs set A, is then formally defined as

Ay = {(x,y) € X* | D(7(x), n(3), 6(x)) > 0 and 6(x) + 5((x), n(y), 6(x)) = 6(y) mod T}. (@)

The capacity of any arc a = (x,y) € A, equals u(a) = D(m(x), n(y), 6(x)).
e Elements from Az model relocations. Each arc @ = (x,y) € Aj is associated to a possible relocation from
station 77(x) to n(y) at time 6(x):

Az = {(x,y) € X [ n(x) # 1(y) and 6(x) + 5((x), 1(y), 6(x)) = 6(y) mod T}. 3

The capacity u(a) of any arc a = (x,y) € Aj is not bounded.

The total number of arcs is then |Al = Y3 Al = N-T+M+(N-T)-(N-1) = N> - T+ M. As M < N?,
| Al = O(N? - T). We observe that [As| > |A; U A,| and that the number of arcs is proportional to Aj.

3.3. Effective duration of a path or a circuit

The duration of any path of a TEG may be easily evaluated. Indeed, for any couple of time instants (,7) € H2, let
the function @ : > — N* that computes the number of time-steps between those two instants. It is defined formally
as

-t ifr<v
9, t') = { nr=t
T+¢ -t otherwise.

For each arc a = (x,y) € A, let us define and set the boolean value ¢, to true if (x) > 6(y). For any arc
a = (x,y) € A, the effective time required for a move from x to y is then equal to £(a) = 6(y) — 6(x) + €, - T. By
extension, if u = (ay, -+ ,a,) € AP is a path of the TEG from x to y, the value £(u) = Zle {(a;) is the total time
required for a vehicle going from x to y following . Next lemma evaluates the total time of any circuit c.

P
Lemma 1. The total time of any circuit ¢ = (ai,- -+ ,a,)is {(c) =T X ) €.
i=1

Proof. Let x;, i € {1,---,p + 1} be the sequence of elements from X such that, x,.; = x; and Vi € {1,---, p},
a; = (x;, x;x1). The total time of c is then

P P C
lc) = Z Ua;) = Z(G(xm) —0(x;) + €, T)=Tx Z €ai>
i=1

i=1 i=1

the result. m

4. Modelling of the carsharing problem with relocations

This section is devoted to the modelling of our main optimization problem [Bcpr] using an Integer Linear Program
(ILP in short). Subsection 4.1 shows that any feasible solution may be equivalently expressed using flow variables on
the arcs of the current TEG. It is proved in Subsection 4.2 that our objective can be expressed as linear functions of
flow variables, concluding to the modelling of our optimization problem by an ILP.
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4.1. Decision variables

The aim of our study is to compute the planning of each vehicles during the period. At any time, each of them is
either parked in a station or in transit between two stations. Its position over the period can be modelled as a vehicle
tour i.e. a circuit ¢ = (ay, - ,a,) in the TEG.

We show in the following that a feasible solution can be described by only considering the number of vehicles
passing through each arc. For each arc a = (x,y) € A, we call ¢(a) the flow of vehicles transiting through the arc a.
It can be interpreted as the number of vehicle staying in station 77(x) between two consecutive time-steps 6(x) and 6(y)
if a € A, or the number of vehicle moving from station r(x) at time 6(x) to station 7(y) otherwise.

Since the total number of vehicles transiting to any node x € X is constant,

PRI (C3))) @)

yel=(x) yel+(x)

A flow ¢ : A — Nis said to be feasible if Ya € A, p(a) < u(a) and Yx € X, the flow conservation equation (4) is true.
A feasible flow may be easily obtained from any feasible set of vehicle tours.

We prove in the following that the reverse is also true, with the consequence that any feasible solution of our
problem can be described using a flow. Next lemma computes the exact number of vehicles associated to a constant
unitary flow over a circuit c.

Lemma 2. Let ¢ be a circuit and ¢, a feasible flow such that:

1 ifabelongs to c
pela) =

0  otherwise.

The minimum number of vehicles to insure ¢, is @

Proof. For any time value ¢ € H, let us define the set C,(c) as the arcs a = (x,y) from c starting at time 7 or earlier
but ending after z. Since ¥(6(x), f) equals the number of time steps from 6(x) to ¢, we get C(c) = {a = (x,y) €
c | HO(x),t) < (a)}.

Now, since c is a circuit, the value |C,(c)| is a constant ¥z € H and corresponds to the total number of vehicles
needed to insure a unitary flow over c. Let us prove that |Cr(c)| = . €,. For that purpose, setting B(c) = {a = (x,y) €

acc
c| € = 1}, we show that B(c) = Cr(c).

e B(c) C Cr(c): ifa = (x,y) € B(c), thenas 8(x) < T, 36(x),T) = T — 6(x). Now, since ¢, = 1 and 8(y) > 1,
a)=00)—0x)+T >21-0(x)+T >HO(x), T) and a € Cr(c).

e Cr(c) € B(c): let consider now an arc a = (x,y) € Cr(c). Since 9(0(x),T) = T — 6(x) < {(a) we get that
0)—0(x)+¢€ T >T—-06(x)and thus 8(y) + €, - T > T. As 6(y) < T, we necessarily have €, = 1 and thus
a € B(c).

Now, by Lemma 1, |Cr(¢c)| = X €, = % the lemma. m

aec

Theorem 1. Any feasible solution ¢ can be decomposed into a set of circuits S such that, for any arc a € A, p(a) =

2. pc(a).

ceS

Proof. The proof is by recurrence on n(¢) = ), ¢(a). The theorem is trivially true if n(p) = 0.
A

ae,
Let suppose now that n(¢) > 0, thus there exists at least one arc a = (x,y) € A with ¢(a) > 0. Set yyp = (x,y) and
let consider the sequence of paths y; built as follows:

1. Stop the sequence as soon as y; contains a circuit c;
2. Otherwise, let @ = (%,¥) the last arc of y;. Since ¢(a) > 0, the flow conservation equation (4) insures that there
exists an arc a starting at y with ¢(a) > 0. We then set ;. = y; - a.
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As G has a finite number of nodes, the algorithm stops and a non empty circuit c is returned. The flow ¢ defined as

@(a)z{ el@)—1 ifaec

@(a) otherwise.

is feasible with n(®) < n(yp), thus the theorem. m

Note that the number of flow variables is a polynomial function on the size of the problem. This is not true anymore
for vehicle tours, which number can be exponential. The consequence is that the determination of a flow is in NP,
which is not the case for the determination of vehicle tours.

4.2. Mathematical model

The aim of this part is to model our optimization problem using flow variables. The total number of fulfilled
demands and relocations are linearly computable for any fixed flow. Next theorem shows that the total number of
vehicles is also a linear function of the flow:

Theorem 2. The minimum total number of cars required for a feasible flow ¢ equals Y, ¢(a) - €,.
aeA

Proof. Let S be a set of circuits obtained from the decomposition of ¢ following Theorem 1 and let V be the minimum
number of cars associated with ¢. By Lemmas 1 and 2, the total number of cars of any circuit ¢ € S is

€(c)
T :Zfa zzfa'¢c(a)~
aec acA
Since vehicles are allocated to exactly one circuit, the total number V of vehicles is then
V=2 & ¢la)
ceS acA

Now, from Theorem 1, ¢(a) = Y, ¢.(a). Thus,
ceS

V=ZZ€Q-SOC(Q)=Z€a-2¢c(a)=z¢(a).€a,

ceS aeA acA ceS aeA

the theorem. m

The modeling of our main optimization problem [Bcpr] follows. Remind that R and C are fixed bounds for respec-
tively the total number of relocation operations and vehicles. Equation (5) is the maximization of the total demand.
Equation (6)and (7) express respectively the bound on the total number of relocations and the total number of vehicles.
Equations (8), (9) and (10) are lastly flow constraints.

max > ¢(@) (5)

acA;
> e@) <R (©6)

acAs
Dlet@)e <cC ™

st acA
1 a) < u(a) YaeA ®)
DL e = Y ey VYxeX ©)

yel'=(x) yel*(x)

pla) e N Vae A (10)

The total number of equations is around 2|A| + |X| = N>- T + M + N - T = O(N? - T). The size of the ILP is thus
proportional to the number of relocation arcs.
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5. A polynomial subcase

This section aims to prove that the determination of a flow that satisfies all the demands without a constraint on the
total number of relocations or vehicles is a polynomial problem. The formal definition of this problem, designated by
ALL-DEMANDS, follows.

[ALL-DEMANDS]:
Inputs : A Time Expanded Graph G = (X, A, u).
Question : Is there a feasible flow ¢ such that all the demands are fufilled, i.e Ya € A, ¢(a) = u(a) ?
Let 7 be an instance of ALL-DEMANDS. We associate an instance of a max-flow problem f(7) which network é =

(X’\, A, W) is defined as follows:

1. Vertices are X = X U {s*,*} U {84, 15,a € Ap}. s* and t* are respectively the source and the sink of § while s,
and 7, are two additional vertices associated to any demand arc a € A,.

2. Arcs setis A = Ay U A3 UA(x, 1), (ta, 1), (5%, 50), (50, ¥), Ya = (x,y) € Az}

3. Maximum capacity of arcs are w(a) = u(a) for a € A; U Ajz. Otherwise, for any arc a = (x,y) € A, w((x,1,)) =
W((ta> 1)) = W((5™, 54)) = W((54,¥)) = u(a).

Note that this transformation is a polynomial function and does not depend on the structure of G.

Theorem 3. Let an instance of ALL-DEMANDS expressed by a TEG G. There exists a feasible flow fulfilling all the
demands of G if and only if there exists a maximum flow in G of value 3} ,c , u(a).

Proof. Let suppose that ¢ is a feasible flow of G that fulfils all the demands, i.e. for any arc a € A, ¢(a) = u(a). A
flow @ of G may be built as follows:

1. VYa € A U As, @(a) = ¢(a);
2. For any arc a = (x,y) € Ay, 9((x, ) = ©((t5, %)) = @((s*, 52)) = @((54,¥)) = u(a).

We prove that ¢ is a feasible flow of é of value )’ ¢4, u(a). Indeed, let consider a node x € X.

1. Let suppose @{St that x € X. Then any demand arc a = (y,x) € A, (resp. a = (x,y) € A, ) of flow ¢(a) is
associated in A to an arc e = (s, x) (resp. e = (x, t,)) with p(e) = ¢(a). Thus,

D= Y e@= D ¢@= ) Fa.

ael"’(é,x) ael~(G,x) ael(G,x) a€r+(§,x)

2. For any arc a = (z,y) € Ay, the two vertices #, and s, are such that

D FO=BWxL) =F )= Y. Beand > Fe) =F(F, ) =P (e = Y Fe),

el (G t0) el (G t0) el (G.54) el (G.54)
3. Lastly,
D Be= ) u@and > Fe)= ) ula).
L’EF_(EJ*) acA, eel"*(g,s*) acA,

The consequence is that ¢ is a feasible flow of § of value ) ¢4, u(a).

Conversely, any feasible flow of § of value Y., u(a) verifies that, for any arc a = (x,y) € HAa, ¥((x,1,)) =
W14, 1)) = ((s*, 54)) = ©((54,)) = u(a). A feasible flow for G can be easily obtained by setting:

1. Ya € A, U Az, p(a) = @(a);
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2. For any arc a = (x,y) € Ay, ¢(a) = u(a),

the theorem. m
According to Ahuja et al. (1993), the existence of a maximum-flow of a fixed value is a polynomial problem. The
following corollary is thus a consequence of Theorem 3:

Corollary 1. ALL-DEMANDS is polynomial.

6. Experimentations

Previous results presented in Carlier et al. (2014) aimed to evaluate the scalability of the optimization model
described before. Computation times were obtained on small realistic instances with 10 stations and 144 time steps
using an open source solver (GLPK). The authors observed that they were negligible compared to model building time
and decided to study the building time behaviour when the problem grows. Results shown that they were unaffordable
in an industrial or real case context, even for a realistic case, and can be improved by reducing the size of the linear
programs. Authors suggested to use better relocation strategies in order to reduce the graph density and problem size.

The aim of this section is to study the computation times for solving exactly or approximately the optimization
problem for real case instances. More precisely, following previous experiments, we show that the density of reloca-
tion arcs drastically decreases computation times without impacting the quality of the solution.

The experimental conditions are first presented, followed by the description of the strategies for reducing the graph
density. The section ends with the impacts on solver computation time and optimal distances to the baseline situation.

6.1. Experimental conditions

The generator described in Carlier et al. (2014) was considered to produce randomly realistic urban data taking
into account demand variability over time and travel time penalties during pick hours. The size of instances is fixed
to 50 stations, which corresponds to a reasonnable size for a real-life problem. 18 stations are arbitrarily placed in a
dense and small “downtown” area whereas 32 are positioned in a peri-urban area. A total of 500 carsharing demands
(requests) are randomly generated over a typical 24 hours week day period segmented in 144 time-steps of 10 minutes.
To be realistic, 80% (resp. 60%) of the generated demand during rush hours is oriented from the suburbs (resp. the
center) to the center (resp. the suburbs). Morning rush is set between 7 and 9 while evening rush is between 17 and
20. Travel times between stations are also given using an average car speed of 70km/h, applying a 160% penalty
coefficient if the trip is done during the rush period.

All the computational results presented in this paper, including the random data generation, were made using an
Intel(R) Core(TM) i5-3337U CPU @ 1.80GHz. Mathematical programs were solved using the Java API of IBM ILOG
CPLEX 12.5.1.

6.2. Stategies for reducing graph density

Baseline situation (BS is short) corresponds to instances for which relocations are generated at each times steps,
i.e. every 10 minutes. As pointed before, our idea is to reduce the number of relocation arcs, which corresponds in
this case to more than 97% of the total number of arcs. The goal is to accelerate the resolution of our optimization
problem.

Table 1 presents some numerical parameters of any generated TEG. We studied four strategies (S1 to S4) which
generate relocation operations respectively every 30 minutes, 1, 2 and 4 hours. The number of nodes is always equal
to X = N x T =50 x 144 = 7200, while the total number of arcs |[A| decreases following the frequency of relocation
operations (RF) during a day. The respective ratios of remaining arcs compared to BS (% BS) and the arcs removed
(% elim) are also presented, followed by the exact number of relocation arcs (RA) and their proportion in the graph.

Reducing the number of relocation arcs decreases drastically the graph density: from - 65% for (S1) to almost -
94% for (S4). The resulting number of arcs for the strategy (S4) represents for instance 6,21% of the BS one. Also
observe that relocation arcs remain predominant, even for strategy (S4) for which they represent above 65% of the
total number of arcs.
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Table 1. Graph density depending on relocation strategies

Strategy IN| [ Al RF % BS % elim RA RA/|A|
(BS) : Every 10 min 7200 360500 144 100,00% - 352800 97,86%
(S1) : Every 30 min 7200 125300 48 34,76% -65,24% 117600 93,85%
(S2) : Every 1h 7200 66500 24 18,45% -81,55% 58800 88,42%
(S3) : Every 2h 7200 37099 12 10,29% -89,71% 29400 79,25%
(S4) : Every 4h 7200 22400 6 6,21% -93,79% 14700 65,63%

6.3. Improving solving times and evaluating optimal distances to baseline situation

The following experiments aim to evaluate the impact of the relocation reduction on computation time and solution
quality of our optimization problem. A total of 30 instances were randomly generated. The five strategies were
evaluated for each of them by solving 81 linear programs corresponding to the combinational values of R and C, set
in this study in the range {0, 10, - - - , 80}.

Table 2 summarizes our results solving approximately the integer linear program (LP in short) by considering real
variables, while Table 3 shows the results using exact method (ILP in short). In both case, columns “y,”, “min” and
“max’ reports respectively the average, the minimum and the maximum computation times in milliseconds while “o,”
is the standard deviation. Columns “4,” and “o;” indicate the average distance to the solution obtained for (BS) and

the corresponding standard deviation.

Table 2. Solver computation times and distances to the baseline situation for the LP version

Solver computation times (mili sec) Optimal distance to BS
Strategy I gain oy min max Hd o4
(BS) : Every 10 min 7669 - 6278 262 24406 - -
(S1) : Every 30 min 2431 - 68% 1736 120 7347 0,40% 0,61%
(S2) : Every 1h 1325 - 82% 965 63 3555 1,07% 1,53%
(S3) : Every 2h 540 -92% 358 36 1742 2,56% 3,65%
(S4) : Every 4h 323 -95% 238 41 1608 5,15% 6,42%

Table 3. Solver computation times and distances to the baseline situation for the ILP version

Solver computation times (mili sec) Optimal distance to BS
Strategy m gain oy min max U o4
(BS) : Every 10 min 57949 - 35509 256 138123 - -
(S1) : Every 30 min 9472 -83% 6355 126 29963 0,38% 0,59%
(S2) : Every 1h 3059 - 94% 2131 69 10733 1,01% 1,45%
(S3) : Every 2h 918 - 98% 641 48 3685 2,60% 3,61%
(S4) : Every 4h 426 -99% 251 30 1528 4,92% 6,18%

First note that computation times remain reasonable, even for the exact method with baseline strategy (always less
than 139 seconds). However, the density reduction allows to decrease dramatically computation times. This reduction
is particularly important for the exact method ILP. Also note that computation time values are almost equal for both
exact or approximate solutions using (S4) strategy.

The surprise is that the optimal number of fulfilled demands are almost not impacted by the reduction of relocation
arcs. The optimal values following the different strategies remain very close to the baseline one for both LP or ILP
resolutions, with a gap varying from 0,4% in (S1) to 5% in (S4).
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7. Conclusion

This paper presents an original mathematical model for carsharing system design purposes. Our model is based
on flows in a time expanded graph in order to group the vehicles passing through any road at any time. It is shown
that vehicle routes can be recovered from any feasible flows. The main theoretical consequence is that our optimiza-
tion problem belongs to NP. An original polynomial sub-case, where all demands must be fulfilled has been also
presented.

We shown experimentally that any random generated problem with realistic size (50 stations and 144 time steps)
can be exactly solved within a reasonable time. We can withdraw that adopting a relocation strategy based on fixed
time steps allow to handle larger problems, reduce graph density and largely improve solver calculation times while
keeping good quality solutions.

The main conclusion is that our model can be consider to study vehicle relocation strategies in a real life context.
We also experimentally proved that decreasing the relocation frequency has a few impact on the total number of
satisfied demands. Scheduling operations every two hours for instance could help the operator organizing vehicle
relocation routes while keeping a good level of service. The next step will consist in finding more advanced and
flexible relocation strategies and including other operational constraints such as a limited number of employees in
charge of the vehicle relocation task.
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