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Abstract

This article is a survey on recent studies on special solutions of the discrete Painlevé equations, especially on hypergeometric
solutions of the q-Painlevé equations. The main part of this survey is based on the joint work [K. Kajiwara, T. Masuda, M. Noumi,
Y. Ohta, Y. Yamada, Hypergeometric solutions to the q-Painlevé equations, IMRN 2004 47 (2004) 2497–2521, K. Kajiwara, T.
Masuda, M. Noumi, Y. Ohta, Y. Yamada, Construction of hypergeometric solutions to the q-Painlevé equations, IMRN 2005 24
(2005) 1439–1463] with Kajiwara, Masuda, Ohta and Yamada. After recalling some basic facts concerning Painlevé equations for
comparison, we give an overview of the present status of studies on difference (discrete) Painlevé equations as a source of special
functions.
© 2006 Elsevier B.V. All rights reserved.
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1. Painlevé equations

Let us consider a second-order nonlinear ordinary differential equation

y′′ = R(t; y, y′) (1)

for the dependent variable y =y(t), where R(t; y, �) is a rational function in (t, y, �) and ′ =d/dt is the derivation with
respect to the independent variable t. Such a differential equation is said to have the Painlevé property if any solution
of (1) has no movable singular point except for poles. It is known that any rational differential equation of second order
with the Painlevé property is reduced to one of the six Painlevé equations PI, PII, . . . , PVI unless it can be integrated
algebraically, or transformed into a simpler equation such as the linear differential equations or the differential equations
of the elliptic functions. (See Table 1. In this list, �, �, . . . are complex parameters.) Generic solutions of the Painlevé
equations are known to be very transcendental. For the general background of Painlevé equations, we refer the reader
to Umemura’s survey [31]. (See also [2,7,10,21,23].)

These Painlevé equations have various characteristic features that could not be imagined only from the Painlevé
property, as clarified through the works of Okamoto [24] in 1980s. We remark first that the six Painlevé equations are
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Table 1
The six Painlevé equations
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linked by the degeneration diagram (or the coalescence cascade)

PVI → PV → PIII
↘ ↘

PIV → PII → PI.

(2)

Each of the Painlevé equations PJ (J = II, III, IV, V, VI) except for PI admits a group of Bäcklund transformations
(transformations of variables and parameters that leave the equation invariant). This group of symmetry is in fact
isomorphic to an (extended) affine Weyl group; the type of the corresponding affine root system is given as follows.

D
(1)
4 → A

(1)
3 → (2A1)

(1)

↘ ↘
A

(1)
2 → A

(1)
1 → ·

(3)

This means that the parameter space of PJ is identified with the Cartan subalgebra of a semisimple Lie algebra, and
that the natural action of the affine Weyl group on it can be lifted to the level of dependent variables of the differential
equation. The points on the walls (the reflecting hyperplanes) in the parameter space are special in the sense that the
corresponding PJ admits a one-parameter family of special solutions expressed in terms of hypergeometric functions
and their confluences. The degeneration diagram (2) of the Painlevé equations is now mapped to the confluence diagram
of their hypergeometric solutions

Gauss → Kummer → Bessel
↘ ↘

Hermite
-Weber

→ Airy → ·
(4)

Besides the hypergeometric solutions along the walls, the Painlevé equations happen to have algebraic solutions. They
arise typically when the parameters take values corresponding to some fixed point of the extended affine Weyl group.
The algebraic solutions of the Painlevé equations up to PV are already classified (see [8,19,17]). As to the algebraic
solutions of PVI, however, there are still many interesting works in progress [3,1,16] and the final picture has not been
clarified yet.

Let us explain how hypergeometric solutions arise from Painlevé equations, by taking the example of PII:

PII: y′′ = 2y3 + ty + b − 1
2 . (5)



50 M. Noumi / Journal of Computational and Applied Mathematics 202 (2007) 48–55

Supposing that the variable y is subject to this equation, let us consider the variable ỹ =y +b/(y′ +y2 + t/2). Then one
can show that ỹ satisfies the same Painlevé equation PII with the parameter b replaced by b̃ = −b. This transformation
of variables y → ỹ, b → b̃ is a fundamental Bäcklund transformation of PII, which we now denote by S:

S(y) = y + b

y′ + y2 + t/2
, S(b) = −b, S(t) = t . (6)

(We consider S as an automorphism of the differential field C(t, y, y′, b) defined by PII.)Another fundamental Bäcklund
transformation of PII is given by

T (y) = −y + b − 1

y′ − y2 − t/2
, T (b) = b − 1, T (t) = t . (7)

The group 〈S, T 〉 generated by these two Bäcklund transformations is the affine Weyl group of type A
(1)
1 . In this case

the parameter space for PII is C with coordinate b, and its integer points are the walls of the affine Weyl group.
If y is a solution of the first-order equation y′ = −y2 − t/2, then it satisfies y′′ = −2yy′ − 1/2 = 2y3 + ty − 1/2.

Namely, the Riccati equation y′ = −y2 − t/2 implies the Painlevé equation PII with b = 0. This Riccati equation is
reduced to the Airy equation u′′ + tu/2 = 0 by the change of variables y = −u′/u. Accordingly, from the general
solution u(t) = c1�(t) + c2�(t) of the Airy equation we obtain the solutions

y(t) = −u′(t)
u(t)

= −c1�′
1(t) + c2�′

2(t)

c1�1(t) + c2�2(t)
(8)

of PII with b = 0 parametrized by the ratio [c1: c2] ∈ P1. From this seed solutions at b = 0, one can also construct
solutions at b ∈ Z by Bäcklund transformations. Such a solution is written as the determinant of a matrix whose entries
are expressed in terms of Airy functions and their derivatives ([24], see also [18]).

2. Discrete Painlevé equations

It would be natural to ask: What are the counterparts of Painlevé equations in difference equations? What properties
would they share? What sort of special functions would arise as their solutions?

In order to fix the idea, we now consider a system of nonautonomous difference equation for two dependent variables
f = f (x) and g = g(x) in the form

f (x + �) = R(x; f (x), g(x)), g(x + �) = S(x; f (x), g(x)), (9)

with � being a nonzero complex constant. Here we suppose that R(x; f, g) and S(x; f, g) are rational functions in f, g

with coefficients in a field K of functions in x. Depending on the class of functions appearing in the coefficients, it is
customary to consider the following three type of difference equations:

. (10)

Difference equations of trigonometric type are often called q-difference equations; the shift x → x +� is then regarded
as the multiplicative shift t → qt for the variable t = ex by q = e�.

Since the pioneering work of Grammaticos, Ramani, Papageorgiou and Hietarinta [6,26] in early 1990s, discrete (or
difference) Painlevé equations have been studied from various viewpoints. A large class of discrete Painlevé equations,
as well as their generalizations, has been discovered through the studies of singularity confinement property (discrete
analogue of the Painlevé property), bilinear equations, affine Weyl group symmetries and spaces of initial conditions
[27,28,22,30]. For the history of discrete Painlevé equations, we refer the reader to Grammaticos–Ramani [5].

As for discrete Painlevé equations of second order, it seems to be standard nowadays to refer to Sakai’s class [30]
defined by means of geometry of rational surfaces. Sakai’s framework not only fits nicely with discrete Painlevé
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equations discovered earlier by different approaches, but also clarifies their connection with geometry of plane curves
and Cremona transformations. Each equation in this class is defined by an affine Weyl group of Cremona transformations
on a certain family of rational surfaces obtained from P2 by blowing up.

Sakai’s list of discrete Painlevé equations consists of one elliptic (eP), nine trigonometric (qP) and nine rational (dP)
difference equations. The (only) elliptic difference Painlevé equations is associated with the affine Weyl group of type
E

(1)
8 . The diagrams of affine Weyl groups for the nine q-Painlevé equations and for the nine d-Painlevé equations are

given as follows, respectively.

qP : E
(1)
8 → E

(1)
7 → E

(1)
6 → D

(1)
5 → A

(1)
4 → (A2+A1)

(1) → (A1+A′
1)

(1) → A′
1
(1)

↘ A
(1)
1

dP : E
(1)
8 → E

(1)
7 → E

(1)
6 → D

(1)
4 → A

(1)
3 → (2A1)

(1) → A′(1)
1↘ ↘

A
(1)
2 → A

(1)
1

(11)

We remark that the d-Painlevé equations of type D
(1)
4 and below arise as Bäcklund (Schlesinger) transformations of

differential Painlevé equations. The q-Painlevé equation of type D
(1)
5 is the q-Painlevé VI equation of Jimbo–Sakai [11].

It is also known from [11] that qP VI of Jimbo–Sakai has q-hypergeometric solutions expressed in terms of 2�1 series, or
the little q-Jacobi polynomials in terminating cases. Hence it would be natural to expect that the hierarchy of q-Painlevé
equations admits such q-hypergeometric solutions that correspond to q-hypergeometric orthogonal polynomials in
Askey’s scheme in terminating cases.

3. q-Hypergeometric functions

Before going further, we recall some notation concerning q-hypergeometric functions from [4].
Fixing a nonzero complex number q with |q| < 1, we use the notation of q-shifted factorials

(z; q)N =
N−1∏
j=0

(1 − qj z), (z; q)∞ =
∞∏

j=0

(1 − qj z) (12)

and (z1, . . . , zm; q)N = (z1; q)N · · · (zm; q)N . The q-hypergeometric series r�s are defined by

r�s

(
a1, . . . , ar

b1, . . . , bs
; q, z

)
=

∞∑
k=0

(a1, . . . , ar ; q)k

(q, b1, . . . , bs; q)k
((−1)kq

(
k
2

)
)1+s−rzk . (13)

The very well-poised q-hypergeometric series r+3Wr+2 are defined by

r+3Wr+2(a0; a1, . . . , ar ; q, z)

= r+3�r+2

(
a0, qa

1/2
0 , −qa

1/2
0 , a1, . . . , ar

a
1/2
0 , −a

1/2
0 , qa0/a1, . . . , qa0/ar

; q, z

)

=
∞∑

k=0

1 − q2ka0

1 − a0

(a0, a1, . . . , ar ; q)k

(q, qa0/a1, . . . , qa0/ar ; q)k
zk . (14)

The balanced 8W7-series

	(a; b, c, d, e, f ) = 8W7(a; b, c, d, e, f ; q, x)

=
∞∑

k=0

1 − q2ka

1 − a

(a, b, c, d, e, f ; q)k xk

(q, qa/b, qa/c, qa/d, qa/e, qa/f ; q)k
, x = q2a2

bcdef
(15)
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are often called Askey–Wilson functions. They satisfy the following three-term recurrence relation [9]:

A1(	 − 	) + A2	 + A3(	 − 	) = 0, 	 = 	(a; b, qc, d/q, e, f ), 	 = 	(a; b, c/q, qd, e, f ),

A1 = (1 − c)(1 − a/c)(1 − qa/c)(1 − qa/bd)(1 − qa/de)(1 − qa/df )

e(1 − c/d)(1 − qc/d)
,

A2 = qa2

bcdef
(1 − qa/cd)(1 − b)(1 − e)(1 − f ),

A3 = (1 − d)(1 − a/d)(1 − qa/d)(1 − qa/bc)(1 − qa/ce)(1 − qa/cf )

c(1 − d/c)(1 − qd/c)
. (16)

4. The case of q-Painlevé equation of type E
(1)
7

As an example, let us consider the q-Painlevé equation associated with the affine Weyl group of type E
(1)
7 [29,30]:

(f g − qt2)(fg − t2)

(f g − 1)(fg − 1)
= (f − b1t)(f − b2t)(f − b3t)(f − b4t)

(f − b5)(f − b6)(f − b7)(f − b8)
,

(fg − t2)(f g − t2/q)

(fg − 1)(f g − 1)
= (g − t/b1)(g − t/b2)(g − t/b3)(g − t/b4)

(g − 1/b5)(g − 1/b6)(g − 1/b7)(g − 1/b8)
, (17)

where f = f (t) and g = g(t) are the dependent variables. For a function � = �(t) of t, we use the notation � = �(qt)

and � = �(t/q). The symbol b1, b2, . . . , b8 stand for parameters with b1b2b3b4 = q and b5b6b7b8 = 1. (bj = bj for
j = 1, 2, . . . , 8.) The first equation can be considered as defining g by (f, g), and the second as defining f by (f , g).
Hence this system can be rewritten into the form f =F(t; f, g), g =G(t; f, g) of discrete time evolution, where F, G

are rational functions in f, g.
We now explain how one can find q-hypergeometric solutions of this q-Painlevé equation. When b1b3 = b5b7 (and

b2b4 = qb6b8), this system is decoupled consistently into the following four equations [20]:

f g − qt2

f g − 1
= (f − b2t)(f − b4t)

(f − b6)(f − b8)
,

fg − t2

fg − 1
= (f − b1t)(f − b3t)

(f − b5)(f − b7)
,

f g − t2/q

fg − 1
= (g − t/b2)(g − t/b4)

(g − 1/b6)(g − 1/b8)
,

fg − t2

fg − 1
= (g − t/b1)(g − t/b3)

(g − 1/b5)(g − 1/b7)
. (18)

Hence we obtain the discrete Riccati equation for g:

g = (qt2 − 1)f + t{−q(b6 + b8)t + (b2 + b4)}
{−(b6 + b8) + (b2 + b4)t}f + b6b8(1 − qt2)

,

f = (t2 − 1)b5b7g + t{(b1 + b3) − (b5 + b7)t}
{t (b1 + b3) − (b5 + b7)}g + (1 − t2)

. (19)

Namely, g is determined from g by a fractional linear transformation g = (Pg + Q)/(Rg + S).

In general let us consider a discrete Riccati equation of the form

z = Az + B

Cz + D
, (20)

where z = z(t), z = z(qt), and A, B, C, D are functions in t. By introducing two dependent variables F, G such that
z = F/G, the equation for z is linearized as

F = (AF + BG)H, G = (CF + DG)H . (21)
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Namely, if F and G satisfy these two equations for some H, then z=F/G satisfies the original discrete Riccati equation.
Hence we obtain two q-difference equations of second order to be satisfied by F and G:

F + c1F + c2F = 0, G + d1G + d2G = 0.

By choosing an appropriate factor H, one may expect that these equations for F and G could be identified with the
second-order q-difference equations (three-term recurrence relations) for some hypergeometric functions.

In the case of the discrete Riccati equation (19) for g, we need to apply a fractional linear transformation

z = 1 − b3/b5t

1 − b3/b1

g − t/b1

g − 1/b5
(22)

in order that the corresponding discrete Riccati equation can be solved by known special functions. Then by choosing
an appropriate factor H, the second-order linear q-difference equations (21) are identified with those for Askey–Wilson
functions (very well-poised, balanced 8�7 series) (16). In this way we obtain the solution

z = 8W7(a; qb, c, d, e, f ; x/q)

8W7(a; b, c, d, e, f ; x)
, x = q2a2

bcdef
,

where

(a; b, c, d, e, f ) =
(

b1b8

b3b5
; b8

b5
,
b2

b3
,
b4

b3
,
b1t

b5
,

b1

b5t

)
.

5. Hypergeometric solutions of the q-Painlevé equations

Each discrete Painlevé equation in Sakai’s list can be regarded as defining a second-order nonlinear difference system
with respect to n time variables, where n stands for the rank of the translation lattice of the affine Weyl group. If we
choose some direction in the lattice for the discrete time evolution, then the other coordinates for the complementary
directions are regarded as parameters. In the previous section, we presented an explicit form of the q-Painlevé equation
of type (17) of E

(1)
7 without referring to its geometric origin and the corresponding affine Weyl group action. In this

example the variables t, b1, . . . , b8 with the constraints b1b2b3b4 = q and b5b6b7b8 = 1 are the coordinates of a 7-
dimensional algebraic torus, among which t is chosen for the time variable. We also remark that the decoupling of (17)
into a discrete Riccati equation was carried out after restricting the parameters to the hypersurface b1b3 = b5b7 which
is in fact a wall of the affine Weyl group.

We now consider the following seven q-Painlevé equations for which the translation lattice of the affine Weyl group
has rank �2:

qP : E
(1)
8 → E

(1)
7 → E

(1)
6 → D

(1)
5 → A

(1)
4 → (A2 + A1)

(1) → (A1 + A′
1)

(1). (23)

In each case, among the coordinates for an algebraic torus we choose one direction of discrete time evolution, and
regard the other coordinates as parameters. Then by restricting the parameters to an appropriate wall, we obtain Riccati
equations that can be linearized to some q-hypergeometric equations. (This procedure of restriction to a wall makes
sense only in the cases of rank �2.) In [13,14], it is shown explicitly that q-hypergeometric functions as in Table 2
arise as Riccati solutions to the q-Painlevé equations of (23) in this way.

For the results concerning the elliptic difference Painlevé equation (of type E
(1)
8 ) and its hypergeometric solutions,

we refer the reader to [12,15,25].
These results on hypergeometric solutions are starting points of the study of nonlinear special functions in connection

with discrete Painlevé equations. If we take hypergeometric solutions as seed solutions, we can construct more special
solutions by applying Bäcklund transformations to them. Such solutions would be expressed as determinants of matrices
of particular forms whose entries are hypergeometric functions. Also, in order to understand the whole picture of special
solutions, it would be necessary to formulate 
-functions for all discrete Painlevé equations in a unified manner. We
expect that such a theory of nonlinear special functions will bring out new insights to the world of hypergeometric
functions.
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Table 2
Hypergeometric solutions of the q-Painlevé equations

Weyl Group symmetry Hypergeometric function Terminating case

E
(1)
8 Balanced 10W9 + 10W9 Ismail–Masson–Rahman

E
(1)
7 8W7

(
a; b, c, d, e, f ; q,

q2a2

bcdef

)
Askey–Wilson

E
(1)
6 3�2

(
a, b, c

d, e
; q,

de

abc

)
Big q-Jacobi

D
(1)
5 (qP VI) 2�1

(
a b

c
; q, z

)
Little q-Jacobi

A
(1)
4 (qP V) 1�1

(
a

b
; q, z

)
q-Laguerre

(A2 + A1)
(1) (qP III,IV) 1�1

(
a

0
; q, z

)
, 1�1

(
0
b
; q, z

)
Stieltjes–Wigert

(A1 + A′
1)

(1) (qP II) 1�1

(
0

−q
; q, z

)
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