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A theory is presented for analyzing the nonlinear stability of a drop of incompress-
ible viscous fluid with negligible inertia. The theory is developed here on the two-
dimensional version of the relevant free-boundary model for Stokes equations. As
we show, the two-dimensional problem presents most of the difficulties expected
from a projected three-dimensional study while allowing for simpler manipulation
of the spherical harmonics. Within this context we show that if the free-boundary
initiates close to a circle

r=1+el0(h), |e| small,

then there exists a global-in-time solution with free boundary

r=1+l(h, t, e)=1+C
n \ 1
ln(h, t) en,

which approaches a circle exponentially fast as tQ.. Moreover, we prove that if
l0(h) is analytic (resp. C.) in h, then the velocity u(x, t, e), the pressure p(x, t, e),
and the free boundary l are all jointly analytic (resp.C.) in (x, e). ©2002Elsevier Science

Key Words: incompressible viscous fluid; Stokes equation; surface tension;
stability.

1. THE PROBLEM

Consider an incompressible viscous fluid mass occupying a domain W(t),
at time t {0 < t <.). Denote the velocity of the fluid by u and its pressure
by p, so that the stress tensor is

T=Nu+(Nu)T−pI,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82392729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


or, in terms of components,

Tij=
“ui
“xj
+
“uj
“xi

−dij p.

If inertial forces can be neglected (e.g. small Reynolds number) the governing
equations become

Du−Np=0 in W(t), (1.1)

div u=0 in W(t). (1.2)

The boundary “W(t) is a free boundary driven by surface tension

Tn=−son on “W(t), (1.3)

and satisfying the kinematic compatibility condition

Vn=u ·n on “W(t). (1.4)

Here Vn is the velocity of the free boundary in the direction of the outward
normal n, o is the mean curvature of “W(t) (o is positive for a circle),
and 1/s is the capillary number. We consider the evolution of the system
(1.1)–(1.4) given an initial shape W(0): we wish to determine both the
domains W(t) and the functions p(x, t), u(x, t). This system needs to be
supplemented with several constraints, such as (i)

F
W(t)

(u×x)=Me3, (1.5)

where M is a given positive constant and e3=(0, 0, 1), and (ii) either

F
W(t)

u dx=0 (1.6)

or

1
|W(t)|

F
W(t)

x dx=m, (1.7)

where |W(t)|=vol.(W(t)) and m is a given constant vector.
We note that for any solution of (1.1), (1.2), (1.4), |W(t)| is independent

of t; indeed

d |W(t)|
dt

=F
“W(t)

Vn=F
“W(t)

u ·n=F
W(t)

div u=0.
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We also note that (1.6) is equivalent to (1.7), since

d
dt

F
W(t)

xi dx=F
“W(t)

xiVn=F
“W(t)

(xiu) ·n

=F
W(t)

div(xiu)=F
W(t)

ui dx.

The above free-boundary problem with the constraints (1.5) and (1.6) (or
(1.7)) was recently studied in [4, 6, 7] (see also [5]). It was proved in these
papers that there exists a unique solution for some time interval 0 < t < T.
In [4, 7] it was also proved that if

W(0) is close to the unit ball and has center of mass at the origin, (1.8)

then there exists a global solution of (1.1)–(1.5) and (1.7) with m=0 and

W(t) converges to a ball Br

={|x| < r} as tQ., where vol. Br=vol.(W(0)). (1.9)

In the 2-dimensional case (1.5) becomes

F
W(t)

(x1u2−x2u1) dx=M (1.10)

and (1.7) with m=0 is the condition

F
W(t)

xi dx=0 (i=1, 2). (1.11)

The methods developed in [4] and in [6, 7] are entirely different,
although both methods are based on transforming the free boundary
problem into a problem in the fixed cylinder B1×{0 < t <.} with,
naturally, more complicated PDEs.

In [6, 7] the transformation is done by introducing Langrangean
variables, whereas in [4] the authors use an unspecified diffeomorphism
from Ut > 0{W(t)× t} onto Ut > 0{B1×{t}}. The solution established by both
methods is smooth in the spatial variable; in [4] it is proved that the
solution is also analytic in a sense that we shall describe later on.

In this paper we develop yet another approach for solving the same free-
boundary problem. This approach is based on ideas developed in our
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earlier paper [3] dealing with the quasi-static Stefan problem. We rewrite
the condition (1.8) (in two dimensions) in the form

W(0)={r < 1+el0(h)}, |e| small, (1.12)

where the origin is chosen as the center of mass of W(0). We prove that
there exists a unique solution with

W(t)={r < 1+l(h, t, e)},

satisfying the conditions (1.10), (1.11), such that u(x, t, e), p(x, t, e) and
l(h, t, e) are analytic in e; furthermore,

˛ if l
0(h) is analytic in h then

l(h, t, e) is analytic jointly in (h, e), and
u(x, t, e), p(x, t, e) are analytic jointly in (x, e).

(1.13)

The solution is also smooth (x, t, e), and (as in [4][7]) W(t) converges to
Br as tQ..

The analyticity result in [4] mentioned above implies, in particular, the
analyticity of the solution l, u, p in the variable e; however it does not
imply the analyticity of l in (h, e) or of u, p in (x, e), as asserted in (1.13).

Our method resembles that of [4] in that we first use a diffeomorphism
to map W(t) onto the unit disc B1. However, instead of using just any
mapping, we shall take, as in [3], a specific mapping which enables us to
get very precise estimates on derivatives of the solution, with respect to
both e and the spatial variable.

In this paper, we deal with the 2-dimensional case. In this case, the
problem has also been studied using complex analytic techniques [1], and
analyticity of the free boundary has been established (allowing for variable
surface tension; see also [2]). These methods, however, do not extend to
higher dimensions. In contrast, the procedure we introduce here does not
use inherently two-dimensional ideas and can therefore be generalized;
in follow up work we will consider the fully three-dimensional case. To
exemplify our scheme, however, we have chosen a two-dimensional setting
as it presents most of the difficulties of the three dimensional problem
while allowing for simpler manipulation of spherical harmonics.

We proceed to outline the structure of the paper. In Section 2 we express
the velocity u in terms of its radial and tangential components,

u=urer+uheh,

where er=(cos h, sin h), eh=(−sin h, cos h) and write the free-boundary
problem for the functions (p, ur, uh, l), in polar coordinates. In Section 3
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we reduce the free-boundary problem in W(t) to an equivalent problem in
Wd(t)=W(t) 5 {r > d}; the reason for doing so is to avoid singularities at
the origin that arise as we successively differentiate the system in r and in h
after mapping it onto a fixed domain. In order to be able to extend the
solution from Wd(t) into {r < d} we devise special ‘‘transparent’’ boundary
conditions at r=d+0.

In Section 4 we introduce the mapping

rŒ=
(r−d)+d(1+l−r)

1+l−d
(l=l(h, t, e)), (1.14)

which transforms the free boundary problem in {Wd(t), 0 < t <.} into a
problem in the cylindrical shell

{d < rŒ < 1, 0 < t <.}.

In Section 5 we formally expand the solution as power series in e:

ur=C unen, uh=C vnen, p=C pnen, l=C lnen. (1.15)

Substituting these into the system of PDEs, boundary conditions and
constraints, we obtain, after equating the coefficients of en, a system of
equations for un, vn, pn, ln, which we symbolically write in the form

D (un, vn, pn, ln)=Fn; (1.16)

the Fn depend only on um, vm, pm, lm for m < n.
In Sections 6 and 7 we study the system

D (u, v, p, l)=F

for general F, and derive estimates on u, v, p and l in appropriate norms.
These estimates are used in Sections 8 and 9 in order to prove, by induction,
the desired estimates on un, rn, pn, ln that establish convergence of the series
in (1.15) and the analyticity assertions of (1.13).

It will be convenient for our work to replace (1.2) by

Dp=0 in W(t), (1.17)

div u=0 on “W(t). (1.18)

Equation (1.17) is obtained by taking the divergence in (1.1) and using
(1.2). Conversely, taking the divergence in (1.1) and using (1.17) we find
that div u is harmonic in W(t) and, then, (1.18) implies div u — 0 in W(t).
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2. REFORMULATION IN POLAR COORDINATES

We introduce the orthonormal vectors

er=(cos h, sin h), eh=(−sin h, cos h)

and write u=(u1, u2) in the form

u=urer+uheh.

Then the system (1.1), (1.17) can be written in the form [8; p. 155]

“
2

“r2
ur+

1
r
“

“r
ur+

1
r2
“
2

“h2
ur−

1
r2
ur−

2
r2
“

“h
uh−
“p
“r
=0, (2.1)

“
2

“r2
uh+

1
r
“

“r
uh+

1
r2
“
2

“h2
uh−

1
r2
uh+

2
r2
“

“h
ur−

1
r
“p
“h
=0, (2.2)

“
2p
“r2
+
1
r
“p
“r
+
1
r2
“
2p
“h2
=0 (2.3)

in W(t). The boundary condition (1.18) becomes

1
r
“

“r
(rur)+

1
r
“

“h
uh=0 on “W(t). (2.4)

In order to write the remaining boundary conditions at the free boundary,
we use the relation

“W(t)={r=1+l(h, t, e)}

and write “W(t) as

(x1, x2)=(1+l) er — Ler (L=1+l).

Then

n=
N
|N|

where N=Ler−Lheh 1Lh=
“L

“h
2 .

Hence, setting

n=nrer+nheh
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we have

nr=n · er=
L

(L2+L2h)
1/2 , nh=−

Lh

(L2+L2h)
1/2 ,

Vn=Lter ·n=
LLt

(L2+L2h)
1/2 .

We also have (see, for instance, [3])

o=
2 L2h−LLhh+L

2

(L2+L2h)
3/2 .

The equation

R 2 “u1“x1 “u1
“x2
+
“u2
“x1

“u1
“x2
+
“u2
“x1

2
“u2
“x2

S Rn1
n2
S=R

F1

F2
S

on the other hand, becomes (cf. [8, p.146])

R 2
“ur
“r

“uh
“r
+
1
r
“ur
“h
−
1
r
uh

“uh
“r
+
1
r
“ur
“h
−
1
r
uh −2

“ur
“r

S R nr
nh
S=R

Fr

Fh
S

where

(F1, F2)=Frer+Fheh.

Since

pI R
n1

n2
S=pnrer+pnheh,

the boundary condition (1.3) then takes the form

R 2
“ur
“r
−p

“uh
“r
+

1
1+l

“ur
“h
−

1
1+l

uh

“uh
“r
+

1
1+l

“ur
“h
−

1
1+l

uh −2
“ur
“r
−p

S R nr
nh
S=−so R

nr

nh
S.

(2.5)

218 FRIEDMAN AND REITICH



Finally, (1.4) becomes

lt=ur−
lh

1+l
uh on “W(t) 1lh=

“l

“h
2 , (2.6)

and l satisfies the initial condition (see (1.12))

l |t=0=el0(h). (2.7)

It is easy to check that the constraints (1.10) and (1.11) become

F
W(t)

ruh dx=M, (2.8)

F
2p

0
(1+l)3 e ±ih dh=0. (2.9)

Definition 2.1. The problem for (l, p, ur, uh) consisting of (2.1)–(2.9)
will be called Problem (A).

In the special case when W(0) is the unit disc, the solution to Problem
(A) is

p=s, u=m0(−x2, x1)=m0reh,

where

m0=
2M
p
. (2.10)

We expect the solution for the general case to be of the form

l=C
n \ 1
ln(h, t) en, (2.11)

p=s+C
n \ 1

pn(r, h, t) en, (2.12)

ur=C
n \ 1

un(r, h, t) en, (2.13)

uh=m0r+C
n \ 1

vn(r, h, t) en. (2.14)
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3. REDUCTION TO A TRUNCATED DOMAIN

As mentioned in Section 1, in order to identify and estimate the series in
(2.11)–(2.14) we shall transform the free-boundary problem into one
defined on a fixed domain. The most natural transformation to this
effect is

rW rŒ=
r

1+l
,

which is however singular at the origin. To avoid this difficulty while
retaining the explicit nature of the transformation, here we show that
Problem (A) is in fact equivalent to a problem posed in

Wd(t)={d < r < 1+l(h, t, e)} (0 < d < 1
2). (3.1)

As we show in Section 4 these domains, in turn, can be regularly and
explicitly transformed onto the fixed domain {d < r < 1}.

To reduce Problem (A) to one in Wd we need only find appropriate
‘‘transparent’’ boundary conditions for p, ur and uh at r=d+0. In order to
determine such conditions suppose p, ur, uh form a solution to

Dp=0 in r < d,

p |r=d−0=p |r=d+0;
(3.2)

Du+Np=0 in r < d,

u |r=d−0=u |r=d+0.
(3.3)

We compute the first derivatives of p, ur, uh at r=d−0 and, for simplicity,
drop the dependence on t and e.

We clearly have expansions

p=C
m
amr |m|e imh, (3.4)

ur=C
m
urm(r) e imh, (3.5)

uh=C
m
uhm(r) e imh, (3.6)
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where m varies over all the integers. Introducing the Hilbert transform

H 1C
m
bme imh2=−i C

m
bm(sgn m) e imh,

where sgn 0=0, we have

“p
“r
=
1
d
H 1“p
“h
2 at r=d−0. (3.7)

To derive analogous formulas for ur and uh, consider first the case

p=amr |m|e imh, 0 [ r < d, (3.8)

with

ur=urm(d) e imh, uh=uhm(d) e imh at r=d−0.

Since

ur=
1
2 amr

|m|+1e imh, uh=0

is a special solution of (2.1) and (2.2), the general solution can be written in
the form

ur=
1
2 amr

|m|+1e imh+C
k
Uk(r) e ikh,

uh=C
k
Vk(r) e ikh.

In view of the boundary conditions in (3.8), Uk and Vk must vanish for all
k ] m. The pair U=Um(r), V=Vm(r) is a solution of the system

Uœ+
1
r
UŒ−

m2+1
r2

U−
2im
r2
V=0,

Vœ+
1
r
VŒ−

m2+1
r2

V+
2im
r2
U=0.

(3.9)

The most general solution of (3.9), which is regular near r=0, is

U=A1r |m|+1+A2r |m|−1

V=i(sgn m)[−A1r |m|+1+A2r |m|−1]
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if m ] 0 and

U=Ar, V=Br if m=0,

where A1, A2 and A, B are arbitrary constants. We thus conclude that, in
the special case (3.8), the solution (ur, uh) is given by

ur={ 1
2 amr

|m|+1+A1r |m|+1+A2r |m|−1} e imh,

uh=i(sgn m){−A1r |m|+1+A2r |m|−1} e imh,
(3.10)

if m ] 0, and

ur=Ar, uh=Br (3.11)

if m=0.
We now compute, for m ] 0, the first derivatives of ur, at r=d and

determine coefficients P1, P2, m and Q1, Q2, y such that

“ur
“r
=P1

“ur
“h
+P2uh+mp, (3.12)

“uh
“r
=Q1

“uh
“h
+Q2ur+yp (3.13)

for every choice of A1, A2, and am. We find that P1, P2, m must satisfy

(|m|+1) d |m|=P1mid |m|+1−P2i(sgn m) d |m|+1,

(|m|−1) d |m|−2=P1mid |m|−1+P2i(sgn m) d |m|−1,

(|m|+1) 12 d
|m|=P1

1
2 imd

|m|+1+md |m|.

The solution to this system is

P1=−
i
d
(sgn m), P2=

i
d
(sgn m), m=

1
2
.

Hence

“ur
“r
=
1
d
H 1“ur
“h
2−1
d
H(uh)+

1
2
p at r=d−0. (3.14)
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Similarly the coefficients in (3.13) turn out to be

Q1=−
i
d
(sgn m), Q2=−

i
d
(sgn m), y=

i
2
(sgn m)

so that

“uh
“r
=
1
d
H 1“uh
“h
2+1
d
H(ur)−

1
2
H(p) at r=d−0. (3.15)

If m=0 then from (3.11) we get

“ur
“r
=
1
d
ur,

“uh
“r
=
1
d
uh at r=d−0. (3.16)

So far we considered only the special case (3.8). For the general case of
(3.4)–(3.6) we obtain by linearity that (3.14) and (3.15) hold for
ur−u

0
r , uh−u

0
h, p−p

0, where (u0r , u
0
h, p

0) — (ur0, uh0, a0) is the zero mode of
(ur, uh, p). Recalling also (3.16) we deduce the following transparency
conditions at r=d−0:

“ur
“r
=
1
d
H 1“ur
“h
2−1
d
H(uh−u

0
h)+

1
d
u0r+

1
2
(p−p0), (3.17)

“uh
“r
=
1
d
H 1“uh
“h
2+1
d
H(ur−u

0
r )+

1
d
u0h−

1
2
H(p−p0). (3.18)

The following result shows that, when coupled to Eqs. (2.1)–(2.5), some
of the conditions in (3.18) are actually redundant.

Theorem 3.1. Suppose (l, u, p) is a solution of (2.1)–(2.3) in Wd(t),
satisfying the boundary conditions (2.4) and (2.5). Then

(i) (3.18) is satisfied for mode 0;
(ii) If (3.17) holds for modes ±1 then (3.18) also holds for modes ±1.

Proof. We shall invoke the identity (cf. [4])

1
2
F
Wd(t)

C 1 “ui
“xj
+
“uj
“xi
2 1 “vi
“xj
+
“vj
“xi
2 dx−F

Wd(t)
p div v dx

=F
Wd(t)

(−Du+Np) · v dx−F
Wd(t)

N(div u) · v dx+F
“Wd(t)

T(u, p) n · v ds,

(3.19)
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where n is the outward normal to “Wd(t). We first choose v=
(−x2, x1)=reh and deduce that

−F
Wd(t)

N(div u) · v dx+F
“Wd(t)

T(u, p) n · v ds=0. (3.20)

We compute

F
Wd(t)

N(div u) · v dx=F
“Wd(t)

n(div u) · v=0 (3.21)

since div u=0 on “W(t) and n · v=0 on r=d. Next

F
“W(t)

T(u, p) n · v ds=−s F
“W(t)
on · v ds=s F

“W(t)

dy
ds
· v ds,

where y=rḣeh+ṙer is the tangent vector (s is the arclength parameter and
‘‘ · ’’ means d/ds), but

dv
ds
=
d
ds
(r(s) eh)=−rḣer+ṙeh

so that y · (dv/ds)=0. Therefore

F
“W(t)

T(u, p) n · v ds=−s F
“W(t)

y ·
dv
ds
=0.

Using this and (3.21) in (3.20) and recalling that Tn is given by the left-
hand side of (2.5) with 1+l replaced by d, we obtain (nr=−1, nh=0)

0=F
r=d

512 “ur
“r
−p2 er+1

“uh
“r
+
1
d

“ur
“h
−
1
d
uh 2 eh6 ·deh ds

=d F
r=d

1“uh
“r
−
1
d
uh 2 ds,

i.e., “u0h/“r=(1/d) u0h. This completes the proof of (i).
To prove (ii) we take v=(1, i) in (3.19). Proceeding as before and using

the fact that

F
“W(t)

T(u, p) n · v ds=−s F
“W(t)
on · v ds=s 1F

“W(t)

dy
ds
ds2 · v=0,
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we obtain

F
r=d

T(u, p) n · v ds−F
r=d

(div u) n · v ds=0. (3.22)

We can write

v=e iher+ie iheh

and then

F
r=d

T(u, p) n · v ds=−F
r=d

512 “ur
“r
−p2 er+1

“uh
“r
+
1
d

“ur
“h
−
1
d
uh 2 eh6 · vd dh

=−F
r=d

512 “ur
“r
−p2+i 1“uh

“r
+
1
d

“ur
“h
−
1
d
uh 26 e ihd dh.

(3.23)

On the other hand, since v ·n=v · (−er)=−e ih at r=d, we have

F
r=d

(div u) n · v ds=−F
r=d

1“ur
“r
+
1
d
ur+

1
d

“uh
“h
2 e ihd dh.

Substituting this and (3.23) into (3.22) we deduce, after some cancellations,
that

F
r=d

1“ur
“r
+i
“uh
“r
−p2 e ihdh=0. (3.24)

Similarly by choosing v=(1, −i) in (3.19) we derive the relation

F
r=d

1“ur
“r
− i
“uh
“r
−p2 e−ih dh=0. (3.25)

Denote by umr the mode m of ur, that is,

umr =
1
2p

F
2p

0
ure−imh dh.

Similarly we denote by umh and pm the m modes of uh and p. Then (3.24)
and (3.25) yield the relations

“u−1r
“r
+i
“u−1h
“r

−p−1=0, (3.26)

“u+1r
“r

− i
“u+1h
“r

−p+1=0. (3.27)
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The transparent boundary conditions (3.17) and (3.18) for mode −1 are

“u−1r
“r

−
1
d
u−1r +

i
d
u−1h −

1
2
p−1=0,

“u−1h
“r

−
1
d
u−1h −

i
d
u−1r +

i
2
p−1=0,

and, clearly, the second relation follows from the first relation and (3.26).
Similarly the transparent boundary condition (3.18) for mode +1 follows
from the transparent boundary condition (3.17) for mode 1 and (3.27). L

Theorem 3.1 suggests that (3.18) should be replaced by

“(uh−u
(1)
h )

“r
−
1
d
H 1“(uh−u

(1)
h )

“h
2−1
d
H(ur−u

(1)
r )+

1
2
H(p−p (1))=0

(3.28)

where

u (1)h =u0h+u
1
he

ih+u−1h e
−ih, u (1)r =u0r+u

1
r e

ih+u−11 e
−ih,

p (1)=p0+p1e ih+p−1e−ih.

Definition 3.1. The problem for (l, p, ur, uh) consisting of solving
(2.1)–(2.3) in {Wd(t), 0 < t <.} (where Wd(t) is defined by (3.1)) with
the boundary conditions (2.4)–(2.6) on “W(t), the transparent boundary
conditions (3.7), (3.17), (3.28) and the initial condition (2.7) will be called
Problem (Pd).

Theorem 3.2. If (l, ur, uh, p) is a solution to problem (Pd), then ur, uh, p
can be extended uniquely to a solution of (2.1)–(2.3) in all of W(t), 0 < t <..

Proof. We solve (3.2) and (3.3) in r [ d. Then ur, uh and p are continuous
across r=d. By Theorem 3.1 their normal derivatives are also continuous
across r=d. It follows that p, u form a smooth solution of (2.1)–(2.3) in all
of W(t). L

We finally want to express the constraints (2.8), (2.9) in terms of the
solution to problem (Pd). To do this we note that, by (3.11),

F
r < d

ruh=F
r < d

ru0h=F
r < d

Br2=
d

4
F
r=d

Br2 ds=
d

4
F
r=d

ru0h ds

=
d

4
F
r=d

ruh ds
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so that (2.8) coincides with

F
Wd(t)

ruh dx+
d

4
F
r=d

ruh ds=M, (3.29)

where ds=d dh.
The constraint (2.9) is equivalent to

F
2p

0
[(1+l)3−1] e ±ih dh=0,

or

F
2p

0
le ±ih dh=−F

2p

0

1l2+l
3

3
2 e ±ih dh. (3.30)

Definition 3.2. The problem of finding a solution to problem (Pd)
satisfying the constraints (3.29), (3.30) will be called Problem (Ad).

We have proved:

Theorem 3.3. Any solution to Problem (Ad) can be uniquely extended to
a solution of Problem (A).

In the sequel we focus our efforts on solving Problem (Ad).

4. THE TRANSFORMED PROBLEM

As in [3] we transform the domains Wd(t) into a fixed domain by the
change of variables rQ rŒ:

rŒ=
(1−d) r+dl
1+l−d

or r=
(1+l−d) rŒ−dl

1−d
. (4.1)

This transformation maps Wd(t) onto {d < rŒ < 1}. We also introduce the
functions

p̃(rŒ, h, t)=p(r, h, t)−s, ũrŒ(rŒ, h, t)=ur(r, h, t),

ũh(rŒ, h, t)=uh(r, h, t)−m0r.
(4.2)
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For any function q(r, h, t), if we define

qŒ(rŒ, h, t)=q(r, h, t),

then, using (4.1) and the relation

d−rŒ=
1−d

1+l−d
(d−r),

we derive the formulas

“q
“r
=

1−d
(1+l−d)

“qŒ
“rŒ
,

“
2q
“r2
=

(1−d)2

(1+l−d)2
“
2qŒ
“rŒ2

,

“q
“h
=
“qŒ
“h
+
(1−d) lh(d−r)
(1+l−d)2

“qŒ
“rŒ
=
“qŒ
“h
+
lh(d−rŒ)
(1+l−d)

“qŒ
“rŒ
,

“
2q
“h2
=
“
2qŒ
“h2

+
2(1−d) lh(d−r)
(1+l−d)2

“
2qŒ
“rŒ“h

+
“

“h
1 (1−d) lh(d−r)

(1+l−d)2
2 “qŒ
“rŒ

+1 (1−d) lh(d−r)
(1+l−d)2

22 “2qŒ
“rŒ2

=
“
2qŒ
“h2

+
2lh(d−rŒ)
1+l−d

“
2qŒ
“rŒ“h

+1lh(d−rŒ)
1+l−d
22 “2qŒ
“rŒ2

+5 “
“h
1 lh

1+l−d
2−1 lh

1+l−d
226 (d−rŒ) “qŒ

“rŒ

and

1
r
“q
“r
=

(1−d)2

[(1+l−d) rŒ−dl](1+l−d)
“qŒ
“rŒ
.

With the aid of these formulas we transform the problem (Ad) into a
problem for the functions p̃(rŒ, h, t), ũrŒ(rŒ, h, t), ũh(rŒ, h, t), and l(h, t). To
simplify the notation we shall drop the prime ‘‘ Œ ’’ in the independent
variable rŒ and further set

P(r, h, t)=p̃(r, h, t), d < r < 1,

U(r, h, t)=ũr(r, h, t), d < r < 1,

V(r, h, t)=ũh(r, h, t), d < r < 1;
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in view of (2.11)–(2.14) the power series in e for P, U, V and l will not
contain zero-order terms.

The system (2.1)–(2.3) becomes

DP=F1, d < r < 1, (4.3)

DU−
1
r2
U−

2
r2
“

“h
V−
“P
“r
=F2, d < r < 1, (4.4)

DV−
1
r2
V+

2
r2
“

“h
U−

1
r
“P
“h
=F3, d < r < 1, (4.5)

where

F1=F1(P) — 51− (1−d)2

(1+l−d)2
6 “2P
“r2

+
1
r
51− (1−d)2 r

[(1+l−d) r−dl](1+l−d)
6 “P
“r

+
(1−d)2

[(1+l−d) r−dl]2
5−2(d−r) lh

1+l−d
“
2P
“r“h

−(d−r)
“

“h
1 lh

1+l−d
2 “P
“r
−(d−r)2 1 lh

1+l−d
22 “2P
“r2

+(d−r) 1 lh

1+l+d
22 “P
“r
6

+
1
r2
51− r2(1−d)2

[(1+l−d) r−dl]2
6 “2P
“h2

, (4.6)

F2=F1(U)−
1
r2
51− (1−d)2 r2

[(1+l−d) r−dl]2
6 U

−
2
r2
51− (1−d)2 r2

[(1+l−d) r−dl]2
6 “V
“h

+
2(1−d)2

[(1+l−d) r−dl]2
·
lh(d−r)
1+l−d

“V
“r
−

l

1+l−d
“P
“r
, (4.7)
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F3=F1(V)−
1
r2
51− (1−d)2 r2

[(1+l−d) r−dl]2
6 V

+
2
r2
51− (1−d)2 r2

[(1+l−d) r−dl]2
6 “U
“h

−
2(1−d)2

[(1+l−d) r−dl]2
lh(d−r)
1+l−d

“U
“r
−
1
r
51− (1−d) r

(1+l−d) r−dl
6 “P
“h

+
1−d

[(1+l−d) r−dl]
·
lh(d−r)
(1+l−d)

“P
“r
. (4.8)

We next consider the boundary conditions. From (2.4) (at r=1) we
obtain

“U
“r
+U+

“V
“h
=G1 at r=1, (4.9)

where

G1=
l

1+l−d
“U
“r
+
l

1+l
U+

l

1+l
“V
“h
+

(1−d) lh
(1+l)(1+l−d)

“V
“r
. (4.10)

Next, from the first component of (2.5) we get

12 “U
“r

1−d
1+l−d

−P2 (1+l)

−5“V
“r

1−d
1+l−d

+
1

1+l
1“U
“h
+
lh(d−r)
1+l−d

“U
“r
2− 1

1+l
V6 lh

=−so(1+l)+s(1+l) at r=1

so that

2
“U
“r
−P−s(lhh+l)=G2 at r=1, (4.11)

where

G2=
2l

1+l−d
“U
“r
+
lh

1+l
5 1−d
1+l−d

“V
“r
+

1
1+l

“U
“h
−

1
1+l

·
(1−d) lh
1+l−d

“U
“r
−

V
1+l
6

−s 52l
2
h−(1+l) lhh+(1+l)

2

[(1+l)2+l2h]
3/2 −[1−(lhh+l)]6. (4.12)
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Similarly, from the second component of (2.5) we get

“V
“r
+
“U
“h
−V=G3 at r=1, (4.13)

where

G3=
dl

1+l−d
“V
“r
−
(1−d) lh
1+l−d

“U
“r
−lhP

+slh 5
2l2h−(1+l) lhh+(1+l)

2

[(1+l)2+l2h]
3/2 −16 .

(4.14)

The boundary condition (2.6) becomes

lt=U−
lh

1+l
1V+m0

(1+l−d)−dl
1−d
2 ,

or

lt−U+m0lh=G4 at r=1, (4.15)

where

G4=−
lh

1+l
V. (4.16)

Consider next the boundary conditions at r=d. From (3.7) we get

“P
“r
−
1
d
H 1“P
“h
2=G5 at r=d, (4.17)

where

G5=
l

1+l−d
“P
“r
. (4.18)

Next, (3.17) yields

“U
“r
−
1
d
H 1“U
“h
2+1
d
H(V−V0)−

1
d
U0−

1
2
(P−P0)=G6 at r=d

(4.19)
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where U0, V0, P0 are the zero modes of U, V and P, and

G6=
l

1+l−d
“U
“r
. (4.20)

Finally, (3.28) becomes

“(V−V (1))
“r

−
1
d
H 1“(V−V

(1))
“h
2−1
d
H(U−U (1))

+
1
2
H(P−P1)=G7 at r=d, (4.21)

where

U (1)=U0+U1e ih+U−1e−ih, V (1)=V0+V1e ih+V−1e−ih,

P (1)=P0+P1e ih+P−1e−ih

are the sums of the zero and ±1 modes of U, V, and P, and

G7=
l

1+l−d
“(V−V (1))
“r

. (4.22)

Consider, finally, the constraints (3.29), (3.30). Since

F
2p

0
dh F

1+l

0
r(m0r) r dr

=M+F
2p

0
dh F

1+l

1
m0r3 dr=M+m0 F

2p

0

(1+l)4−1
4

dh

=M+m0 F
2p

0
l dh+

m0

4
F
2p

0
l[(2+l)(2+2l+l2)−4] dh,

we easily get from (3.29)

F
2p

0
dh F

1

d

r2V(r, h, t) dr+
d3

4
F
2p

0
V(d, h, t) dh+m0 F

2p

0
l dh=2pH1 (4.23)
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where

2pH1=F
2p

0
dh F

1

d

5r2−[(1+l−d) r−dl]
2 (1+l−d)

(1−d)3
6 V(r, h, t) dr

−
1
4
m0 F

2p

0
l[(2+l)(2+2l+l2)−4] dh. (4.24)

Finally, we write the constraint (3.30) in the form

F
2p

0
le ±ih dh=2pH2, ± , (4.25)

where

2pH2, ±=−F
2p

0

1l2+l
3

3
2 e ±ih dh. (4.26)

Definition 4.1. We shall refer to the transformed problem (4.3)–(4.26)
as Problem (T).

5. THE INDUCTIVE SYSTEM

For the transformed problem derived in Section 4, the expansions
(2.11)–(2.14) can be written in the form

l=C
n \ 1
ln(h, t) en, (5.1)

P=C
n \ 1

Pn(r, h, t) en, (5.2)

U=C
n \ 1

Un(r, h, t) en, (5.3)

V=C
n \ 1

Vn(r, h, t) en. (5.4)

We substitute these series into the differential equations (4.3)–(4.5), the
boundary conditions (4.9), (4.11), (4.13), (4.15), (4.17) and (4.19), (4.21)
and the constraints (4.23) and (4.25). Upon equating the coefficients of en,
we obtain the following system:

QUASISTATIC MOTION OF A CAPILLARY DROP 233



DPn=F1
n, d < r < 1, (5.5)

DUn−
1
r2
Un−

2
r2
“

“h
Vn−
“Pn
“r
=F2

n, d < r < 1, (5.6)

DVn−
1
r2
Vn+

2
r2
“

“h
Un−

1
r
“Pn
“h
=F3

n, d < r < 1 (5.7)

“Un
“r
+
“Vn
“h
+Un=G1

n, r=1 (5.8)

2
“Un
“r
−Pn−s 1

“
2ln

“h2
+ln 2=G2

n, r=1, (5.9)

“Vn
“r
+
“Un
“h
−Vn=G3

n, r=1, (5.10)

“ln

“t
−Un+m0

“ln

“h
=G4

n, r=1, (5.11)

“Pn
“r
−
1
d
H 1“Pn

“h
2=G5

n, r=d, (5.12)

“Un
“r
−
1
d
H 1“Un

“h
2+1
d
H(Vn−V

0
n)−

1
d
U0

n−
1
2
(Pn−P

0
n)=G6

n, r=d, (5.13)

“(Vn−V
(1)
n )

“r
−
1
d
H 1“(Vn−V

(1)
n )

“h
2−1
d
H(Un−U

(1)
n )

+
1
2
H(Pn−P

(1)
n )=G7

n, r=d,

(5.14)

F
2p

0
dh F

1

d

r2Vn(r, h, t) dr+
d3

4
F
2p

0
V(d, h, t) dh+m0 F

2p

0
lndh=2pH1

n, (5.15)

F
2p

0
lne ±ihdh=2pH2, ±

n , (5.16)

l1 |t=0=l0(h), ln |t=0=0 if n \ 2. (5.17)
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The F j
n, G

j
n, H

1
n, H

2, ±
n depend only on the lm, Pm, Um, Vm for m < n. In the

next two sections we shall prove a general lemma for systems of the form
(5.5)–(5.17) which establishes for given right-hand sides, existence and
uniqueness of a solution as well as estimates on its derivatives. This lemma
will be used in Section 8 to establish, by induction, the existence and
uniqueness of the ln, Pn, Un, Vn and estimates on their derivatives. These
estimates will enable us to complete the proof of (1.9) and (1.13).

6. A FUNDAMENTAL LEMMA

Consider a system of differential equations

DP=F1, d < r < 1, (6.1)

DU−
1
r2
U−

2
r2
“V
“h
−
“P
“r
=F2, d < r < 1, (6.2)

DV−
1
r2
V+

2
r2
“U
“h
−
1
r
“P
“h
=F3, d < r < 1 (6.3)

and boundary conditions

“U
“r
+
“V
“h
+U=G1, r=1, (6.4)

2
“U
“r
−P−s 1“

2L

“h2
+L2=G2, r=1, (6.5)

“V
“r
+
“U
“h
−V=G3, r=1 (6.6)

“L

“t
−U+m0

“L

“h
=G4, r=1 (6.7)

“P
“r
−
1
d
H 1“P
“h
2=G5, r=d (6.8)
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“U
“r
−
1
d
H 1“U
“h
2+1
d
H(V−V0)−

1
d
U0−

1
2
(P−P0)=G6, r=d, (6.9)

“(V−V(1))
“r

−
1
d
H 1“(V−V(1))

“h
2−1
d
H(U−U(1))+

1
2
H(P−P(1))=G7, r=d,

(6.10)

an initial condition

L |t=0=L0(h), (6.11)

and constraints

F
2p

0
dh F

1

d

r2V(r, h, t) dr+
d3

4
F
2p

0
V(d, h, t) dh+m0 F

2p

0
L(h, t) dh=2pH1(t),

(6.12)

F
2p

0
Le ±ihdh=2pH ±

2 (t). (6.13)

Here U0 is the zero mode of U, U(1) is the sum of the 0 and ±1 modes of U,
and V0, P0, V(1), P(1) are similarly defined.

We want to prove that, given Fj, Gk, H1, H
±
2 , there exists a unique real-

valued solution L(h, t), P(r, h, t), U(r, h, t), V(r, h, t) of (6.1)–(6.13) in a
suitable space. To define the appropriate space we introduce the following
norms: let

B={(r, h); d < r < 1, 0 [ h [ 2p}, “B={0 [ h [ 2p},

then

||F||s, B=3 F
.

0
e2at[||F( · , t)||2Hs(B)+||Ft( · , t)||

2
Hs−1(B)+||Ftt( · , t)||

2
Hs−2(B)]4

1/2

,

(6.14)

||f||s, “B=3 F
.

0
e2at[||f( · , t)||2Hs(“B)+||ft( · , t)||

2
Hs−1(“B)+||ftt( · , t)||

2
Hs−2(“B)]4

1/2

,

(6.15)

||j||j=3 F
.

0
e2at C

j

k=0
|Dk

t j(t)|
2 dt4

1/2

, (6.16)
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where F=F(x, t), f=f(h, t). We restrict a by

0 < a <
s

2
. (6.17)

We shall be working with norms || ||s, B, where s is an integer \ 2, and with
norms || ||s, “B, where s is a real number \ 3, in which case if

f(h)= C
.

n=−.
fne inh,

then

||f||Hs(“B)=5C |fn |2 (1+|n|2) s6
1/2

.

In the fundamental lemma, Lemma 6.1 below, we assume that the norms

||F|| — ||F1 ||2, B+||F2 ||3, B+||F3−F
.

3 (r)||3, B,

||G|| — ||G1 ||3 12, “B+||G2−G
.

2 ||3 12, “B+||G3−G
.

3 ||3 12, “B

+||G4 ||4 12, “B+||G5 ||3 12, “B+||G6 ||3 12, “B+||G7 ||3 12, “B,

and

||H||=||H1−H
.

1 ||2+||H
+
2 ||3+||H

−
2 ||3

are finite, where F.3 (r) is a function of r that belongs to H3(d, 1) and
G.2 , G

.

3 , H
.

1 are constants, and that

||L0 ||H5(“B) <..

Lemma 6.1. If ||F||, ||G||, ||H|| are finite and L0 ¥H5(“B), then there
exists a unique solution P, U, V, L of (6.1)–(6.13) satisfying the estimate

||L−L.||5 12, “B+||Lt ||4 12, “B+||P−P
.||4, B+||U||5, B+||V−V.(r)||5, B

[ C[||F||+||G||+||H||+||L0 ||H5(“B)] (6.18)

where V.(r) is a function of r, L. and P. are constants, and

|L.|+|P.|+||V.||H5(d, 1) [ C[||F||+||G||+||H||+||L0 ||H5(“B)]; (6.19)

the constant C is independent of the data.
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To prove Lemma 6.1, we expand the Fj, Gk in Fourier series

Fj=C
m
Fm
j (r, t) e

imh (j=1, 2, 3),

Gk=C
m
Gm
k (t) e

imh (k=1, 2, ..., 7)

and try to find a solution of the form

L=C
m
Lm(t) e imh,

P=C
m
Pm(r, t) e imh,

U=C
m
Um(r, t) e imh,

V=C
m
Vm(r, t) e imh.

(6.20)

Then, with t as a parameter, which we shall often not indicate explicitly,

Pm
rr+

1
r
Pm
r −

m2

r2
Pm=Fm

1 , (6.21)

Um
rr+

1
r
Um

r −
m2+1
r2

Um−
2im
r2
Vm=fm

2 — Fm
2+
“Pm

“r
, (6.22)

Vm
rr+

1
r
Vm
r −

m2+1
r2

Vm+
2im
r2
Um=fm

3 — Fm
3+

im
r
Pm. (6.23)

Consider first the case |m| > 1. Then, one can easily verify that the
general solution Pm of (6.21) is

Pm=c1r−|m|+c2r |m|−
r |m|

2 |m|
F
1

r
r−|m|+1Fm

1 (r) dr−
r−|m|

2 |m|
F
r

d

r |m|+1Fm
1 (r) dr.

(6.24)
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The general homogeneous solution of (6.22) and (6.23) is

u=A1r |m|+1+A2r |m|−1+A3r−|m|+1+A4r−|m|−1,

v=i(sgn m)[−A1r |m|+1+A2r |m|−1+A3r−|m|+1−A4r−|m|−1].

A special solution of the inhomogeneous system (6.22), (6.23) is given by

u=Im(f
m
2 )+i(sgn m) Jm(f

m
3 ),

v=Im(f
m
3 )− i(sgn m) Jm(f

m
2 ),

where

Im(g)=
1
4
3F r
d

rg(r) 5−(r/r)
|m|+1

|m|+1
−
(r/r) |m|−1

|m|−1
6

+F
1

r
rg(r) 5−(r/r)

|m|+1

|m|+1
−
(r/r) |m|−1

|m|−1
64 ,

Jm(g)=
1
4
3 F r

d

rg(r) 5−(r/r)
|m|+1

|m|+1
+
(r/r) |m|−1

|m|−1
6

+F
1

r
rg(r) 5−(r/r)

|m|+1

|m|+1
+
(r/r) |m|−1

|m|−1
64 .

Substituting fm
2 , f

m
3 from (6.22), (6.23) and using also (6.24), we find, after

some calculations, the general solution of (6.22), (6.23):

Um=A1r |m|+1+A2r |m|−1+A3r−|m|+1+A4r−|m|−1+c1h1(r)+c2h2(r)+F
m
1 ,
(6.25)

Vm=i(sgn m)[−A1r |m|+1+A2r |m|−1+A3r−|m|+1−A4r−|m|−1

−c1h1(r)+c2h2(r)]+F
m
2 , (6.26)

where

h1(r)=
1
4

|m|
(|m|+1)
1 |m|+1
|m|

r−|m|+1−r−|m|−1d2−
1
|m|

r |m|+12 , (6.27)

h2(r)=
1
4

|m|
(|m|−1)
1 |m|−1
|m|

r |m|+1+
1
|m|

r−|m|+1d2|m|−r |m|−12 , (6.28)
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Fm
1=Im(F̂

m
2 )+i(sgn m) Jm(F̂

m
3 ),

Fm
2=Im(F̂

m
3 )− i(sgn m) Jm(F̂

m
2 ),

F̂m
2 (r)=Fm

2 (r)−
1
2
r |m|−1 F

r

1
s−|m|+1Fm

1 (s) ds+
1
2
r−|m|−1 F

r

d

s |m|+1Fm
1 (s) ds,

F̂m
3 (r)=Fm

3 (r)−
i
2
(sgn m) 3r |m|−1 Fr

1
s−|m|+1Fm

1 (s) ds

+r−|m|−1 F
r

d

s |m|+1Fm
1 (s) ds4 .

We next substitute (6.24)–(6.26) into the boundary conditions
(6.4)–(6.10) noting that “/“h corresponds to multiplication by im. We get
the following system of seven equations for the seven coefficients
A1, A2, A3, A4, c1, c2 and Lm:

2(|m|+1) A1−2(|m|−1) A3+[h
−

1(1)+(|m|+1) h1(1)] c1

+[h −2(1)−(|m|−1) h2(1)] c2=Ĝm
1 . (6.29)

2(|m|+1) A1+2(|m|−1) A2−2(|m|−1) A3−2(|m|+1) A4

+(2h −1(1)−1) c1+(2h
−

2(1)−1) c2−s(1−m
2) Lm=Ĝm

2 , (6.30)

2(|m|−1) A2+2(|m|+1) A4+[−h
−

1(1)+(|m|+1) h1(1)] c1

+[h −2(1)+(|m|−1) h2(1)] c2=Ĝ3, (6.31)

Lmt +imm0L
m−[A1+A2+A3+A4+c1h1(1)+c2h2(1)]=Ĝm

4 , (6.32)

c1=−
1

2 |m|
d |m|+1Ĝm

5 , (6.33)

−2(|m|−1) d−|m|A3−2(|m|+1) d−|m|−2A4+5h −1(d)−
|m|+1
d

h1(d)−
1
2
d−|m|6 c1

+5h−2(d)−
|m|−1
d

h2(d)−
1
2
d |m|6 c2=Ĝm

6 , (6.34)

−2(|m|−1) d−|m|A3+2(|m|+1) d−|m|−2A4+5−h−1(d)+
|m|+1
d

h1(d)−
1
2
d−|m|6 c1

+5h−2(d)−
|m|−1
d

h2(d)−
1
2
d |m|6 c2=Ĝm

7 , (6.35)
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where

Ĝm
1=Gm

1 −5
“Fm

1

“r
+imFm

2+F
m
1
6:

r=1
,

Ĝm
2=Gm

2 −52
“Fm

1

“r
:
r=1
+

1
2 |m|

F
1

d

r |m|+1Fm
1 (r) dr6 ,

Ĝm
3=−i(sgn m) Gm

3+i(sgn m) 5“F
m
2

“r
−Fm

2
6:

r=1
−|m| Fm

1 | r=1,

Ĝm
4=Gm

4+F
m
1 | r=1, Ĝm

5=Gm
5 ,

Ĝm
6=Gm

6 −5
“Fm

1

“r
:
r=d

−
|m|
d
Fm
1 | r=d−

i(sgn m)
d

Fm
2 | r=d

+
1
2
d |m|

2 |m|
F
1

d

r−|m|+1Fm
1 (r) dr6 ,

Ĝm
7=−i(sgn m) Gm

7+i(sgn m) 5“F
m
2

“r
−
|m|
d
Fm
2
6:

r=d
−
1
d
Fm
1 | r=d

−
1
2
d |m|

2 |m|
F
1

d

r−|m|+1Fm
1 (r) dr.

Using the relations

h −1(d)−
|m|+1
d

h1(d)=h −2(d)−
|m|−1
d

h2(d)=0,

we get from (6.34), (6.35),

A4=
d |m|+2

4(|m|+1)
(Ĝm

7 −Ĝ
m
6 ) (6.36)

and

A3=−
d2 |m|

4(|m|−1)
c2+Ĝ

m
8 , (6.37)

where

Ĝm
8=−

d |m|

4(|m|−1)
5Ĝm

6+Ĝ
m
7 −

d

2 |m|
Ĝm
5
6 .
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By (6.27), (6.28), the equations (6.29)–(6.31) reduce to

2(|m|+1) A1−2(|m|−1) A3+
1
2
(1−d2 |m|) c2=Ĝm

1 , (6.38)

2(|m|+1) A1+2(|m|−1) A2−2(|m|−1) A3−2(|m|+1) A4

+1−1−|m|
2
+
|m|
2
d22 c1−

1
2
(1+d2 |m|) c2−sLm(1−m2)=Ĝm

2 ,
(6.39)

2(|m|−1) A2+2(|m|+1) A4+
1
2
|m| (1−d2) c1=Ĝm

3 .

From the last equation and (6.33), (6.36),

A2=Ĝm
9 —

1
2(|m|−1)
5Ĝm

3 −
1
2
d |m|+2(Ĝm

7 −Ĝ
m
6 )+

1
4
d |m|+1(1−d2) Ĝm

5
6 .
(6.40)

If we substitute A3 from (6.37) into (6.38), we get

A1=−
1

4(|m|+1)
c2+

1
2(|m|+1)

(Ĝm
1+2(|m|−1) Ĝ

m
8 ). (6.41)

We next express c2 in terms of Lm by subtracting (6.38) from (6.39) and
using (6.36), (6.40),

c2=(m2−1) sLm+Ĝm
10, (6.42)

where

Ĝm
10=(Ĝm

1 −Ĝ
m
2 )+2(|m|−1) Ĝ

m
9 −

1
2
d |m|+2(Ĝm

7 −Ĝ
m
6 )

−1−1−|m|
2
−
|m| d2

2
2 1
2 |m|

d |m|+1Ĝm
5 .

Substituting (6.42) into (6.37) and (6.41), and then using all these expre-
sions as well as those for A2, A4, c1 in (6.32), we get a differential equation
for Lm:

Lmt +
s

2
|m| Lm+im0 |m| Lm=Ĝm

11, (6.43)
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where

Ĝm
11=Ĝm

4+
1

2(|m|+1)
(Ĝm

1+2(|m|−1) Ĝ
m
8 )+Ĝ

m
9+Ĝ

m
8+

d |m|+2

4(|m|+1)
(Ĝm

7 −Ĝ
m
6 )

−
1−d2

8(|m|+1)
d |m|+1Ĝm

5 −
|m|

2(m2−1)
Ĝm
10.

We next consider the case |m|=1. Then

Pm=c1r−1+c2r−
r
2
F
1

r
Fm
1 (r) dr−

r−1

2
F
r

d

r2Fm
1 (r) dr, (6.44)

and the general solution of (6.22), (6.23) is

Um=A1r2+A2+A3 log r+A4r−2+c1h1(r)+c2h2(r)+F
m
1 , (6.45)

Vm=i(sgn m)[−A1r2+A2+A3 log r−A4r−2−c1h1(r)+c2h2(r)]+F
m
2 ,

(6.46)

where

Fm
1=Ĩm(F̂

m
2 )+i(sgn m) J̃m(F̂

m
3 ),

Fm
2=Ĩm(F̂

m
3 )− i(sgn m) J̃m(F̂

m
2 ),

F̂m
2 , F̂

m
3 are defined as before,

and

Ĩm(g)=
1
4
3F r
d

rg(r) 5−(r/r)
2

2
− log

r

r
6+F

1

r
rg(r) 5−(r/r)

2

2
− log

r
r
64 ,

J̃m(g)=
1
4
3F r
d

rg(r) 5−(r/r)
2

2
+log

r

r
6+F

1

r
rg(r) 5−(r/r)

2

2
+log

r
r
64 ;

here

h1(r)=
1
4
−
d2

8r2
−
r2

8
,

h2(r)=−
1
2
5F r
d

r log
r

r
+F

1

r
r log

r
r
6 .
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Since |m|=1, the boundary condition (6.10) is vacuous, but instead we
need to satisfy the constraint (6.13),

Lm=Hm
2 , (6.47)

where H1
2=H−

2 and H−1
2 =H+

2 .
Next, the boundary conditions (6.4)–(6.9) yield

4A1+A3+
1
4
(1−d2) c2=Ĝm

1 , (6.48)

4A1+2A3−4A4+1
d2

2
−
3
2
2 c1−

1
2
(1+d2) c2=Ĝm

2 , (6.49)

A3+4A4+
1
2
(1−d2) c1+

1
4
(1−d2) c2=Ĝm

3 , (6.50)

Lmt +i(sgn m) m0Lm−5A1+A2+A4+
1
8
(1−d2) c1+h2(1) c26=Ĝm

4 , (6.51)

c1=−
1
2
d2Ĝm

5 , (6.52)

A3−
4
d2
A4−

1
2
c1−

1
4
(1+d2) c2=dĜ

m
6 , (6.53)

where the Ĝm
k are obtained from the Gm

j in the same way as in the case
|m| > 1, but with the operators Im, Jm replaced by Ĩm, J̃m.

The system (6.48)–(6.50), (6.53) for A1, A3, A4 and c2 has a nonsingular
coefficient matrix and can therefore be uniquely solved,

A1=G̃m
1 , A3=G̃m

3 , A4=G̃m
4 , c2=G̃m

5 , (6.54)

where the G̃m
j are linear combinations of the Ĝm

k . From (6.47) the function
Lm and its t-derivatives are determined. Substituting this and (6.52), (6.54)
into (6.51), one finds that

A2=G̃m
2 , (6.55)
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where

G̃m
2=−Ĝm

4 −5G̃m
1+G̃

m
4 −

1
8
(1−d2)

1
2
d2Ĝm

5+h2(1) G̃
m
5
6

+
“

“t
Hm

2+i(sgn m) m0H
m
2 . (6.56)

We finally consider the case of mode 0: in this case

P0=c1+c2 log r+log r F
r

d

rF0
1(r) dr−F

r

d

r log rF0
1(r) dr (6.57)

and

U0=A1r+A2r−1+5−
1
4r
(r2−d2)+

r
2

log r6 c2+F0
1, (6.58)

V0=B1r+B2r−1+F
0
2, (6.59)

where

F0
1=−

1
2
F
r

d

r2

r
F0
2(r) dr−

1
2
F
1

r
rF0

2(r) dr

−
1
4
F
r

d

(r2−r2)
r

r
F0
1(r) dr+

1
2
F
r

d

rF0
1(r) r log r dr.

+
1
2
F
1

r
rF0

1(r) r log r dr,

F0
2=−

1
2
F
r

d

r2

r
F0
3(r) dr−

1
2
F
1

r
rF0

3(r) dr.

The boundary conditions (6.4)–(6.9) yield

2A1=G0
1, (6.60)

2A1−2A2−sL0−c1+
1
2 (1−d

2) c2=Ĝ0
2, (6.61)

−2B2=G0
3−F

1

d

r2F0
3(r) dr, (6.62)
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L0t −A1−A2+
1
4 (1−d

2) c2=Ĝ0
4, (6.63)

c2=dG
0
5, (6.64)

−2A2d
−2=G0

6, (6.65)

where

Ĝ0
2=G0

2−F
1

d

r log rF0
1(r) dr−F

1

d

r2F0
2(r)−

1
2 F

1

d

(1−r2) rF0
1(r) dr,

Ĝ0
4=G0

4−
1
2 F

1

d

r2F0
2(r) dr−

1
4 F

1

d

(1−r2) rF0
1(r) dr.

Substituting A1, A2, c2 from (6.60), (6.65), (6.64) into (6.63), one gets

L0t=G̃0
4, (6.66)

where

G̃0
4=Ĝ0

4+
1
2
G0
1−
d2

2
G0
6−
1
4
(1−d2) dG0

5. (6.67)

We determine c1 by integrating (6.66) and substituting the result into
(6.61). Finally B1 is determined by the constraint (6.12), which, as easily
seen, yields

1
4
B1=−

2−d2

4
B2−F

1

d

r2F0
2 dr−m0L

0+H1−
d3

4
F0
2(d). (6.68)

In summary, we have proved that the system (6.1)–(6.13) has a unique
formal solution of the form (6.20), and have determined the coefficients
Lm, Pm, Um, Vm. In the next section we shall use the differential equation
(6.43) to estimate the Lm, Lmt for |m| > 1, (6.51), (6.52), and (6.54), (6.55), to
estimate Lm, Lmt for m=±1 and (6.60), (6.63)–(6.65) to estimate L0, L0t .
Combining these estimates we shall establish the bounds (6.18), (6.19), and
thus complete the proof of Lemma 6.1. (Uniqueness follows from the fact
that any solution for which the left-hand sides of (6.18), (6.19) are finite
must have a series expansion (6.20).)
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7. A FUNDAMENTAL LEMMA (CONTINUED)

Lemma 7.1. Consider the initial value problem

Ḃ(t)+(K+iM) B(t)=F(t), t > 0,

B(0)=B0,

where K, M are real numbers and K > 0. Then, for any 0 < a < K, there hold

F
.

0
e2as |B(s)|2 ds [

2
(K−a)2

F
.

0
e2as |F(s)|2 ds+

|B0 |2

K−a
,

F
.

0
e2as |Ḃ(s)|2 ds [ 2 1 2K2

(K−a)2
+12 F.

0
e2as |F(s)|2 ds+

2K2

K−a
|B0 |2.

Proof. The case M=0 is proved in [3]; the proof extends with minor
changes to M ] 0. L

We introduce the notation

OfP=F
t

0
|f(s)|2 e2as ds.

Then from the estimates derived in Section 6 we easily get, for |m| > 1,

OĜm
11P [ C 3OGm

4 P+
C
m2 C

7

j=1
OGm

j P+N
m4 , (7.1)

where

Nm=C
2

j=1

5 1
m2
7“Fm

j

“r
8+OFm

j P6
r=1, d

+
1
m4
57 F 1

d

r |m|+1Fm
1 (r, · ) dr8+7F

1

d

d |m|r−|m|+1Fm
1 (r, · ) dr86

— L1+
1
m4 L2. (7.2)

By the Cauchy–Schwarz inequality,

1
m4 |L2 | [

C
|m|5

F
t

0

5F 1
d

|Fm
1 (r, s)|

2 r dr6 e2as ds. (7.3)
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Consider next Fm
1 at r=1, and set

g1(r, t)=Fm
2 (r, t), g2(r, t)=Fm

3 (r, t),

g3(r, t)=r−|m|−1 F
r

d

y |m|+1Fm
1 (y, t) dy,

g4(r, t)=r |m|−1 F
1

r

y−|m|+1Fm
1 (y, t) dy.

We need to estimate Im(gj) and Jm(gk) for j=1, 3, 4 and k=2, 3, 4.
Im(g) can be written as a sum of four integrals, and we shall first consider
the first integral for gj (1 [ j [ 4),

Dj=F
r

d

rgj(r)
(r/r) |m|+1

|m|+1
dr | r=1.

By the Cauchy–Schwarz inequality,

OD1P [
c
|m|3

F
t

0

5F 1
d

|Fm
2 (r, s)|

2 r dr6 e2as ds.

D2 can be estimated in the same way. To estimate D3 we first use the
Cauchy–Schwarz inequality to get

:F 1
d

5r−|m| Fr
d

y |m|+1Fm
1 (y, s) dy6

r |m|+1

|m|+1
dr :

[
c

|m|3/2
3F 1
d

5r−|m|−2 Fr
d

y |m|+1Fm
1 (y, s) dy6

2

dr4
1/2

—
C

|m|3/2
L.

Next we substitute y=rl in L:

L=3F 1
d

: F d/r
1
l |m|+1Fm

1 (rl, s) dl :
2

dr4
1/2

[ F
1

d

l |m|+1 dl 1F 1
d/l
|Fm

1 (rl, s)|
2 dr2

1/2

by Minkowski’s inequality.

Substituting back r=y/l in the inner integral, we find that

L [ F
1

d

l |m| dl 1F 1
d

|Fm
1 (y, s)|

2 dy2
1/2

[
C
|m|
1F 1
d

|Fm
1 (r, s)|

2 r dr2
1/2

.
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Hence

OD3P [
C
|m|5

F
t

0

5F 1
d

|Fm
1 (r, s)|

2 r dr6 e2as ds.

The same bound can similarly be derived for D4. The other three integrals
in Jm(gj) can be treated in the same way. Hence

OFm
1 P |r=1 [

C
|m|3

C
3

j=2
F
t

0

5F 1
d

|Fm
j (r, s)|

2 r dr6 e2as ds

+
C
|m|5

F
t

0

5F 1
d

|Fm
1 (r, s)|

2 r dr6 e2as ds.

The estimates of OFm
2 P | r=1 and of OFm

j P | r=d are derived in the same way,
and so are the estimates of 1

|m|2
O“Fm

j /“rP. Using the result in (7.2), we then

obtain from (7.1) the inequality

OĜ11P [ C 3OGm
4 P+

1
m2 C

7

j=1
OGm

j P

+
1
|m|5

F
t

0

5F 1
d

|Fm
1 (r, s)|

2 r dr6 e2as ds

+
1
|m|3

C
3

j=2
F
t

0

5F d
0
|Fm

j (r, s)|
2 r dr6 e2as ds4 . (7.4)

We now use Lemma 7.1 to estimate Lm and Lmt from the differential
equation (6.43) and the bound (7.4). The estimate on Lmt allows us to
estimate the derivative “Ĝm

11/“t in the same way that we have estimated Ĝm
11.

Another application of Lemma 7.1 to the equation

(Lmt )t+
s

2
|m| (Lmt )+im0 |m| (L

m
t )=

“Ĝm
11

“t

yields an estimate on Lmtt . Repeating this process once more we obtain an
estimate also on Lmttt. Multiplying the estimates on

“
j

“t j
Lm by |m|2(5

1
2−j)

and summing on m, |m| > 1, and adding also the corresponding estimates
for |m|=1, we get

QUASISTATIC MOTION OF A CAPILLARY DROP 249



||L−L0||5 12, “B+||(L−L
0)t ||4 12, “B

[ C 3 ||F1−F0
1 ||2, B+C

3

j=2
||Fj−F

0
j ||3, B+||G4−G

0
4 ||4 12, “B

+C
7

j=1
||Gj−G

0
j ||3 12, “B+||L0 ||H5(“B)+||H

+
2 ||3+||H

−
2 ||3 4 — R. (7.5)

We next recall the formulas for Aj, Bj, cj for |m| > 1 and use them
together with the estimates on Lm established in (7.5) in order to estimate
Pm, Um, Vm (defined in (6.24)–(6.26)). We then sum the estimates of

(|m|4−j |D j
tP

m|)2, (|m|5−j |D j
tU

m|)2, (|m|5−j |D j
tV

m|)2

over m, |m| > 1, and combine it with the estimates (which are easily
obtained) for |m|=1. This allows us to conclude that

||P−P0||4, B+||U−U0||5, B+||V−V0||5, B [ R, (7.6)

where R denotes the right-hand side of (7.5).
Thus, in order to complete the proof of Lemma 6.1, it remains to con-

sider the case of zero mode. From (6.63) we see that

||L0t ||
2
2 [ C[||G

0
1 ||

2
2+||G

0
4 ||

2
2+||G

0
5 ||

2
2+||G

0
6 ||

2
2+||F

0
1 ||

2
2+||F

0
2 ||

2
2] (7.7)

so that L0 Q L. as tQ., where L. is a constant. We can also estimate the
rate of convergence as

1FT
0
e2at |L0−L.|2 dt2

1/2

=5FT
0
e2at 1F.

t
L0t (s) ds2

2

dt6
1/2

=5FT
0

1F.
t
ea(t−s)easL0t (s) ds2

2

dt6
1/2

=5FT
0

1F.
0
e−auea(t+u)L0t (t+u) du2

2

dt6
1/2

(s=t+u)

[ F
.

0
e−au du 5FT

0
(ea(t+u)L0t (t+u))

2 dt6
1/2

(by Minkowski’s inequality)

=F
.

0
e−au du 5FT+u

u
e2at |L0t (t)|

2 dt6 (t+uQ t).
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Combining this with (7.7) we conclude that ||L0−L.||3 is bounded by the
right-hand side of (7.7).

A similar analysis shows that P0
Q P., U0

Q 0, VQ V.(r) as tQ., and

||P0−P.||4, B, ||U0||5, B, ||V0−V.(r)||5, B

can be estimated by the right-hand side of (6.18); note that

“

“t
(P0−P.)=

“P0

“t
,

“

“t
(V0−V.)=

“

“t
V0.

Combining these estimates with (7.5), (7.6), the proof of (6.18) is
complete.

Finally, the estimates (6.19) follow from the explicit formulas for mode
0, as tQ., and this completes the proof of Lemma 6.1.

8. CONVERGENCE

We shall need the following lemma.

Lemma 8.1. The following inequality holds for any s \ 2,

||FG||s, B [M0 ||F||s, B ||G||s, B,

||fg||s, “B [M0 ||f||s, “B ||g||s, “B,

whereM0 is a constant depending only on s.

The proof is similar to that given in [3] for somewhat different norms.

Lemma 8.2. If l0 ¥H5(“B) then the system (5.5)–(5.17) has a unique
solution for every n \ 1, and the following bounds hold,

||ln−l
.

n ||5 12, “B+||ln, t ||4 12, “B+||Pn−P
.

n ||4, B+||Un ||5, B

+||Vn−V
.

n (r)||5, B [ C0
Hn−1

n2
, (8.1)

|l.n |+|P
.

n |+||V
.

n ||H5(d, 1) [ C0
Hn−1

n2
, (8.2)

where l.n , P
.

n are constants, and C0, H are positive constants.
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Proof. For n=1 (8.1) and (8.2) can be verified directly, provided we
choose C0 large enough. Proceeding by induction, we assume that the
lemma is true for all indices smaller than n (n \ 2) and proceed to prove it
for n, by applying Lemma 6.1. Thus we need to express the inhomogeneous
terms on the right-hand sides of (5.5)–(5.17) in terms of the lm, Pm, Um, Vm
for m < n and then estimate the corresponding norms

||F||+||G||+||H||,

which occur in (6.18).
We start with F3

n. From (4.8) and (5.1)–(5.4) we have

F3
n(r, h, t)=C

n−1

k=1

5k1k(r, h, t)
“
2Vn−k
“r2

+k2k(r, h, t)
“
2Vn−k
“r“h

+k3k(r, h, t)
“
2Vn−k
“h2

+k4k(r, h, t)
“Vn−k
“r

+k5k(r, h, t) Vn−k+k
6
k(r, h, t)

“Un−k
“h

+k7k(r, h, t)
“Un−k
“r

+k8k(r, h, t)
“Pn−k
“h

+k9k(r, h, t)
“Pn−k
“r
6 ,

where

k1(r, h, t, e)=51− (1−d)2

(1+l−d)2
6− (1−d)2 (d−r)2

((1+l−d) r−dl)2
1 lh

1+l−d
22

— C
k \ 1
k1k(r, h, t) e

k,

k2(r, h, t, e)=−
2(d−r)(1−d)2

((1+l−d) r−dl)2
lh

1+l−d
— C

k \ 1
k2ke

k,

k3(r, h, t, e)=
1
r2
51− r2(1−d)2

((1+l−d) r−dl)2
6 — C

k \ 1
k3ke

k,

k4(r, h, t, e)=
1
r
51− (1−d)2 r

((1+l−d) r−dl)(1+l−d)
6

−
(d−r)(1−d)2

((1+l−d) r−dl)2
5 “
“h
1 lh

1+l−d
2−1 lh

1+l−d
226

— C
k \ 1
k4ke

k,
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k5(r, h, t, e)=−
1
r2
51− (1−d)2 r2

((1+l−d) r−dl)2
6=−k3(r, h, t),

k6(r, h, t, e)=2k3(r, h, t),

k7(r, h, t, e)=−
2(1−d)2

((1+l−d) r−dl)2
lh(d−r)
1+l−d

— C
k \ 1
k7ke

k,

k8(r, h, t, e)=−
1
r
51− (1−d) r

(1+l−d) r−dl
6 — C

k \ 1
k8ke

k,

k9(r, h, t, e)=
1−d

((1+l−d) r−dl)
lh(d−r)
(1+l−d)

— C
k \ 1
k9ke

k.

It follows from Lemma 10.3 (in the Appendix) and the inductive assumption
that, for k < n,

||k1k−k
1,.
k ||4, B [ CC0

Hk−1

k2
, |k1,.k | [ CC0

Hk−1

k2
, (8.3)

where k1,.k is a constant,

||k2k ||4, B [ CC0
Hk−1

k2
,

||k3k−k
3,.
k ||5, B [ CC0

Hk−1

k2
, ||k3,.k (r)||H5(d, 1) [ CC0

Hk−1

k2
,

||k4k−k
4,.
k ||3, B [ CC0

Hk−1

k2
, ||k4,.k (r)||H3(d, 1) [ CC0

Hk−1

k2
,

||k7k ||4, B [ CC0
Hk−1

k2
,

||k8−k8,.k ||5, B [ CC0
Hk−1

k2
, ||k8,.k (r)||H5(d, 1) [ CC0

Hk−1

k2
,

||k9k ||4, B [ CC0
Hk−1

k2

where C is a universal constant, provided H is sufficiently large, indepen-
dently of k, n.

To see this consider, for instance, the function k1 and write

k1, 1(r, h, t)=1−
(1−d)2

(1+l−d)2
, k1, 2(r, h, t)=

(1−d)2 (d−r)2

((1+l−d) r−dl)2
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so that

k1=k1, 1+k1, 2 1 lh

1+l−d
22. (8.4)

Then

k1, 1=
2l(1−d)+l2

(1+l−d)2
=

2l(1−d)+l2

(1−d)2(1+l/(1−d))2

=5 2l
1−d

+1 l
1−d
226 C

.

p=0
(p+1)(−1)p 1 l

1−d
2p

=C
.

p=1
(−1)p−1

(p+1)
(1−d)p

lp

and

k1, 2=
(d−r)2

r2 11−(d−r) l
(1−d) r
22
=
(d−r)2

r2
C
.

p=0
(p+1) 1 d−r

(1−d) r
2p lp.

It follows from Lemma 10.3 in the Appendix that

k1, j=C k1, jk ek,

where

||k1, jk −k1, j,.k (r)||5, B [ CC0
Hk−1

k2
, (8.5)

||k1, j,.k (r)||H5(d, 1) [ CC0
Hk−1

k2
, (8.6)

provided H is sufficiently large.
Next,

lh

1+l−d
=
“

“h
log(1+l−d) — C

.

k=1
D̃k(h, t) ek
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and, by Lemma 10.3,

log(1+l−d)=log(1−d)+C
k \ 1

Lk(h, t) ek

where

||Lk−L
.

k ||5, “B [ CC0
Hk−1

k2
, |L.k | [ CC0

Hk−1

k2
.

Since D̃k=2 “Lk
“h

, we get

||D̃k ||4, “B [ CC0
Hk−1

k2
. (8.7)

Writing

1 lh

1+l−d
22=C

.

k=1
Dk(h, t) ek,

we have

Dk=C
k−1

a=1
D̃k− aD̃a

so that, by (8.7) and Lemma 10.1,

||Dk ||4, “B [ CC0
Hk−1

k2
(8.8)

if H is sufficiently large. We write

k1, 2(r, h, t) 1 lh

1+l−d
22=C

k \ 1

51 C
k−1

p=1
k1, 2p Dk−p
2 ek+(d−r)

2

r2
Dke

k6 (8.9)

By (8.5), (8.6) for j=2 and (8.8),

> C
k−1

p=1
k1, 2p Dk−p
>
4, B

[ C
k−1

p=1
||(k1, 2p −k1, 2,.p ) Dk−p ||4, B+C

k−1

p=1
||k1, 2,.p Dk−p ||4, B

[ 2M0 C
k−1

p=1
C2C0

Hp−1

p2
Hk−p−1

(k−p−1)2
[ 2C2C2

0A0M0
Hk−2

k2
.
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Also

> (d−r)2
r2

Dk
>
4, B

[ C ||Dk ||4, “B [ C2C0
Hk−1

k2
.

Using these estimates in (8.9) and combining the result with (8.5),(8.6) for
j=1, we obtain, upon recalling (8.4), the assertion (8.3).

Similarly one can prove the asserted bounds on the k jk for 2 [ j [ 9.
Using these estimates we can now show that

||F3
n−F

3,.
n (r)||3, B [ CC0

Hn−2

n2
, ||F3,.

n (r)||H3(d, 1) [ CC0
Hn−2

n2
. (8.10)

Indeed, consider first the terms with k1k. Then

> C
n−1

k=1
k1k
“
2Vn−k
“r2

− C
k=1
k1,.k (r)

“
2V.n−k
“r2
>
3, B

[ > C
n−1

k=1
(k1k−k

1,.
k ) 1“

2Vn−k
“r2

−
“V.n−k
“r2
2>

3, B

+> C
n−1

k=1
k1,.k 1

“
2Vn−k
“r2

−
“
2V.n−k
“r2
2>

3, B
+>C

n−1

k=1

“
2V.n−k
“r2

(k1k−k
1,.
k )>

3, B

— J1+J2+J3.

By (8.3) and the inductive assumption on the Vk,

J1 [M0 C
n−1

k=1
||k1k−k

1,.
k ||3, B >

“
2Vn−k
“r2

−
“
2V.n−k
“r2
>
3, B

[M0 C
n−1

k=1
(CC0)2

Hk−1

k2
Hn−k−1

(n−k−1)2
[M0A0(CC0)2

Hn−2

n2
.

The terms J2, J3 are estimated in the same way. Hence

> C
n−1

k=1
k1k
“
2Vn−k
“r2

− C
n−1

k=1
k1,.k (r)

“
2V.n−k
“r2
>
3, B

[ 3M0A0(CC0)2
Hn−2

n2
.

We can also easily establish the bound

> C
n−1

k=1
k1,.k (r)

“
2V.n−k
“r2
>
H3(1, d)

[ C1(CC0)2
Hn−2

n2

for some universal constant C1.
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We can next proceed in the same way to estimate the terms in F3
n, which

involve the k jk for j=2, 3, ..., 9, and thus conclude that the estimates (8.10)
are valid.

The functions F1
n and F2

n can be treated in the same way as F3
n, and each

of the G j
n, as well as H1

n and H2, ±
n , can similarly be estimated in

‘‘appropriate’’ norms; the ‘‘appropriate’’ norms are precisely those needed
in the assumptions of Lemma 6.1. (In estimating the G j

n we use Lemma
10.4.) We can now apply Lemma 6.1 to the system (5.5)–(5.17); the right-
hand sides in (6.18), (6.19) are bounded by C2C0Hn−2/n2, where C2 is a
constant independent of n and H. We conclude that if H is sufficiently
large (so that CC2/H < 1) then the estimates (8.1), (8.2) hold. This
completes the proof of Lemma 8.2. L

Lemma 8.2 establishes the existence of a unique global solution:

Theorem 8.3. If l0 ¥H5(“B) and |e| [ e0 for some positive and suffi-
ciently small e0, then there exists a unique solution (l, P, U, V) to problem
(T) having the form (5.1)–(5.4) with

||l−l.e ||5 12, “B+||lt ||4 12, “B+||P−P
.

e ||4, B+||U||5, B+||V−V
.

e (r)||5, B <.,
(8.11)

where l.e , P
.

e are constants

l.e =C
.

n=1
l.n e

n, P.e =C
.

n=1
P.n e

n, (8.12)

V.e (r)=C
.

n=1
V.n (r) e

n, (8.13)

and the series (5.1)–(5.4) and (8.12), (8.13) are uniformly convergent for
d [ r [ 1, 0 [ h [ 2p, |e| [ e0 and 0 [ t [ T, for any T > 0.

9. THE MAIN RESULTS

Reversing the transformation (4.1) we obtain the following result:

Theorem 9.1. If l0 ¥H5(“B) and |e| [ e0 then problem (A) has a unique
global solution with free boundary

r=1+l(h, t, e),
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where l(h, t, e) has the form (5.1) where the series is uniformly convergent
for |e| [ e0 and

||l−l.e ||5 12, “B+||lt ||4 12, “B <.; (9.1)

l.e is a convergent power series as in (8.12); furthermore,

p(r, h, t, e)Q s, ur(r, h, t, e)Q 0, uh(r, h, t, e)Q mer (9.2)

exponentially fast as tQ., where

p

2
me(1+l

.

e )
4=M. (9.3)

Proof. The only assertion that needs to be proved is that the limits of p
and uh, as tQ., are as asserted in (9.2), (9.3), but this follows by noting
that the limit of the solution, as tQ., is the special solution with free
boundary r=1+l.e ,

p=s, ur=0, uh=Cr,

where C is a constant determined by the constraint

F
{r < 1+l.e }

ruh dx=M. L

Remark 9.1. If l0 ¥H5+m(“B) then we can differentiate the system
(5.5)–(5.16) up to m times with respect to h, and each time, apply
inductive estimates as before. In particular, if l0 ¥ C.(“B) then the
solution to problem (T) is also in C. in (h, e). Using the differential
equations for P, U, V we deduce that the solution is C. in (r, h, e).

Remark 9.2. In the above analysis we have used norms with two
t-derivatives. If l0 ¥ C. we can extend the analysis with norms

1F.
0
e2at C

s

j=0
||D j

tF||
2
Hs−j 2

1/2

for any s, and thus conclude that the solution is in C. in (r, h, t, e).
Finally, if l0(h) is analytic in h, then we can establish, inductively on n,

estimates of the form

1
k!
[||Dk

h(ln−l
.

n )||5 12, “B+||D
k
hln, t ||4 12, “B+||D

k
h(Pn−P

.

n )||4, B

+||Dk
hUn ||5, B+||D

k
h(Vn−V

.

n (r))||5, B] [ C0
Ak−1Hn−1

(k+n)2

258 FRIEDMAN AND REITICH



for all k, for some positive constants C0, A, H with A/H° 1. (cf. Remark
7.1 in [3]). This implies joint analyticity in (x, e) both for the solution of
problem (T) and of problem (A) (cf. [3]).

By combining Remarks 9.1 and 9.2 we obtain the following result.

Theorem 9.2. (i) If l0 ¥ C. then the solution of problem (A) is in C. in
(x, t, e) for x ¥ W(t), 0 [ t <., |e| [ e0; (ii) If l0(h) is analytic then the
solution is also analytic in (x, e) for x ¥ W(t), |e| [ e0 and any t \ 0.

10. APPENDIX

Lemma 10.1 [3]. Let D be a domain in Rd and let || || denote a norm for
functions defined in D such that

||fg|| [M0 ||f|| ||g||

for some constantM0 \ 1. Let

m(x, e)=C
n \ 1
mn(x) en, x ¥ D,

where

||mn(x)−m
.

n || [ C0
Hn−1

n2
, |m.n | [ C0

Hn−1

n2

for some constants m.n , C0, H. For G(s)=sN, where N is any positive integer,
set

G(m(x, e))=1 C
n \ 1
mn(x) en2

N

= C
n \N
FN
n (x) e

n

and

1 C
n \ 1
m.n e

n2N= C
n \N
FN,.
n en.

Then there exists a universal constant A0 such that

|FN,.
n | [ C0(C0A0)N−1

Hn−N

n2
, n \N,

||FN
n −F

N,.
n || [ C0(C0A0M0)N−1

Hn−N

n2
, n \N.
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Lemma 10.2. Let || ||s, B, || ||s, “B be defined as in (6.14), (6.15) with s \ 2.
Then there exists a constant C(s) depending only on s such that for any
function

F(r, h, t)=j(h, t) k(r)

there holds

||F||s, B [ C(s) ||j||s, “B ||k||Hs(d, 1).

The proof follows by the Sobolev imbedding, since the L.(W)-norm is
bounded by the H2(W) norm if W is a bounded domain in R3.

Lemma 10.3. Let

F(r, m)=C
n \ 1

Fn(r) mn,

where

||Fn ||Hs(d, 1) [ Bn for some constant B > 0

and s \ 2, and let

l(h, t, e)=C
n \ 1
ln(h, t) en

satisfy

|l.n |, ||ln−l
.

n ||s, “B [ C0
Hn−1

n2
, n \ 1.

Then

F(r, l(h, t, e))=C
k \ 1
jk(r, h, t) ek,

where

||jk(r, h, t)−j
.

k (r)||s, B [ 2BC0C(s)
Hk−1

k2
,

|j.k (r)|Hs(d, 1) [ 2BC0
Hk−1

k2

provided H> 2C0A0BM0.
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Proof. Using Lemma 10.1 we can write

lN= C
n \N
FN
n (h, t) e

n

and

1 C
n \ 1
l.n e

n2N= C
n \N
FN,.
n (h, t) en,

where

||FN
n −F

N,.
n ||s, “B [ C0(C0A0M0)N−1

Hn−N

n2

and

|FN,.
n | [ C0(C0A0)N−1

Hn−N

n2
.

Then we have

F(r, l(h, t, e))=C
n \ 1

Fn(r) ln=C
n \ 1

Fn(r) C
k \ n
Fn
k(h, t) e

k

=C
k \ 1
ek 1 C

k

n=1
Fn(r) F

n
k(h, t)2 .

Thus

jk(r, h, t)=C
k

n=1
Fn(r) F

n
k(h, t),

j.k (r)=C
k

n=1
Fn,.
k Fn(r),

and

||jk−j
.

k ||s, B [ C
k

n=1
||Fn(r)(F

n
k−F

n,.
k )||s, B.
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Using Lemma 10.2, we get

||jk−j
.

k ||s, B [ C(s) C
k

n=1
||Fn ||Hs(d, 1) ||F

n
k−F

n,.
k ||s, “B

[ C(s) C
k

n=1
BnC0(C0A0M0)n−1

Hk−n

k2

[ BC0C(s)
Hk−1

k2
C
k

n=1

1C0A0M0B
H
2n−1 [ 2BC0C(s)

Hk−1

k2

provided H> 2C0A0M0B. Similarly,

||j.k ||Hs(d, 1) [ C
.

n=1
|Fn,.

k | ||Fn ||Hs(d, 1)

[ C
k

n=1
BnC0(C0A0)n−1

Hk−n

k2
[ 2BC0

Hk−1

k2

if H> 2C0A0B. L

In the special case where the function F is independent of r, Lemma 10.3
takes the form

Lemma 10.4 [3]. Let

F(m)=C
n \ 1

Fnmn where |Fn | [ Bn

for some constant B and let l be as in Lemma 10.3. Then

F(l(h, t, e))=C
k \ 1
jk(h, t) ek,

where

||jk−j
.

k ||s, “B [ 2BC0
Hk−1

k2

and

|j.k | [ 2BC0
Hk−1

k2
,

provided H \ 2C0BA0M0.
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7. V. A. Solonnikov, On the quasistationary approximation in the problem of evolution
of an isolated liquid mass, in ‘‘Free Boundary Problems: Theory and Applications I’’
(N. Kenmochi, Ed.), pp. 327–342, Gakkotosho, Tokyo, 2000.

8. S. Whitaker, ‘‘Introduction to Fluid Mechanics,’’ Krieger, Malabar, FL, 1981.

QUASISTATIC MOTION OF A CAPILLARY DROP 263


	1. THE PROBLEM
	2. REFORMULATION IN POLAR COORDINATES
	3. REDUCTION TO A TRUNCATED DOMAIN
	4. THE TRANSFORMED PROBLEM
	5. THE INDUCTIVE SYSTEM
	6. A FUNDAMENTAL LEMMA
	7. A FUNDAMENTAL LEMMA (CONTINUED)
	8. CONVERGENCE
	9. THE MAIN RESULTS
	10. APPENDIX
	REFERENCES

