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Abstract

We study nonlinear dynamics in models of Lorentz-violating massive gravity. The Boulware—Deser instability restricts
severely the class of acceptable theories. We identify a model that is stable. It exhibits the following bizarre but interesting
property: there are only two massive propagating degrees of freedom in the spectrum, and yet long-range instantaneous inter-
actions are present in the theory. We discuss this property on a simpler example of a photon with a Lorentz-violating mass term
where the issues of (a)causality are easier to understand. Depending on the values of the mass parameter these models can eitt
be excluded, or become phenomenologically interesting. We discuss a similar example with more degrees of freedom, as well
as a model without the long-range instantaneous interactions.

0 2005 Elsevier B.\MOpen access under CC BY license.

1. Introduction and summary Problem 1 (Linear discontinuity. Known as the van
Dam-\Veltman—Zakharov (vDVZ) discontinuif®,4].
d To understand this problem let us ignore for the
time being all possible nonlinear self-interactions of
a spin-2 field. The Lagrangian of this theory with-
out ghosts and tachyons was uniquely determined by
Fierz and Pauli (FP)5]. Irrespective of the details
of the Lagrangian, Lorentz invariance dictates that a
massive spin-2 state has to have five physical polar-
izations, as opposed to a massless graviton with only
two polarizations. This is what gives rise to the vDVZ
discontinuity: one out of the extra three degrees of
freedom couples to the trace of the stress-tensor, and,

Models of a massive/metastable graviton coul
shed some light on the cosmological constant problem
(see, e.g[1]). Given the ultraviolet problems of grav-
ity, provisionally, one would like to find a model that
could be regarded as a classically and quantum me-
chanically consistent low-energy effective field theory
(for a description of gravity as an effective theory see
Ref.[2]). In searching for such a theory, that could also
preserve Lorentz invariance in four dimensions, one
typically encounters the following three major prob-

lems: . . .
no matter how small the graviton mass, gives rise to
experimentally unacceptable predictions either for the
E-mail addressgg32@nyu.ed(G. Gabadadze). light bending by the Sun or for Newtonian interac-
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tions. Thus, the FP Lagrangian givegteeoretically field and obtain that the Hamiltonian contains the term
consistent model of a massive spin-2 state without —((3;¢)2 + (V¢)2)2/2m3¢, which is sign-indefinite
self-interactions, however, if this spin-2 state is de- and unbounded below. This shows the essence of the
clared to be a graviton, the model is in contradiction BD instability in an oversimplified model (for com-
with observations. plete treatment, see Secti@h In this toy model the
problem can be cured by adding new terms into the
Problem 2 (Strong coupling The above arguments  Hamiltonian. One might hope for a similar remedy in
were based on the linearized approximation. In a the- the FP theory. Indeed, a nonlinear completion of the
ory of gravity we should take into account nonlin- FP gravity is not unique and, in any event, one should
earities. It was first observed by VainshtdB] that expect quantum loops to generate all sorts of new non-
the arguments leading to the vDVZ discontinuity fail linear terms. There are examples of nonlinear systems
once the nonlinear interactions are taken into account. where certain classical instabilities are removed by
This is because linearized approximation breaks down, quantum-loop-generated terrslowever, to the best
and, to make predictions within the Solar System one of our knowledge, there is no evidence for this to be
should either solve the nonlinear equations exactly, or happening in the FP model. In particular: (a) the worst
come up with an alternative viable approximation. The part of the BD instability exists because of then-
latter two approaches can restore the consistency oflinear interactions between the tensor sector of the
the predictions of classical massive gravity with ob- conventional Einstein—Hilbert Lagrangian and the ex-
servationg6,7]. The breakdown of the linearized ap- tra polarizations of a massive graviton that are only
proximation takes place because of the nonlinear but present in the mass term (i.e., the Nambu—-Goldstone
classical self-interactions of the extra polarizatiffis (NG) sector of massive gravity). (b) It was shown in
This suggests a problem for quantum theory where Refs.[11,12]that the BD type instabilities persist for
the same nonlinear interactions appear in the loop dia- an arbitrary polynomial in fields completion of the
grams, leading eventually to a very low ultraviolet cut- FP gravity. Note that these terms include all sorts of
off [8] for a quantum graviton scattering on an empty derivatives of the Nambu—Goldstone boson. (c) One
background. Moreover, quantum loops are expected might hope that these instabilities go away once the
to generate higher-dimensional operators that are sup-terms that contain derivatives of fields are included.
pressed only by this observationally unacceptable low However, this would require an infinite number of fine
cutoff [8]. Note that in a theory of gravity a cutoff has tunings for which no symmetry principle is known in
no universal meaning. For instance, for graviton scat- the four-dimensional contextThe unstable solutions
tering in a background of classical sources the physi- found in Ref[1] were of a cosmological type. It would
cal cutoff would depend on local curvature invariants. be interesting to conduct similar studies for spatially
This in principle could be used to try to overcome the inhomogeneous localized sources.
strong coupling problem (along the lines[8f10]) if
the model were consistent otherwise. This brings usto  symmarizing, the BD instability is the most se-

_ _ N the very consistency of a theoretical model itself. So
Problem 3 (Nonlinear instability. Also known as  far no concrete cure was proposed in the context of a
the Boulware—Deser (BD) instability. From our stand- | grentz-invariant local field theory with a finite num-

point, clarified below, this is the most severe prob- per of degrees of freedom and without an infinite num-
lem. It emerges already at thelassical level. To

quickly sketch the essence of the BD instability one

can look at a scalar field model with the Hamiltonian 1 For instance, some models exhibit chaotic behavior at the clas-

H = (3,;0)%2 4 (V)2 + m2p% + 0 (3;)% + (V)?) + sicgl level while the chaos is eliminated by quantum corrections.

m362¢/2. In the quadratic approximation this de- ‘ One can also try to modify the linear part of the FP thegry
. . . by introducing heavy states at the UV cutoff of the theory. Explicit

scribes a s!ngle free §c§1|ar flleid However, becal_Jse calculations, similar to those of Secti@hshow that the rapid BD

of the nonlinear (cubic in this case) terms the insta- jnstability persists in this case too. We thank Nima Arkani-Hamed

bilities set in. One can simply integrate out the for suggesting to study this question.
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ber of fine tunings. Surely, a consistent theory of non- in [19] in the linearized approximation, see a[20].)
linearly interacting massive spin-2 should exist, it just The second class of the BD stable models contains all
has not been formulated yet. Therefore, until shown the massive degrees of freedom and no long-range in-
otherwise, we will assume that the models with the teractions. However, the issue of radiative corrections
DB instability should be avoided. for these models remain open, without an infinite num-
In an ideal case, one would like to have a model in ber of fine tunings, these models are likely to exhibit
which all the above three problems are absent. How- the instabilities at the quantum level.
ever, if one should compromise betweeroblems 1, The work is organized as follows. In Secti@nas
2, and 3 as it will be the case in one particular exam- an instructive example, we discuss a Lorentz-violating
ples below, our approach will be to worry first of all theory of a massive photon. This model contains only
about theProblem 3This is becausBroblems 1 and,2 massive propagating degrees of freedom (two massive
although unpleasant from the point of view of practi- polarizations of an electromagnetic wave), and never-
cal calculations, can be taken care of consistently. For theless, there are long-range instantaneous interactions
instance, in the DGP mod§lL3] these problems are in the theory. We briefly discuss whether this type of
solved at the classicgV] as well as at the quantum models can be consistent with observations. In Sec-
level[9,10].3 tion 3 we overview the BD instability in the FP theory
Recently, a new approach to massive gravity was and show how it also appears in the LV models. In
initiated in Ref[17]: the idea is to give up Lorentz in-  Section4, first we discuss a model that has no BD
variance which could be spontaneously broken when instability and propagates only two massive degrees
graviton acquires its masgl7]. Subsequently, in  of freedom (transverse polarizations of gravitational
Ref. [18] a general parametrization of the Lorentz- waves). We study the long-range interactions in this
violating (LV) graviton mass term was proposed and model, showing that there is no vDVZ discontinu-

the models evading tHeroblems 1 and #ere identi- ity. Finally we discuss two other models, one with 5
fied. More general studies of the proposali8] were massive degrees of freedom and the long-range inter-
performed in Ref[19]. The discussions in Ref18] actions, and another one with six degrees of freedom

were restricted to the linearized theory. The purpose where all the interactions are screened.

of the present work is to study a complete nonlin-

ear dynamics in the models with the LV mass terms,

and in particular address thiroblem 3 We will find 2. Warming up with photons

that many of the LV mass models suffer from the BD

instability. However, there are at least two classes of  As a toy but very interesting example we consider
models that can evade the problem. The first class ex- QED with Lorentz-violating mass term for a phofon
hibit surprising properties: even though there are only (for convenience we call it QED

massive propagating degrees of freedom, the models 1

exhibits a long-range instantaneous interactions. This £ =—=F, ,F*" — —mZAjA-’ — AL JH, 1)
could be phenomenologically deadly or interesting de- 4 2

pending on the value of the graviton mass. It is very Whereu,v =0,1,2,3,i,j =1,23; J* is a con-
likely that the properties of some of these models will served currend”J, = 0, and the mass term breaks ex-
not be affected by radiative corrections since they are Pplicitly the Lorentz group down to the group of three-
protected by certain symmetries. (A different model dimensional spatial rotatior8Q(3) (our choice of the

but with somewhat similar properties was discussed Lorentzian signature i§—+++]). One could think
of this model as arising from a Lorentz-invariant the-

ory in which certain fields acquire Lorentz-violating

3 We also note that there exist models that havé®rablems 2 VEV’'s (see, e.g9.[17,22). These VEV's set a pre-
or 3 [14,15] however they exhibit the vDVZ discontinuity. A ver-
sion of [13] discussed irj16] could potentially evade all the prob- -
lems in the weak coupling regime, however some nonlinear issues 4 Michele Papucci and Matthew Schwartz also studied this
should still be understood in that approach (see the discussions sec-model for a photon. We thank Matthew Schwartz for communica-
tion in [16]). tions on this.
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ferred frame in the Universe in which the modg) dependent sources. The remaining instantaneous field

is defined. is small for transverse sources with a typical momen-
The Lagrangiar{l) is invariant under spatially in-  tum/frequency scales> m, but can become essential

dependent gauge transformations of the fiéldg = for scales< m generatingaction-at-a-distancero ex-

doA(t), 6A; = 0. Because of this and conservation of amine this question in detail we follow closely mass-
J, no new terms are generated by quantum loops in less QED inCoulomb gaugeln the latter case one

(1). The equations of motion of the model are postulateg4) as a gauge condition. As a result of this
25i /
aUFu,u —m (SLA[ = J/”" (2) AO(V, t) — i/d3r/ JO(r ’ t) , (6)
4 |r —r’|

There are two key properties that follow fro(R). _ _ _ _
First, the zeros component of this equation implies that iS an instantaneous potential. The expresg@nis

the Gauss’s law is identical to that of QED: identical in QED and QED On the other hand, the
, equation for the vector potential differ in the two mod-

d’Ej=—Jo, ©)) els. The spatial part d2) reads:

whereE; = Fy; is an electric field andp is a charge (02— m?)A; = J; — 3;00A0 = J}r. @)

density. Hence, in QEDIike in QED, the electric field
is not screeneldSecond, taking the partial derivative of The mass term on the L.h.s. is present only in QED
both sides o{2) we find a Lorentz-violating analog of ~ but not in QED. Both in QED and QEDhe vector

the Proca condition potential A; has an instantaneous parts. In QED this
; part exactly cancel) in physical observables such
9 4; =0 (4) as the electric field£; = —9;Ag + oA ;. However,

As a result, there remain only two dynamical degrees this cancellation is not exact in QEDIo see this we

of freedom in the theoryAg is not dynamical and one ~ Write:

of the A;’s can be expressed though the other two 3, ., .. N AT

using (4). Both propagating degrees of freedom are 471 Z/d rdt Dr(r —rst —£)Jj (. 1),

massive. (8)
However, this is not all. We note th@t) coincides where the retarded Green’s function

with the Coulombgauge fixing condition of QED. Be-

. _ QED
cause of this, a free photon propagatotf Dg(rit)=Dg— + Dy
0 (2 =2
1 =_—-5(t°—
Doo(k) = = - (=79
. . I VRO i SN
D;j(k) = (8ij — = q ) 4 Z_:2
! Tk —k3+k2+m2 —ie d

is expressed through the step functnDirac delta
resembles a causal Coulomb gauge QED propagator.nction s, and Bessel functio” [21]. Note that the

The Fl’_hIZSi_CS OEfDQtIiD (1) is rz_zlthter ?ifferent,ChO\iv- , mass dependence in the Green’s functions is additive.
ever. Like in QED, there is an instantaneous Coulom We used this to denote the massless functio@ﬁﬁD

potenngl (the zero—zero component of the propaga- and the addition due to the mass termBf. Using
tor). This component has no imaginary part, hence, .
(9) we can write

there are no physical degrees of freedom mediating
the instantaneous potential. The spatial components, A (r, 1) = AP (r, 1)

on the other hand, have an imaginary part. This cor- !

responds to the two physical degrees of freedom. Un- + / d3'dt D (r —r's 1 — t/)J]t-r(r’, ),
like in QED, in the present case both of these degrees (10)

of freedom are massive. This has a dramatic conse-

quence: as we will see shortly, the instantaneous po- where AQED(r, t) is a vector potential of massless
tential is not canceled in physical observables for time QED in Coulomb gauge. The latter, as we mentioned
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before, cancels the instantaneous scalar pote6)itd
produce theetardedelectric fieIdE?ED. Therefore,

Ej(r.t)=EF™(r.1)
+ BQ/d?’r’dt/ DR(r—rst—1)
x J' 1), (11)

and the instantaneous part is now contained only in
the last term of this expression. The latter can be cal-
culated as follows:

i /d?’k eiE? Re(ei«/kZerzt j}r(l‘c" m)

(2m)4

— TR, k1)), (12)
where
Tk, )= / d3r di & TG D, (13)

is the Fourier transform of the transverse current.

In general, the expressi@t2) is nonzero even for
t = 0. It appears that an information from an event that
took place at = 0, r = 0 caninstantaneouslie trans-
mitted to a point that is far away from this location.
This gives rise to the action-at-a-distance. The ques-
tion how important this instantaneous interaction is de-

G. Gabadadze, L. Grisa / Physics Letters B 617 (2005) 124-132

The presence of the long-range interactions can
also be understood from the Hamiltonian formulation
of (1) whereAg acts as a Lagrange multiplier:

1 2 1 2 1 242
HIEPJ» +§(6,’jk8jAk) +§m Aj
+ Ao(@;Pj — Jo)+ AjJ;. (14)

Here P; = Fo is the canonical momentum. Variation
W.r.t. Ag gives rise to the Gauss's law/ P; = Jo,
which is identical to the Gauss’s law of massless QED.
This guaranties that the theory possesses the long-
range interactions in spite of the fact that the two dy-
namical propagating degrees of freedom are maS$sive.

To summarize, there are two massive propagating
degrees of freedom, however, there still exists a long-
range instantaneous interaction in the theory. Depend-
ing on the value ofn this can exclude a given model,
or be potentially interesting for phenomenological ap-
plications.

One can of course modify the modél) by adding
a “mass term”’am?A3 with some nonzero positive
coefficienta. In this case the long-range interactions
are removed from the theory (= 1 corresponding
to a massive Lorentz-invariant photon). However, it is
worth pointing out thatr = 0 is an enhanced gauge
symmetry point and unlike the # O cases should be
stable under radiative correctiofs.

pends on properties of sources. For a transverse source

of a typical momentunig and typical frequencywg

the effect is negligible as long &g > m. Forkg < m

the effects can be appreciable wheg~ m or wg ~

ko. In this case the instantaneous electric field would
decay with distance as 1/r. If the source has no typ-
ical frequency, juts a typical momentum, then the in-
stantaneous interactions will be important figr« m,

and vice versa, for a source of a typical frequengy
and no typical momentum the dangerous interactions
will be present forwg < m. In practice, to produce a
low-momentum/frequency signal that could trigger the
instantaneous interaction, will itself take certain char-
acteristic time. It would be interesting to study the phe-
nomenology of these interactions for realistic sources
to put bounds om [23]. Note also that magnetic field
has no instantaneous parts in QEB = curlA and

the curl eliminates the instantaneous parﬁof

5 For simplicity(12)is written for a source such thadtk, —w) =
J (k, w). However, a general expression can readily be obtained.

3. Nonlinear instabilitiesin massive gravity

In this section we summarize how nonlinear insta-
bilities appear in a Lorentz-invariant theory of massive
gravity (the FP gravity]J11], and show that the simi-
lar instabilities exist in many of the LV mass models
once the nonlinear interactions are taken into account.
We will also find the conditions under which these in-
stabilities can be removed in a Lorentz-violating mas-
sive theory. In the latter case, however, one typically
ends up with long-range interactions, similar to those
studied in the previous section. In this respect the
theory is half-massive: all its degrees of freedom are
massive nevertheless there are long-range interactions.

6 The conditionafAj = 0 is obtained by taking a derivative of
one of the Hamiltonian equations of motion.

7 Thewa = 1 case is also stable because of the restored Lorentz
invariance and conservation of the current.
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One atypical example that evades the instabilities and N and N; appear linearly in the Hamiltonia(20).

long-range instantaneous interactions will be given at
the end of the next section.

We first review briefly the Hamiltonian construc-
tion of [11] to identify the terms that are responsible
for the instabilities. Then, we will remove these terms
in a Lorentz-violating theory. Let us start by a brief re-
minder of the ADM formalisn{24]. This would be a
natural formalism for nonlinear formulation of the LV
mass gravity. Consider a foliation of space—time by
hyper-surfaces; parametrized by a time variabte
The four-dimensional metric is replaced by the follow-
ing three-dimensional variables:

Yij = 8ij»

N = (_(4)goo)—1/2’

N; =Pgq. (15)

In terms of these variables the invariant interval takes
the form:

ds?=—(N? = N;N7)dt? + 2N, dx' dt

+ Vij dx’ dxj, (16)

Hence they are Lagrange multipliers variation w.r.t.
which gives the constraint®® = 0 and R = 0;
‘Hen = 0 on the surface of the constraints.

Let us now turn to massive FP gravity for which the
mass terms is written as

—Emz(hzu — h!*?)
1
=-3 m?[h? — h? — 2N? + 21(1— N? — N?)],

(22)
where the second equality is obtained by expressing
guv — Nuv interms ofy;;, N andN; (note that
hij = vij —nij, andh = y" h;;). The key role is played
by the terms in(22) which are quadratic inV and
N;. Because of these terni$ and N; ceases to be
Lagrange multipliers in the massive theory. Variations
w.r.t. N andN; lead to the following equations:

JYR®=2m?hN,
ﬁRi = 2m2(77ij

hyy =

—hy")N (23)

where all the spatial indices are contracted by means These are not constraint equations any more but serve

of the three-dimensional metrig;. N is called the
lapse function andv; is the shift function. With these
definitions

[—@g =Ny,

@R=PR+K;jKV - K?, 7)
whereKk;; is the extrinsic curvature of;

l _l .
Kij=§N [yij — ViN; — V;N;], (18)

andK is its trace. The extrinsic curvature is related to
the canonical momentum

SL
~ = JY(KV —
S V7 (

The Hamiltonian of the Einstein gravity in terms of the
above variables reads

7t K)/ij). (19)

Hew=m"y;; — L=y[NR°+ NiR'], (20)
where
1
RO = —(S)R + )/_1<7T,'A,'JT” — EJTZ),
R =-2v,(y~Y271). (21)

to determineN and N;. Substituting these solutions
into the full Ham|lton|an we obtain:

1 ((J7R%? o 1
4m { \/—h le(nzj_hyl]) R/

1
+ émz(hizj — h%+2h). (24)

This is a Hamiltonian of an ill-defined theory. The first
term on the r.h.s. is unbounded below and singular
in m and k. For instance, Conside\r/?R0 fixed and
R = 0; whenh — 0~ the term in the Hamiltonian
density’H ~ (/¥ R%?/(m?h) is not bounded below.
This demonstrates the presence of a ghost-like insta-
bility in the theory. This instability can manifest in
many ways even at thelassicallevel, and the time
scale of the instability can be very sht®]. Such a
theory is hard to make sense of.

The BD problem is associated with the terms that
in the linearized theory looks a@oh’ The mass term
of the model analyzed in RdfL8] is

M2
L, = TPI(W!%/’!%O-{- ZmEhgj —mj5 /’lz + m3h2

— 2m5hooh), (25)
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with mg = 0 and all the other mass parameters being
nonzero with a certain hierarchy between thg8].

A straightforward nonlinear completion of the mass
term (25) gives rise to the BD instability. This is be-
causehgp =1 — N2+ N2 and N ceases to be a La-
grange multiplier, as in tf]e FP gravity. While in the FP
model this instability cannot be removed in a Lorentz-
invariant fashion, in the present context Lorentz in-
variance is broken anyway, and nothing prevents us
to eliminate the dangerous term by judicially choosing
mg4 to be zero. This choice is a point of enhanced gauge
symmetry and should be stable under loop corrections.
However, the physics of the model withy = m4 =0

is dramatically different—there appear long-range in-
teractions. This will be discussed in detail in the next
section.

4. Stablemodels
4.1. Half-massive gravity

We consider a simple Lorentz-violating generaliza-

tion of the FP mass term:
1

ALy= —EmzﬁN(hizj —ah?), (26)
wherea is a constant. As before, all the indices are
contracted by;;. We think of this theory as being ob-
tained from a Lorentz-invariant model through sponta-
neous generation of a preferred frame, similar in spirit
to[17].

The total Hamiltonian in this case takes the form:

1 .
H= W[N(RO + Emz(hlzj - ah2)> + N,-R’].

(27)
The constraint equations that follow are:
1 .
R°= —Emz(hfj —ah?®), R =0. (28)

The Hamiltonian(27) on the surface of constraints
(28) is zero, just like in the Einstein theory, hence,
the BD instability is gone. The modé26) is invari-
ant in the linearized approximation under coordinate-
independent gauge transformatiodvs;,, = 9,,¢, (r) +
8,2, (1), as well as under the transformations with a
gauge functiont, = (£o(t,x),§; = 0) (at the non-
linear level there is a symmetry w.r.t. the spatially

G. Gabadadze, L. Grisa / Physics Letters B 617 (2005) 124-132

independent transformations). Due to this, we expect
that the properties of this model will stay stable under
quantum loop corrections.

Let us now couple this theory to matter. T{&O}
component of the equation of motion takes the form
(we use the unitdfp; = 1):

(29)

15
2m
The {0;} equations are identical to those of the Ein-
stein theory and read a®; = 2Tp;. Finally, the{i;}
equations are:

RO + (hlzj — ahz) = Too.

Gij + %mz(h,-j — aSijh) =T;j. (30)

We see that in the linearized theory t{@®} equation
(29) is also identical to the linearized massless Ein-
stein equation. Therefore, it is only th&} equation
that differentiate$26) from the Einstein gravity in the
linearized approximation. Because of this one should
expect the vDVZ discontinuity to be absent. This can
be checked in a rigorous way. Let us follow the de-
composition of Ref[18]:

hoo= 1, (31)
hoi = u; + 9;v, (32)
hij = xij +0isj +0;0j0 + &, (33)

wherey;; is a transverse-traceless tensgris a trans-
verse vector while the other fields are scalars. The
gauge invariant combinations are: a tenggr, a vec-

tor w; = u; — dps;, and two scalars and® = —
200V + aga. The conventional coupling to a conserved
matter stress-tensar,, 7#" can be written in terms of

these invariants:
Xijnj—ijToj—}—(DToo—l-‘L'Tjj. (34)

Solving the corresponding linearized equations for
a # 1 we find:

1

— tt
el %)
1 1
T=ZTOO, wj=Z 0j» (36)
1 3.,
d = A Tj; + Too— ZaoToo
1-3a
T 2a—az" T 37
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(Here Tlfj’ stands for a transverse-traceless part of the Solving(41)for N’ and substituting the result H we
tensor.) These expressions give exactly the fields of the find the Hamiltonian

Einstein theory in the limit: — 0. Therefore, there is
no vDVZ discontinuity. Note that the only propagat-
ing degrees of freedom are two polarizations of the
transverse-traceless tensgf. The spectrum is free

R2
_ i
M=V gze

which is positive semidefinite as long as- 0. This

(42)

of ghost and tachyons. Similar properties have been model also has no vDVZ discontinuity. The calcula-

found previously in a stimulating wor20], where a
somewhat different model was discus$ed.

tions are similar to those presented above but more te-
dious, the spectrum contains no ghost of tachyons. The

On the other hand, the above system exhibits the Massless limit 0o{39) is regular and one recovers in

same type of instantaneous interactions as Q&
cussed in SectioB. This is because the instantaneous

this limit the Einstein gravity. Moreover, the theory is
symmetric w.r.t. spatially independent transformations

parts cannot be exact|y canceled as |0ng as there isof the time variable, and, exhibits the instantaneous in-

a mass term in the denominator @5). However, as

teractions. Further interesting properties of this model

we discussed in the gauge field case, these instantaWill be discussed ifi23].

neous interactions can only be probed by very low-

One can also evade the BD instability and the pres-

momentum/frequency sources. It would be interesting €nce of the long-range interactions by adding into the

to study the phenomenology of this mogi23].
4.2. More degrees of freedom

A generalization of the above model can be ob-
tained by adding t¢26) a mass term fol;:

ALy =cm? Y N?,

wherec is a constant. Doing so we add three additional
degrees of freedom to the theory. The Hamiltonian
now takes the form:

1
H= ﬁ[N(ROJr Em2

(38)

(hf; = ah2)>

+ Ni(R" — m%N' )}. (39)
The corresponding constraint equations are:
1
0 2(;,2 2
R = —Em (hij —ah ) (40)
R' =2m?cN'. (41)

As long asc # 0 the only true constraint igl0), since

(41) does not restrict the number of propagating de-
grees of freedom but acts as an algebraic equation

determiningN/. Therefore, this counting tells us that
the number of propagating degrees of freedom is five.

8 However, nonlinear stability of the model of R§20], which
is a suspect in the context of the discussions of our Se&idras
not been studied in Ref20].

Lagrangian yet another term

ALz =m? /7 P2(N), (43)

whereP>(N) is a polynomial inV of degree 2, namely
P>(N) = co + c1N + c2N2. We require that there
are no constant and linear terms in the linearized La-
grangian. This gives the relationg+ ¢1 + ¢2 = 0 and

¢2 + 3c1=0, with a solutionc; = —2co andez = co.
Hence,P>(N) = co(N — 1)2. The Hamiltonians of the
system is that of the previous examples plus the new
term AH = —mzﬁPg(N). The resulting constraint
equations are:

1
RO+ Emz(hizj — ah?) =m?Py(N), (44)
= 2m2cN'. (45)

Solving the constraints w.r.v and N’ we obtain

N RO+ 2(h2 — ahz) + ZCom2 46
B 2com? ’ (46)
. R!

N' = ——, 47
2mzc ( )

and the Hamiltonian

(Rinog)”

) 48
H= \/_|: °d+ 4co deom? 4mzcj| (48)

where R% ;= R® + 3 2(h2 — ah®). The above
Hamiltonian is not necessarlly positive semidefinite,
however, itis bounded from below as longeagg > 0.
There are six degrees of freedom propagating in this
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model. This could exclude the model based on the
Solar System data. However, it is not impossible to
imagine that the nonlinear effects suppress the cou-
plings of the extra polarizations to matter at observable
distances, in analogy wiff7,25]. A more serious prob-
lem of the model43) is the absence of a symmetry
principle that would guarantee the stability w.r.t. quan-
tum corrections.
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