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Abstract

We study nonlinear dynamics in models of Lorentz-violating massive gravity. The Boulware–Deser instability r
severely the class of acceptable theories. We identify a model that is stable. It exhibits the following bizarre but int
property: there are only two massive propagating degrees of freedom in the spectrum, and yet long-range instantan
actions are present in the theory. We discuss this property on a simpler example of a photon with a Lorentz-violating m
where the issues of (a)causality are easier to understand. Depending on the values of the mass parameter these mode
be excluded, or become phenomenologically interesting. We discuss a similar example with more degrees of freedom
as a model without the long-range instantaneous interactions.
 2005 Elsevier B.V.Open access under CC BY license.
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1. Introduction and summary

Models of a massive/metastable graviton co
shed some light on the cosmological constant prob
(see, e.g.,[1]). Given the ultraviolet problems of grav
ity, provisionally, one would like to find a model th
could be regarded as a classically and quantum
chanically consistent low-energy effective field theo
(for a description of gravity as an effective theory s
Ref.[2]). In searching for such a theory, that could a
preserve Lorentz invariance in four dimensions, o
typically encounters the following three major pro
lems:

E-mail address:gg32@nyu.edu(G. Gabadadze).
0370-2693 2005 Elsevier B.V.
doi:10.1016/j.physletb.2005.04.064

Open access under CC BY license.
Problem 1 (Linear discontinuity). Known as the van
Dam–Veltman–Zakharov (vDVZ) discontinuity[3,4].
To understand this problem let us ignore for t
time being all possible nonlinear self-interactions
a spin-2 field. The Lagrangian of this theory wit
out ghosts and tachyons was uniquely determined
Fierz and Pauli (FP)[5]. Irrespective of the detail
of the Lagrangian, Lorentz invariance dictates tha
massive spin-2 state has to have five physical po
izations, as opposed to a massless graviton with o
two polarizations. This is what gives rise to the vDV
discontinuity: one out of the extra three degrees
freedom couples to the trace of the stress-tensor,
no matter how small the graviton mass, gives rise
experimentally unacceptable predictions either for
light bending by the Sun or for Newtonian intera
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tions. Thus, the FP Lagrangian gives atheoretically
consistent model of a massive spin-2 state with
self-interactions, however, if this spin-2 state is d
clared to be a graviton, the model is in contradict
with observations.

Problem 2 (Strong coupling). The above argument
were based on the linearized approximation. In a t
ory of gravity we should take into account nonli
earities. It was first observed by Vainshtein[6] that
the arguments leading to the vDVZ discontinuity f
once the nonlinear interactions are taken into acco
This is because linearized approximation breaks do
and, to make predictions within the Solar System o
should either solve the nonlinear equations exactly
come up with an alternative viable approximation. T
latter two approaches can restore the consistenc
the predictions of classical massive gravity with o
servations[6,7]. The breakdown of the linearized a
proximation takes place because of the nonlinear
classical self-interactions of the extra polarizations[7].
This suggests a problem for quantum theory wh
the same nonlinear interactions appear in the loop
grams, leading eventually to a very low ultraviolet c
off [8] for a quantum graviton scattering on an em
background. Moreover, quantum loops are expec
to generate higher-dimensional operators that are
pressed only by this observationally unacceptable
cutoff [8]. Note that in a theory of gravity a cutoff ha
no universal meaning. For instance, for graviton sc
tering in a background of classical sources the ph
cal cutoff would depend on local curvature invarian
This in principle could be used to try to overcome t
strong coupling problem (along the lines of[9,10]) if
the model were consistent otherwise. This brings u
the issue of a nonlinear instability of the FP model.

Problem 3 (Nonlinear instability). Also known as
the Boulware–Deser (BD) instability. From our stan
point, clarified below, this is the most severe pro
lem. It emerges already at theclassical level. To
quickly sketch the essence of the BD instability o
can look at a scalar field model with the Hamiltoni
H = (∂tφ)2 + (∇φ)2 + m2φ2 + σ((∂tφ)2 + (∇φ)2) +
m3σ 2φ/2. In the quadratic approximation this d
scribes a single free scalar fieldφ. However, becaus
of the nonlinear (cubic in this case) terms the ins
bilities set in. One can simply integrate out theσ
field and obtain that the Hamiltonian contains the te
−((∂tφ)2 + (∇φ)2)2/2m3φ, which is sign-indefinite
and unbounded below. This shows the essence o
BD instability in an oversimplified model (for com
plete treatment, see Section3). In this toy model the
problem can be cured by adding new terms into
Hamiltonian. One might hope for a similar remedy
the FP theory. Indeed, a nonlinear completion of
FP gravity is not unique and, in any event, one sho
expect quantum loops to generate all sorts of new n
linear terms. There are examples of nonlinear syst
where certain classical instabilities are removed
quantum-loop-generated terms.1 However, to the bes
of our knowledge, there is no evidence for this to
happening in the FP model. In particular: (a) the wo
part of the BD instability exists because of thenon-
linear interactions between the tensor sector of
conventional Einstein–Hilbert Lagrangian and the
tra polarizations of a massive graviton that are o
present in the mass term (i.e., the Nambu–Golds
(NG) sector of massive gravity). (b) It was shown
Refs.[11,12] that the BD type instabilities persist fo
an arbitrary polynomial in fields completion of the
FP gravity. Note that these terms include all sorts
derivatives of the Nambu–Goldstone boson. (c) O
might hope that these instabilities go away once
terms that contain derivatives of fields are includ
However, this would require an infinite number of fi
tunings for which no symmetry principle is known
the four-dimensional context.2 The unstable solution
found in Ref.[1] were of a cosmological type. It woul
be interesting to conduct similar studies for spatia
inhomogeneous localized sources.

Summarizing, the BD instability is the most s
vere problem: unlikeProblems 1 and 2, it questions
the very consistency of a theoretical model itself.
far no concrete cure was proposed in the context
Lorentz-invariant local field theory with a finite num
ber of degrees of freedom and without an infinite nu

1 For instance, some models exhibit chaotic behavior at the c
sical level while the chaos is eliminated by quantum corrections

2 One can also try to modify the linear part of the FP the
by introducing heavy states at the UV cutoff of the theory. Expl
calculations, similar to those of Section3, show that the rapid BD
instability persists in this case too. We thank Nima Arkani-Ham
for suggesting to study this question.
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ber of fine tunings. Surely, a consistent theory of n
linearly interacting massive spin-2 should exist, it ju
has not been formulated yet. Therefore, until sho
otherwise, we will assume that the models with
DB instability should be avoided.

In an ideal case, one would like to have a mode
which all the above three problems are absent. H
ever, if one should compromise betweenProblems 1,
2, and 3, as it will be the case in one particular exa
ples below, our approach will be to worry first of a
about theProblem 3. This is becauseProblems 1 and 2,
although unpleasant from the point of view of prac
cal calculations, can be taken care of consistently.
instance, in the DGP model[13] these problems ar
solved at the classical[7] as well as at the quantum
level [9,10].3

Recently, a new approach to massive gravity w
initiated in Ref.[17]: the idea is to give up Lorentz in
variance which could be spontaneously broken w
graviton acquires its mass[17]. Subsequently, in
Ref. [18] a general parametrization of the Loren
violating (LV) graviton mass term was proposed a
the models evading theProblems 1 and 2were identi-
fied. More general studies of the proposal of[18] were
performed in Ref.[19]. The discussions in Ref.[18]
were restricted to the linearized theory. The purp
of the present work is to study a complete nonl
ear dynamics in the models with the LV mass term
and in particular address theProblem 3. We will find
that many of the LV mass models suffer from the B
instability. However, there are at least two classes
models that can evade the problem. The first class
hibit surprising properties: even though there are o
massive propagating degrees of freedom, the mo
exhibits a long-range instantaneous interactions. T
could be phenomenologically deadly or interesting
pending on the value of the graviton mass. It is v
likely that the properties of some of these models w
not be affected by radiative corrections since they
protected by certain symmetries. (A different mod
but with somewhat similar properties was discus

3 We also note that there exist models that have noProblems 2
or 3 [14,15], however they exhibit the vDVZ discontinuity. A ve
sion of [13] discussed in[16] could potentially evade all the prob
lems in the weak coupling regime, however some nonlinear is
should still be understood in that approach (see the discussions
tion in [16]).
-

in [19] in the linearized approximation, see also[20].)
The second class of the BD stable models contain
the massive degrees of freedom and no long-rang
teractions. However, the issue of radiative correcti
for these models remain open, without an infinite nu
ber of fine tunings, these models are likely to exh
the instabilities at the quantum level.

The work is organized as follows. In Section2, as
an instructive example, we discuss a Lorentz-violat
theory of a massive photon. This model contains o
massive propagating degrees of freedom (two mas
polarizations of an electromagnetic wave), and ne
theless, there are long-range instantaneous interac
in the theory. We briefly discuss whether this type
models can be consistent with observations. In S
tion 3 we overview the BD instability in the FP theo
and show how it also appears in the LV models.
Section4, first we discuss a model that has no B
instability and propagates only two massive degr
of freedom (transverse polarizations of gravitatio
waves). We study the long-range interactions in t
model, showing that there is no vDVZ discontin
ity. Finally we discuss two other models, one with
massive degrees of freedom and the long-range in
actions, and another one with six degrees of freed
where all the interactions are screened.

2. Warming up with photons

As a toy but very interesting example we consid
QED with Lorentz-violating mass term for a photo4

(for convenience we call it QED′)

(1)L= −1

4
FµνF

µν − 1

2
m2AjA

j − AµJµ,

where µ,ν = 0,1,2,3, i, j = 1,2,3; Jµ is a con-
served current∂µJµ = 0, and the mass term breaks e
plicitly the Lorentz group down to the group of thre
dimensional spatial rotationsSO(3) (our choice of the
Lorentzian signature is[−+++]). One could think
of this model as arising from a Lorentz-invariant th
ory in which certain fields acquire Lorentz-violatin
VEV’s (see, e.g.,[17,22]). These VEV’s set a pre

4 Michele Papucci and Matthew Schwartz also studied
model for a photon. We thank Matthew Schwartz for commun
tions on this.
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ferred frame in the Universe in which the model(1)
is defined.

The Lagrangian(1) is invariant under spatially in
dependent gauge transformations of the fieldsδA0 =
∂0λ(t), δAj = 0. Because of this and conservation
Jµ no new terms are generated by quantum loop
(1). The equations of motion of the model are

(2)∂νFνµ − m2δi
µAi = Jµ.

There are two key properties that follow from(2).
First, the zeros component of this equation implies t
the Gauss’s law is identical to that of QED:

(3)∂jEj = −J0,

whereEj = F0j is an electric field andJ0 is a charge
density. Hence, in QED′, like in QED, the electric field
is not screened! Second, taking the partial derivative
both sides of(2) we find a Lorentz-violating analog o
the Proca condition

(4)∂iAi = 0.

As a result, there remain only two dynamical degr
of freedom in the theory:A0 is not dynamical and on
of the Aj ’s can be expressed though the other t
using (4). Both propagating degrees of freedom a
massive.

However, this is not all. We note that(4) coincides
with theCoulombgauge fixing condition of QED. Be
cause of this, a free photon propagator of(1)

D00(k) = 1
�k2

,

(5)Dij (k) =
(

δij − kikj

�k2

)
1

−k2
0 + �k2 + m2 − iε

,

resembles a causal Coulomb gauge QED propag
The physics of QED′ (1) is rather different, how-
ever. Like in QED, there is an instantaneous Coulo
potential (the zero–zero component of the propa
tor). This component has no imaginary part, hen
there are no physical degrees of freedom media
the instantaneous potential. The spatial compone
on the other hand, have an imaginary part. This c
responds to the two physical degrees of freedom.
like in QED, in the present case both of these degr
of freedom are massive. This has a dramatic con
quence: as we will see shortly, the instantaneous
tential is not canceled in physical observables for ti
.

dependent sources. The remaining instantaneous
is small for transverse sources with a typical mom
tum/frequency scales� m, but can become essenti
for scales� m generatingaction-at-a-distance. To ex-
amine this question in detail we follow closely mas
less QED inCoulomb gauge. In the latter case on
postulates(4) as a gauge condition. As a result of th

(6)A0(r, t) = 1

4π

∫
d3r ′ J0(r

′, t)
|r − r ′| ,

is an instantaneous potential. The expression(6) is
identical in QED and QED′. On the other hand, th
equation for the vector potential differ in the two mo
els. The spatial part of(2) reads:

(7)
(
∂2 − m2)Aj = Jj − ∂j ∂0A0 ≡ J tr

j .

The mass term on the l.h.s. is present only in QE′
but not in QED. Both in QED and QED′ the vector
potentialAj has an instantaneous parts. In QED t
part exactly cancels(6) in physical observables suc
as the electric fieldEj = −∂jA0 + ∂0Aj . However,
this cancellation is not exact in QED′. To see this we
write:

(8)

Aj(r, t) =
∫

d3r ′ dt ′ DR(r − r ′; t − t ′)J tr
j (r ′, t ′),

where the retarded Green’s function

DR(r; t ′) ≡ D
QED
R + Dm

R

= θ(t)

2π
δ
(
t2 − �r 2)

(9)− θ(t − |r|)
4π

mJ1(m
√

t2 − �r 2)√
t2 − �r 2

,

is expressed through the step functionθ , Dirac delta
function δ, and Bessel functionJ [21]. Note that the
mass dependence in the Green’s functions is addi
We used this to denote the massless function byD

QED
R

and the addition due to the mass term byDm
R . Using

(9) we can write

Aj(r, t) = A
QED
j (r, t)

(10)

+
∫

d3r ′ dt ′ Dm
R (r − r ′; t − t ′)J tr

j (r ′, t ′),

where A
QED
j (r, t) is a vector potential of massle

QED in Coulomb gauge. The latter, as we mention
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before, cancels the instantaneous scalar potential(6) to
produce theretardedelectric fieldE

QED
j . Therefore,

Ej(r, t) = E
QED
j (r, t)

+ ∂0

∫
d3r ′ dt ′ Dm

R (r − r ′; t − t ′)

(11)× J tr
j (r ′, t ′),

and the instantaneous part is now contained onl
the last term of this expression. The latter can be
culated as follows:

i

(2π)4

∫
d3k ei�k�r Re

(
ei

√
k2+m2t J̃ tr

j

(�k,
√

k2 + m2
)

(12)− ei|k|t J̃ tr
j

(�k, |k|)),

where

(13)J̃ tr
j (�k,ω) ≡

∫
d3r dt ei�k�r−iωtJ tr

j (�r, t),

is the Fourier transform of the transverse current.5

In general, the expression(12) is nonzero even fo
t = 0. It appears that an information from an event t
took place att = 0, r = 0 caninstantaneouslybe trans-
mitted to a point that is far away from this locatio
This gives rise to the action-at-a-distance. The qu
tion how important this instantaneous interaction is
pends on properties of sources. For a transverse so
of a typical momentumk0 and typical frequencyω0
the effect is negligible as long ask0 � m. Fork0 � m

the effects can be appreciable whenω0 ∼ m or ω0 ∼
k0. In this case the instantaneous electric field wo
decay with distance as∼ 1/r . If the source has no typ
ical frequency, juts a typical momentum, then the
stantaneous interactions will be important fork0 � m,
and vice versa, for a source of a typical frequencyω0
and no typical momentum the dangerous interacti
will be present forω0 � m. In practice, to produce
low-momentum/frequency signal that could trigger
instantaneous interaction, will itself take certain ch
acteristic time. It would be interesting to study the ph
nomenology of these interactions for realistic sour
to put bounds onm [23]. Note also that magnetic fiel
has no instantaneous parts in QED′: �B = curl �A and
the curl eliminates the instantaneous part of�A.

5 For simplicity(12) is written for a source such thatJ̃ (k,−ω) =
J̃ (k,ω). However, a general expression can readily be obtained
e

The presence of the long-range interactions
also be understood from the Hamiltonian formulat
of (1) whereA0 acts as a Lagrange multiplier:

H = 1

2
P 2

j + 1

2
(εijk∂jAk)

2 + 1

2
m2A2

j

(14)+ A0(∂jPj − J0) + AjJj .

HerePj = Fj0 is the canonical momentum. Variatio
w.r.t. A0 gives rise to the Gauss’s law,∂jPj = J0,
which is identical to the Gauss’s law of massless QE
This guaranties that the theory possesses the l
range interactions in spite of the fact that the two
namical propagating degrees of freedom are mass6

To summarize, there are two massive propaga
degrees of freedom, however, there still exists a lo
range instantaneous interaction in the theory. Depe
ing on the value ofm this can exclude a given mode
or be potentially interesting for phenomenological a
plications.

One can of course modify the model(1) by adding
a “mass term”αm2A2

0 with some nonzero positiv
coefficientα. In this case the long-range interactio
are removed from the theory (α = 1 corresponding
to a massive Lorentz-invariant photon). However, i
worth pointing out thatα = 0 is an enhanced gaug
symmetry point and unlike theα 	= 0 cases should b
stable under radiative corrections.7

3. Nonlinear instabilities in massive gravity

In this section we summarize how nonlinear ins
bilities appear in a Lorentz-invariant theory of mass
gravity (the FP gravity)[11], and show that the simi
lar instabilities exist in many of the LV mass mode
once the nonlinear interactions are taken into acco
We will also find the conditions under which these
stabilities can be removed in a Lorentz-violating m
sive theory. In the latter case, however, one typic
ends up with long-range interactions, similar to tho
studied in the previous section. In this respect
theory is half-massive: all its degrees of freedom
massive nevertheless there are long-range interact

6 The condition∂j Aj = 0 is obtained by taking a derivative o
one of the Hamiltonian equations of motion.

7 The α = 1 case is also stable because of the restored Lor
invariance and conservation of the current.
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One atypical example that evades the instabilities
long-range instantaneous interactions will be given
the end of the next section.

We first review briefly the Hamiltonian constru
tion of [11] to identify the terms that are responsib
for the instabilities. Then, we will remove these ter
in a Lorentz-violating theory. Let us start by a brief r
minder of the ADM formalism[24]. This would be a
natural formalism for nonlinear formulation of the L
mass gravity. Consider a foliation of space–time
hyper-surfacesΣt parametrized by a time variablet .
The four-dimensional metric is replaced by the follo
ing three-dimensional variables:

γij ≡ gij ,

(15)N ≡ (−(4)g00)−1/2
, Ni ≡ (4)g0i .

In terms of these variables the invariant interval ta
the form:

ds2 = −(
N2 − NjN

j
)
dt2 + 2Nj dxj dt

(16)+ γij dxi dxj ,

where all the spatial indices are contracted by me
of the three-dimensional metricγij . N is called the
lapse function andNi is the shift function. With these
definitions√

−(4)g = N
√

γ ,

(17)(4)R = (3)R + KijK
ij − K2,

whereKij is the extrinsic curvature ofΣt

(18)Kij = 1

2
N−1[γ̇ij − ∇iNj − ∇jNi],

andK is its trace. The extrinsic curvature is related
the canonical momentum

(19)πij ≡ δL
δγ̇ij

= √
γ
(
Kij − Kγ ij

)
.

The Hamiltonian of the Einstein gravity in terms of t
above variables reads

(20)HEH = πij γ̇ij −L= √
γ
[
NR0 + NiR

i
]
,

where

R0 ≡ −(3)R + γ −1
(

πijπ
ij − 1

2
π2

)
,

(21)Ri ≡ −2∇j

(
γ −1/2πij

)
.

N and Ni appear linearly in the Hamiltonian(20).
Hence they are Lagrange multipliers variation w.
which gives the constraintsR0 = 0 and Ri = 0;
HEH = 0 on the surface of the constraints.

Let us now turn to massive FP gravity for which t
mass terms is written as

−1

2
m2(h2

µν − hµ
µ

2)

(22)
= −1

2
m2[h2

ij − h2 − 2N2
i + 2h

(
1− N2 − N2

j

)]
,

where the second equality is obtained by expres
hµν = gµν − ηµν in terms ofγij , N andNi (note that
hij = γij −ηij , andh ≡ γ ijhij ). The key role is played
by the terms in(22) which are quadratic inN and
Nj . Because of these termsN and Nj ceases to be
Lagrange multipliers in the massive theory. Variatio
w.r.t. N andNj lead to the following equations:

√
γR0 = 2m2hN,

(23)
√

γRi = 2m2(ηij − hγ ij
)
Nj .

These are not constraint equations any more but s
to determineN andNj . Substituting these solution
into the full Hamiltonian we obtain:

H = 1

4m2

{
(
√

γR0)2

h
+ γRi

(
ηij − hγ ij

)−1
Rj

}

(24)+ 1

2
m2(h2

ij − h2 + 2h
)
.

This is a Hamiltonian of an ill-defined theory. The fir
term on the r.h.s. is unbounded below and singu
in m and h. For instance, consider

√
γR0 fixed and

Ri = 0; whenh → 0− the term in the Hamiltonian
densityH ∼ (

√
γR0)2/(m2h) is not bounded below

This demonstrates the presence of a ghost-like in
bility in the theory. This instability can manifest i
many ways even at theclassical level, and the time
scale of the instability can be very short[12]. Such a
theory is hard to make sense of.

The BD problem is associated with the terms t
in the linearized theory looks ash00h

j
j . The mass term

of the model analyzed in Ref.[18] is

Lm = M2
Pl

2

(
m2

0h
2
00 + 2m2

1h
2
0j − m2

2h
2
ij + m2

3h
2

(25)− 2m2
4h00h

)
,
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with m0 = 0 and all the other mass parameters be
nonzero with a certain hierarchy between them[18].
A straightforward nonlinear completion of the ma
term (25) gives rise to the BD instability. This is be
causeh00 = 1 − N2 + N2

j andN ceases to be a La
grange multiplier, as in the FP gravity. While in the F
model this instability cannot be removed in a Loren
invariant fashion, in the present context Lorentz
variance is broken anyway, and nothing prevents
to eliminate the dangerous term by judicially choos
m4 to be zero. This choice is a point of enhanced ga
symmetry and should be stable under loop correctio
However, the physics of the model withm0 = m4 = 0
is dramatically different—there appear long-range
teractions. This will be discussed in detail in the n
section.

4. Stable models

4.1. Half-massive gravity

We consider a simple Lorentz-violating generaliz
tion of the FP mass term:

(26)�L1 = −1

2
m2√γN

(
h2

ij − ah2),
wherea is a constant. As before, all the indices a
contracted byγij . We think of this theory as being ob
tained from a Lorentz-invariant model through spon
neous generation of a preferred frame, similar in sp
to [17].

The total Hamiltonian in this case takes the form

(27)

H = √
γ

[
N

(
R0 + 1

2
m2(h2

ij − ah2)) + NiR
i

]
.

The constraint equations that follow are:

(28)R0 = −1

2
m2(h2

ij − ah2), Ri = 0.

The Hamiltonian(27) on the surface of constrain
(28) is zero, just like in the Einstein theory, henc
the BD instability is gone. The model(26) is invari-
ant in the linearized approximation under coordina
independent gauge transformations:δhµν = ∂µζν(t)+
∂νζµ(t), as well as under the transformations with
gauge functionξµ = (ξ0(t, �x), ξj = 0) (at the non-
linear level there is a symmetry w.r.t. the spatia
independent transformations). Due to this, we exp
that the properties of this model will stay stable un
quantum loop corrections.

Let us now couple this theory to matter. The{00}
component of the equation of motion takes the fo
(we use the unitsMPl = 1):

(29)R0 + 1

2
m2(h2

ij − ah2) = T00.

The {0j} equations are identical to those of the E
stein theory and read asRj = 2T0j . Finally, the{ij}
equations are:

(30)Gij + 1

2
m2(hij − aδijh) = Tij .

We see that in the linearized theory the{00} equation
(29) is also identical to the linearized massless E
stein equation. Therefore, it is only the{ij} equation
that differentiates(26) from the Einstein gravity in the
linearized approximation. Because of this one sho
expect the vDVZ discontinuity to be absent. This c
be checked in a rigorous way. Let us follow the d
composition of Ref.[18]:

(31)h00 = ψ,

(32)h0i = ui + ∂iv,

(33)hij = χij + ∂(isj) + ∂i∂jσ + δij τ ,

whereχij is a transverse-traceless tensor,sj is a trans-
verse vector while the other fields are scalars. T
gauge invariant combinations are: a tensorχij , a vec-
tor wi = ui − ∂0si , and two scalarsτ andΦ = ψ −
2∂0v + ∂2

0σ . The conventional coupling to a conserv
matter stress-tensorhµνT

µν can be written in terms o
these invariants:

(34)χijTij − 2wjT0j + ΦT00 + τTjj .

Solving the corresponding linearized equations
a 	= 1 we find:

(35)χij = 1

−∂2
0 + ∆ − m2

T tt
ij ,

(36)τ = 1

2∆
T00, wj = 1

∆
T0j ,

Φ = 1

2∆

(
Tjj + T00 − 3

∆
∂2

0T00

)

(37)+ 1− 3a

2(1− a)∆2
m2T00.
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(HereT tt
ij stands for a transverse-traceless part of

tensor.) These expressions give exactly the fields o
Einstein theory in the limitm → 0. Therefore, there i
no vDVZ discontinuity. Note that the only propaga
ing degrees of freedom are two polarizations of
transverse-traceless tensorχij . The spectrum is free
of ghost and tachyons. Similar properties have b
found previously in a stimulating work[20], where a
somewhat different model was discussed.8

On the other hand, the above system exhibits
same type of instantaneous interactions as QED′ dis-
cussed in Section2. This is because the instantaneo
parts cannot be exactly canceled as long as the
a mass term in the denominator of(35). However, as
we discussed in the gauge field case, these insta
neous interactions can only be probed by very lo
momentum/frequency sources. It would be interes
to study the phenomenology of this model[23].

4.2. More degrees of freedom

A generalization of the above model can be o
tained by adding to(26)a mass term forNj :

(38)�L2 = cm2√γN2
i ,

wherec is a constant. Doing so we add three additio
degrees of freedom to the theory. The Hamilton
now takes the form:

H = √
γ

[
N

(
R0 + 1

2
m2(h2

ij − ah2))

(39)+ Ni

(
Ri − m2cNi

)]
.

The corresponding constraint equations are:

(40)R0 = −1

2
m2(h2

ij − ah2),
(41)Ri = 2m2cNi.

As long asc 	= 0 the only true constraint is(40), since
(41) does not restrict the number of propagating
grees of freedom but acts as an algebraic equa
determiningNj . Therefore, this counting tells us th
the number of propagating degrees of freedom is fi

8 However, nonlinear stability of the model of Ref.[20], which
is a suspect in the context of the discussions of our Section3, has
not been studied in Ref.[20].
-

Solving(41)for Ni and substituting the result inH we
find the Hamiltonian

(42)H = √
γ

R2
i

4m2c
,

which is positive semidefinite as long asc > 0. This
model also has no vDVZ discontinuity. The calcu
tions are similar to those presented above but mor
dious, the spectrum contains no ghost of tachyons.
massless limit of(39) is regular and one recovers
this limit the Einstein gravity. Moreover, the theory
symmetric w.r.t. spatially independent transformatio
of the time variable, and, exhibits the instantaneous
teractions. Further interesting properties of this mo
will be discussed in[23].

One can also evade the BD instability and the pr
ence of the long-range interactions by adding into
Lagrangian yet another term

(43)�L3 = m2√γP2(N),

whereP2(N) is a polynomial inN of degree 2, namely
P2(N) = c0 + c1N + c2N

2. We require that there
are no constant and linear terms in the linearized
grangian. This gives the relationsc0 + c1 + c2 = 0 and
c2 + 1

2c1 = 0, with a solutionc1 = −2c0 andc2 = c0.
Hence,P2(N) = c0(N − 1)2. The Hamiltonians of the
system is that of the previous examples plus the n
term �H = −m2√γP2(N). The resulting constrain
equations are:

(44)R0 + 1

2
m2(h2

ij − ah2) = m2P ′
2(N),

(45)Ri = 2m2cNi.

Solving the constraints w.r.t.N andNi we obtain

(46)N = R0 + 1
2m2(h2

ij − ah2) + 2c0m
2

2c0m2
,

(47)Ni = Ri

2m2c
,

and the Hamiltonian

(48)H = √
γ

[
R0

mod+ (R0
mod)

2

4c0m2
+ R2

i

4m2c

]
,

where R0
mod ≡ R0 + 1

2m2(h2
ij − ah2). The above

Hamiltonian is not necessarily positive semidefin
however, it is bounded from below as long asc, c0 > 0.
There are six degrees of freedom propagating in
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model. This could exclude the model based on
Solar System data. However, it is not impossible
imagine that the nonlinear effects suppress the c
plings of the extra polarizations to matter at observa
distances, in analogy with[7,25]. A more serious prob
lem of the model(43) is the absence of a symmet
principle that would guarantee the stability w.r.t. qua
tum corrections.
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