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a b s t r a c t

The permanental polynomial of a graph G is π(G, x) , per(xI − A(G)). From the result that
a bipartite graph G admits an orientation Ge such that every cycle is oddly oriented if and
only if it contains no even subdivision of K2,3, Yan and Zhang showed that the permanental
polynomial of such a bipartite graph G can be expressed as the characteristic polynomial
of the skew adjacency matrix A(Ge). In this note we first prove that this equality holds
only if the bipartite graph G contains no even subdivision of K2,3. Then we prove that such
bipartite graphs are planar. Unexpectedly, we mainly show that a 2-connected bipartite
graph contains no even subdivision of K2,3 if and only if it is planar 1-cycle resonant.
This implies that each cycle is oddly oriented in any Pfaffian orientation of a 2-connected
bipartite graph containing no even subdivision of K2,3. Accordingly, we give a way to
compute the permanental polynomials of such graphs by Pfaffian orientation.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In this note, we always consider finite and simple graphs. Let G be a graph with vertex-set V (G) = {v1, v2, . . . , vn} and
edge-set E(G) = {e1, e2, . . . , em}. The adjacency matrix A(G) = (aij)n×n of G is defined as

aij =


1 if vertex vi is adjacent to vertex vj,
0 otherwise.

The permanent of an n × nmatrix A is defined as

per(A) =


σ∈Λn

n
i=1

aiσ(i), (1)

where Λn denotes the set of all permutations of {1, 2, . . . , n}.
The permanental polynomial of G is defined as

π(G, x) = per(xI − A(G)) =

n
k=0

bkxn−k, (2)

where I is the identity matrix of order n. It is easy to see that (−1)kbk is the sum of the k × k principle subpermanents of
A [16]. It was mentioned in [2,16] that if G is a bipartite graph, then b2k ≥ 0 and b2k+1 = 0 for all k ≥ 0; In particular,

bn = per(A(G)) = m2(G), (3)
where m(G) is the number of perfect matchings of G.
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It was in 1981 that the permanental polynomialwas first investigated in chemistry in [13], where some relations between
the permanental polynomial and the structure of conjugated molecules were discussed. Later, Cash [3,4] investigated
the mathematical properties of the coefficients and zeros of the permanental polynomials of some chemical graphs.
This suggests that the permanental polynomial encodes a variety of structural information. Gutman and Cash [11] also
demonstrated several relations between the coefficients of the permanental and characteristic polynomials. See [5,6,12]
for more about the permanental polynomials. We can compute the determinant of an n × n matrix efficiently by Gaussian
elimination. Although per(A) looks similar to det(A), it is harder to be computed. Valiant [17] proved that it is a #P-complete
problem to evaluate the permanent of a (0, 1)-matrix. For these reasons, we want to compute the permanental polynomial
of a graph by the determinant of a matrix.

Pfaffian orientations of graphs can be used to the enumeration of perfect matchings. Now we recall some definitions. A
subgraph H of a graph G is called nice if G − V (H) has a perfect matching [15]. Let Ge be an orientation of a graph G and C a
cycle of even length in G. C is oddly oriented in Ge if C contains an odd number of edges that are directed in either direction
of the cycle. An orientation of G is Pfaffian if every nice cycle C is oddly oriented. The skew adjacency matrix of Ge, denoted
by A(Ge), is defined as follows,

aij =

1 if (vi, vj) ∈ E(Ge),
−1 if (vj, vi) ∈ E(Ge),
0 otherwise.

If a graph G has a Pfaffian orientation Ge, then [15]

det(A(Ge)) = m2(G). (4)
We say an edge e of a graph G is oddly subdivided in a graph G′ if G′ is obtained from G by subdividing e an odd number

of times. Otherwise, we say e is evenly subdivided. The graph G′ is said to be an even subdivision of a graph G if G′ can be
obtained from G by evenly subdividing each edge of G.

Fischer and Little [7] gave a characterization of a graph that has an orientation with each cycle being oddly oriented.
From this result, we have that a bipartite graph G admits an orientation Ge such that every cycle is oddly oriented if and
only if it contains no even subdivision of K2,3. Accordingly, Yan and Zhang [19] showed that the permanental polynomial of
such a bipartite graph G can be expressed as the characteristic polynomial of the skew adjacency matrix A(Ge): π(G, x) =

det(xI − A(Ge)).
In this note we want to investigate bipartite graphs for which the permanental polynomials can be computed by the

characteristic polynomials. In Section 2 we obtain that a bipartite graph admits this property if and only if it has a Pfaffian
orientation such that all the cycles are oddly oriented, if and only if it contains no even subdivision of K2,3.

In Section 3 we mainly characterize bipartite graphs containing no even subdivision of K2,3. The starting point of this
section is to show that these graphs are planar. Then we find that if such graphs are 2-connected, they each has a bipartite
ear decomposition starting with any cycle. This implies that such graphs are elementary bipartite graphs. Unexpectedly,
we obtain the main result that a 2-connected bipartite graph G contains no even subdivision of K2,3 if and only if it is
planar 1-cycle resonant. In fact, planar 1-cycle resonant graphs have already been introduced and investigated extensively in
[8–10,18]. Various characterizations [9] and constructional features [10] for planar 1-cycle resonant graphs have been given.
These characterizations enable ones to design efficient algorithms to decide whether a 2-connected planar bipartite graph
is 1-cycle resonant [10,18].

From the previousmain result, in Section 4we have that each cycle of a 2-connected bipartite graph G containing no even
subdivision of K2,3 is nice and is oddly oriented in any Pfaffian orientation of G. Based on this, we provide a way to compute
the permanental polynomials of bipartite graph containing no even subdivision of K2,3 by Pfaffian orientation.

2. A criterion for computing permanental polynomials

An elegant characterization for Pfaffian bipartite graphs was given by Little.

Theorem 2.1 ([14]). A bipartite graph admits a Pfaffian orientation if and only if it does not contain an even subdivision of K3,3
as a nice subgraph.

Fischer and Little gave a characterization for the existence of an orientation of a graph such that all the even cycles are
oddly oriented as follows.

Theorem 2.2 ([7]). A graph has an orientation under which every cycle of even length is oddly oriented if and only if the graph
contains no subgraph which is, after the contraction of at most one cycle of odd length, an even subdivision of K2,3.

For bipartite graphs, we have the following immediate corollary.

Corollary 2.3. There exists an orientation of a bipartite graph G such that all the cycles of G are oddly oriented if and only if G
contains no even subdivision of K2,3.

Based on such results, Yan and Zhang found that the permanental polynomial of a bipartite graph that has no even
subdivision of K2,3 can be computed by the determinant.
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Theorem 2.4 ([19]). Let G be a bipartite graph containing no even subdivision of K2,3. Then there exists an orientation Ge of G
such that

π(G, x) = det(xI − A(Ge)). (5)

In fact we can show that the converse of the theorem is also valid.

Theorem 2.5. Let G be a bipartite graph of order n. Then an orientation Ge of G satisfies π(G, x) = det(xI − A(Ge)) if and only
if each cycle of G is oddly oriented in Ge.
Proof. Let

det(xI − A(Ge)) =

n
i=0

aixn−i.

Then we have

a2k+1 = b2k+1 = 0, k = 0, 1, 2, . . . ,

and

b2k =


H

per(A(H)), a2k =


H

det(A(He)), k = 0, 1, . . . ,

where both sums range over all induced subgraphs H of Gwith 2k vertices.
For the completeness we reprove the sufficiency. If G has an orientation Ge such that every cycle is oddly oriented, then

the restriction of Ge on each induced subgraph H of G is a Pfaffian orientation He. Hence per(A(H)) = det(A(He)). That
means that bi = ai for each i ≥ 1. Hence π(G, x) = det(xI − A(Ge)).

We now prove the necessity. Suppose that G has a cycle C that is evenly oriented in Ge. For convenience, let V (C) =

{1, 2, . . . , 2k} and C = 12 · · · (2k)1. Now we consider the subgraph G[C] induced by the vertices of C . Let Ge
[C] be the

orientation Ge restricted on G[C]. From the definitions of permanents and determinants, we have that per(A(G[C])) =
σ a1σ(1)a2σ(2) · · · a2kσ(2k) and det(A(Ge

[C])) =


σ sgn(σ )a′

1σ(1)a
′

2σ(2) · · · a′

2kσ(2k), where aiσ(i) and a′

iσ(i) are the elements
in the i-th row and σ(i)-th column of A(G[C]) and A(Ge

[C]), respectively, and both sums range over all the permutations
of {1, 2, . . . , 2k}. For any given σ , if some aiσ(i) equals zero, then a1σ(1)a2σ(2) · · · a2kσ(2k) = a′

1σ(1)a
′

2σ(2) · · · a′

2kσ(2k) = 0.
Otherwise, a1σ(1)a2σ(2) · · · a2kσ(2k) = 1 and a′

1σ(1)a
′

2σ(2) · · · a′

2kσ(2k) = 1 or −1. Hence a1σ(1)a2σ(2) · · · a2kσ(2k) ≥

sgn(σ )a′

1σ(1)a
′

2σ(2) · · · a′

2kσ(2k). For the cycle σ = (12 · · · 2k), we know that sgn(σ ) = −1 and a′

1σ(1)a
′

2σ(2) · · · a′

2kσ(2k) = 1
since C is evenly oriented. So sgn(σ )a′

1σ(1)a
′

2σ(2) · · · a′

2kσ(2k) = −1, while a1σ(1)a2σ(2) · · · a2kσ(2k) = 1. Hence det(A(Ge
[C])) <

per(A(G[C])).
In an analogous argument, we have that det(A(Ge

[H])) ≤ per(A(G[H])) for any induced subgraph H of G. Hence
a2k =


H det(A(He)) <


H per(A(H)) = b2k and π(G, x) ≠ det(xI − A(He)). �

Corollary 2.6. There exists an orientation Ge of a bipartite graph G such that π(G, x) = det(xI −A(Ge)) if and only if G contains
no even subdivision of K2,3.
Proof. It follows immediately from Theorem 2.5 and Corollary 2.3. �

3. Characterizations of bipartite graphs containing no even subdivision of K2,3

In this sectionwewill characterize bipartite graphs containing no even subdivision of K2,3.We first show that such graphs
are planar. Thenwe establish a close relation between bipartite graphs having no even subdivision of K2,3 and planar 1-cycle
resonant graphs.

Theorem 3.1 ([1, Kuratowski’s Theorem]). A graph is planar if and only if it contains no subdivision of either K5 or K3,3.

Lemma 3.2. If a bipartite graph contains no even subdivision of K2,3, then it is planar.
Proof. We prove the converse-negative proposition. Suppose that a bipartite graph G is not planar. Then by Theorem 3.1 it
contains a subdivision H of K3,3 or K5.

If an edge e of K3,3 or K5 is oddly subdivided in H , then P is the path of even length in H obtained by subdividing e. There
are two cycles C1, C2 containing e in K3,3 or K5 with C1 ∩ C2 = {e}, and the corresponding cycles in H are denoted by C ′

1, C
′

2.
SinceH is bipartite, in C ′

1∪C ′

2 there are three pairwise internally disjoint paths of even length connecting the two endvertices
of P . So we obtain an even subdivision of K2,3.

If H is an even subdivision of K3,3 or K5, then K3,3 or K5 always contains K2,3 as a subgraph, which corresponds to an even
subdivision of K2,3 in H . �

A sequence of subgraphs of G, (G0,G1, . . . ,Gm) is a bipartite ear decomposition of G if G0 is an edge x, Gm = G, every Gi
for i = 1, 2, . . . ,m is obtained from Gi−1 by adding an path Pi−1 of odd length which is openly disjoint from Gi−1 but its
endvertices belong to Gi−1. Such an ear decomposition can also be denoted as G := x + P0 + P1 + · · · + Pm−1.



2072 H. Zhang, W. Li / Discrete Applied Mathematics 160 (2012) 2069–2074

Lemma 3.3. A 2-connected bipartite graph G containing no even subdivision of K2,3 has a bipartite ear decomposition starting
with any cycle in it.

Proof. Let G1 be any cycle in G. We want to show that G has a bipartite ear decomposition starting with G1 by induction. Let
Gi be a subgraph of G obtained by successively adding i − 1 ears, i ≥ 1. If Gi ≠ G, then an edge uv exists in G − E(Gi). For an
edge xy ∈ E(Gi), uv and xy lie on a common cycle C since G is 2-connected. Let P be a path in C such that the intersections
of P and Gi are the both endvertices a and b of P . If a and b have the same color, then P is a path of even length. Since Gi is
2-connected, Gi has two internally disjoint paths of even length connecting a and b. Hence three pairwise internally disjoint
paths of even length of G connect a and b. That is, an even subdivision of K2,3 exists in G and a contradiction occurs. So a and
b have different colors and P is a path of odd length. Now Gi+1 := Gi + P is a subgraph of G obtained by successively adding
i ears, i ≥ 1. Hence G has a bipartite ear decomposition starting with any cycle in it. �

The above result shows that such graphs relate with 1-cycle resonant graphs. A connected graph is said to be k-cycle
resonant if, for 1 ≤ t ≤ k, any t disjoint cycles in G are mutually resonant, that is, there is a perfect matching M of G such
that each of the t cycles is anM-alternating cycle. k-cycle resonant graphswere introduced by Guo and Zhang [8] as a natural
generalization of k-resonant benzenoid systems, which originate fromClar’s aromatic sextet theory and Randić’s conjugated
circuit model. They obtained that a k-cycle resonant graph is bipartite [8]. In the following theorem, we can see that such
two types of graphs are equivalent under the 2-connected condition.

Theorem 3.4. A 2-connected bipartite graph G contains no even subdivision of K2,3 if and only if G is planar 1-cycle resonant.

Proof. We first prove the necessity. From Lemma 3.3, G has a bipartite ear decomposition G := C + P1 + P2 + · · · + Pr
starting with any cycle C in it. Because the ears Pi′s for 1 ≤ i ≤ r are all of odd length, the graph G − V (C) has a perfect
matching M which covers all the internal vertices of each Pi. So every cycle of G is nice. By Lemma 3.2 G is planar. Hence G
is planar 1-cycle resonant.

Now we prove the sufficiency. If G contains a subgraph H which is an even subdivision of K2,3, then in the subgraph H ,
there are three pairwise internally disjoint paths l1, l2 and l3 of even length joining two given vertices. Since G is planar, we
embed it in the plane so that l2 lies in the interior of the cycle C := l1 ∪ l3. Since G is 1-cycle resonant, C1 := l1 ∪ l2 and
C2 := l2 ∪ l3 are nice cycles of G. Hence there is an even number of vertices in the interior of C1 and C2, respectively. Further,
since l2 has an odd number of internal vertices, there is an odd number of vertices in the interior of C . This implies that C is
not a nice cycle of G, contradicting that G is 1-cycle resonant. �

A connected bipartite graph G is elementary if each edge is contained in a perfect matching of G. For more details about
such graphs see [15,20]. Then by Lemmas 3.2 and 3.3 or Theorem 3.4 we have the following result.

Corollary 3.5. A 2-connected bipartite graph G containing no even subdivision of K2,3 is a planar and elementary bipartite graph.

A block of a connected graph G is a maximal connected subgraph of G without cutvertices. From Theorem 3.4 we have
the following general result.

Corollary 3.6. A connected bipartite graph G contains no even subdivision of K2,3 if and only if each block of G is planar 1-cycle
resonant.

From the proof of Theorem 3.4, we have the following result.

Corollary 3.7. If a connected graph is a planar 1-cycle resonant graph, then it contains no even subdivision of K2,3.

We have seen in the previous theorem that 2-connected bipartite graphs containing no even subdivision of K2,3 are
equivalent to planar 1-cycle resonant graphs. In fact, various characterizations, the construction and recognition algorithms
for planar 1-cycle resonant graphs have already been obtained in [8–10,18]. Before stating these results, we need to give
some terminology and notations.

Let H be a subgraph of a connected graph G. A bridge B of H is either an edge in G − E(H) with two endvertices in H , or
a subgraph of G induced by all edges incident with a vertex in a component B′ of G − V (H). A vertex in H is said to be an
attachment vertex of H if it is incident with an edge in G − E(H). The vertices in V (B) ∩ V (H) are the attachment vertices of
B to H . Two bridges of a cycle C avoid one another if all the attachment vertices of one bridge lie between two consecutive
attachment vertices of the other bridge along C .

Following Theorem 3.4 and Theorem 1 of Ref. [9], we have the following characterizations.

Theorem 3.8. Let G be a 2-connected planar bipartite graph. Then the following statements are equivalent:
(1) G contains no even subdivision of K2,3,
(2) G is planar 1-cycle resonant,
(3) For any cycle C in G, G − V (C) has no odd component,
(4) For any cycle C in G, any bridge of C has exactly two attachment vertices which have different colors,
(5) For any cycle C in G, any two bridges of C avoid one another. Moreover, for any 2-connected subgraph B of G with exactly

two attachment vertices, the attachment vertices of B have different colors.

The next result gives a structural description of planar 1-cycle resonant graphs.
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Fig. 1. The graph with evenly oriented cycles.

Theorem 3.9 ([10]). A 2-connected graph G is planar 1-cycle resonant graph if and only if G has a bipartite ear decomposition
G := C0 + P1 + · · · + Pk such that C0 is a cycle and the endvertices x, y of each Pi are adjacent in Gi−1 or {x, y} is a vertex cut
of Gi−1.

This theorem can be used to construct 2-connected bipartite graphs containing no even subdivision of K2,3. In addition, it
derives an algorithm of time complexity O(n2), where n is the number of vertices of G, to determine whether a 2-connected
plane graph is 1-cycle resonant; See [10] for more details.

In [18] a linear time algorithm with respect to the number of vertices to decide whether a 2-connected plane bipartite
graph G is 1-cycle resonant was provided. This algorithm is designed by testing whether the attachment vertices of any
bridge of the outer cycle C of G satisfy statement (4) in Theorem 3.8 and the attachment vertices u, v of any maximal
2-connected subgraph H of any bridge B of C have different colors. If the above conditions hold, we proceed recursively
for G := H . Otherwise, G is not 1-cycle resonant.

If a given planar bipartite graph G is connected, we can implement the above method to each 2-connected block of G to
test whether it is 1-cycle resonant. If answers are all ‘‘yes’’, the graph G contains no even subdivision of K2,3. Hence we can
present a linear time algorithm to determine whether a given planar bipartite graph G contains no even subdivision of K2,3
in this approach.

4. Computing permanental polynomials

In the last section some characterizations and recognition of bipartite graphs containing no even subdivision of K2,3 are
given. We now compute the permanental polynomials of such graphs. An algorithm is presented firstly to construct their
orientations with each cycle being oddly oriented. The following polynomial time algorithm has already been provided
in [15] to construct Pfaffian orientations for plane graphs.

Algorithm 4.1 ([15]). Let G be a connected plane graph.
1. Find a spanning tree T in G and orient it arbitrarily.
2. Let G1 = T .
3. If Gi = G, stop. Otherwise, take an edge ei of G not in Gi such that ei and Gi bound an interior face fi of G, and orient ei such

that an odd number of edges on the boundary of fi is oriented clockwise.
4. Set i + 1 = i and Gi+1 = Gi ∪ {ei}. Go to step 3.

Theorem 4.2 ([15]). Let G be a connected plane graph. The orientation Ge given by Algorithm 4.1 is a Pfaffian orientation of G.
Such an orientation can be constructed in polynomial time.

Here we will show the following result.

Theorem 4.3. Let G be a 2-connected bipartite graph containing no even subdivision of K2,3. Then each cycle is oddly oriented
in a Pfaffian orientation Ge of it.
Proof. Since Ge is a Pfaffian orientation of G, each nice cycle is oddly oriented. From Theorem 3.4, each cycle of G is nice. So
each cycle of G is oddly oriented in Ge. �

For a connected bipartite graph containing no even subdivision of K2,3, we can give an orientation so that each cycle is
oddly oriented according to the following rule R: For each 2-connected block of G, we implement Algorithm 4.1 to get its
Pfaffian orientation; For each cut edge of G we orient it arbitrarily. By Theorem 4.3 we can see that for such an orientation
of G each cycle is indeed oddly oriented.

Remark 4.4. Implementing Algorithm 4.1 directly to a connected plane bipartite graph containing no even subdivision of
K2,3, we obtain a Pfaffian orientation, but cannot necessarily obtain the required orientation: an evenly oriented cycle may
exist.

See the graph in Fig. 1 for example. The subgraph induced by the solid edges is a spanning tree T with an orientation
shown in Fig. 1. By Algorithm 4.1, we first add the edge v5v6 to T and orient it from v5 to v6 so that the interior face bounded
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by it is oddly oriented. Then we add the edges v3v4 and orient it from v4 to v3 so that the face boundary v1v4v3v2v1v7v6v5v1
has an odd number of edges oriented clockwise along it. Finally we add the edge v8v9 and orient it from v8 to v9 so that
the face boundary v4v8v9v10v9v3v4 has an odd number of edges oriented clockwise along it. We can see that in resulting
orientation, the cycles v1v2v3v4v1 and v3v4v8v9v3 are evenly oriented.

Based on Corollary 2.3 and Theorems 2.5 and 4.3, we immediately have the following approaches to compute
permanental polynomials.

Corollary 4.5. Let G be a bipartite graph containing no even subdivision of K2,3. Then π(G, x) = det(xI − A(Ge)), where Ge is a
Pfaffian orientation of G established by the rule R.

Corollary 4.6. Let G = (U, V ) be a bipartite graph with |U| = |V | containing no even subdivision of K2,3. Then π(G, x) =

det(x2I + BTB), where B is the skew biadjacency matrix of a Pfaffian orientation Ge of G established by the rule R.

Proof. By choosing suitable ordering of vertices, the skew adjacency matrix A(Ge) of Ge takes the form

A(Ge) =


0 B

−BT 0


,

where B is the skew biadjacencymatrix of Ge. Let A, B, C andD be n×nmatrices with detA ≠ 0 and AC = CA. It is known that
det


A B
C D


= det


AD − CB


. Following from (xI)BT

= BT (xI), we obtain that det(xI − A(Ge)) = det

xI −


0 B

−BT 0


=

det


xI −B
BT xI


= det(x2I + BTB). According to Corollary 4.5, we get that π(G, x) = det(x2I + BTB). �
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