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SUMMARY

Iron regulatory proteins (Irps) 1 and 2 posttranscrip-
tionally control the expression of transcripts that
contain iron-responsive element (IRE) sequences,
including ferritin, ferroportin, transferrin receptor,
and hypoxia-inducible factor 2a (HIF2a). We report
here that mice with targeted deletion of Irp1 devel-
oped pulmonary hypertension and polycythemia
that was exacerbated by a low-iron diet. Hematocrits
increased to 65% in iron-starved mice, and many
polycythemic mice died of abdominal hemorrhages.
Irp1 deletion enhanced HIF2a protein expression in
kidneys of Irp1�/�mice, which led to increased eryth-
ropoietin (EPO) expression, polycythemia, and con-
comitant tissue iron deficiency. Increased HIF2a
expression in pulmonary endothelial cells induced
high expression of endothelin-1, likely contributing
to the pulmonary hypertension of Irp1�/� mice. Our
results reveal why anemia is an early physiological
consequence of iron deficiency, highlight the physio-
logical significance of Irp1 in regulating erythro-
poiesis and iron distribution, and provide important
insights into the molecular pathogenesis of pulmo-
nary hypertension.

INTRODUCTION

Iron is an essential element to virtually all organisms, as it is

a crucial component of heme and iron sulfur proteins and is

indispensable for DNA replication, oxygen transport, and ATP

production. Iron deficiency usually causes anemia, whereas

iron overload can generate reactive oxygen species and damage

lipids, DNA, and proteins in diseases such as hemochromatosis,
Cell M
cancer, and cardiovascular and neurodegenerative diseases

(reviewed in Rouault, 2006; Hentze et al., 2010). Therefore iron

homeostasis must be precisely regulated.

Cellular iron homeostasis is mainly controlled by the iron-

regulatory protein (Irp)/iron-responsive element (IRE) machinery

inmammalian cells. Iron-regulatory proteins regulate the expres-

sion of target proteins posttranscriptionally by binding to IREs

in transcripts that mostly encode iron metabolism proteins,

including the iron storage proteins, H- and L-ferritin, iron uptake

proteins, transferrin receptor 1 (Tfrc), divalent metal transporter 1

(Dmt1), the iron export protein, ferroportin, and several other

transcripts. By inhibiting the translation of proteins involved in

iron export, storage, and utilization, and stabilizing the tran-

scripts of proteins involved in iron uptake, the Irp/IRE machinery

regulates cellular iron homeostasis in response to intracellular

iron status (Rouault, 2006; Hentze et al., 2010). Though the two

Irps, Irp1 and Irp2, share high sequence similarity, they are regu-

lated by different mechanisms. Irp1 is a bifunctional protein that

binds to IREs in iron-deficient conditions when it is an apopro-

tein, but it converts to cytosolic aconitase in iron-replete condi-

tions upon acquisition of a [4Fe-4S] cluster in the active site cleft

that separates domains 1–3 from domain 4 (Dupuy et al., 2006;

Walden et al., 2006). Irp2 is active as an IRE-binding protein in

iron-deficient cells, because it is otherwise rapidly degraded in

iron-replete conditions as a result of FBXL5-mediated ubiquiti-

nation and subsequent proteasomal degradation (Salahudeen

et al., 2009; Vashisht et al., 2009). Previously, we and others re-

ported that mice with a targeted deletion of Irp2 (Irp2�/�) devel-
oped adult-onset neurodegeneration and anemia (LaVaute et al.,

2001; Cooperman et al., 2005; Galy et al., 2005), as the tissues

and cells that were adversely affectedwere largely dependent on

Irp2 for regulation, and residual Irp1 did not appear to compen-

sate for the loss of Irp2 in affected cells, whereas Irp2 could

compensate for loss of Irp1 in many cells (Meyron-Holtz et al.,

2004a). Complete loss of Irp1 and Irp2 causes early embryonic

lethality, implying that Irp1 and Irp2 have redundant functions

(Smith et al., 2006). However, mice with a targeted deletion of
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Irp1 (Irp1�/� mice) did not display an easily recognizable pheno-

type when maintained on a normal iron diet, which raised ques-

tions about the physiological role of Irp1 in iron homeostasis.

One of the more recently identified targets of the Irp/IRE

system is HIF2a (also known as Endothelial PAS Domain protein

1, EPAS1), a transcription factor that belongs to the hypoxia-

inducible factor (HIF) a protein family. In response to hypoxia,

anemia, or iron deficiency, HIF2a heterodimerizes with HIF1b

and translocates into the nucleus to regulate the expression of

genes involved in the adaptive response to hypoxia, including

erythropoietin (EPO) (Semenza, 2012). Under normoxia, prolyl

hydroxylase domain protein 2 (PHD2) site-specifically hydroxyl-

ates HIF2a, thereby targeting the latter for ubiquitination by

the von Hippel-Lindau (vHL) E3 ligase complex and proteasomal

degradation (Kaelin and Ratcliffe, 2008). Evidence is growing

that HIF2a is the master regulator for erythropoiesis in the adap-

tive response to hypoxia, and mutations of the proteins in this

pathway, including HIF2a, PHD2, and vHL, are implicated in dys-

regulation of erythropoiesis (Majmundar et al., 2010). Recently it

was found that HIF2a contains an IRE in its 50UTR, and Irps could

bind and inhibit the translation of HIF2a mRNA in vitro, suggest-

ing that iron homeostasis and erythropoiesis could be potentially

linked by HIF2a (Sanchez et al., 2007; Zimmer et al., 2008).

However, the relevance of the IRE in the 50UTR of the HIF2a tran-

script in mammalian physiology has not been established.

In this study, to investigate the physiological significance of

Irp1 in iron metabolism, we challenged Irp1�/� mice with iron

deficiency, and we found that deletion of Irp1 increased HIF2a

expression, which in turn stimulated EPO and endothelin-1

expression, leading to polycythemia, pulmonary hypertension,

and early sudden death from hemorrhage.

RESULTS

Irp1–/– Mice on Low-Iron Diet Die Early of Abdominal
Hemorrhages
To challenge the mice with iron deficiency, we maintained the

wild-type (WT) and Irp1�/� mice (15–18 per group) on a low-

iron diet for up to 24 months. We found that the Irp1�/� mice

on the low-iron diet were prone to sudden death when they

were as young as 3 months of age (Figure 1A, see Figure S1A

online), and 50%of thesemice had died by the age of 10months.

The autopsies revealed gross abdominal hemorrhages as the

presumed cause of death for almost all of the Irp1�/� mice that

diedwhile on the low-iron diet (Figure 1B). To further characterize

the causes of sudden death, we evaluated the iron status and

tissue pathology of Irp1�/� mice. Compared with their WT coun-

terparts, Irp1�/� mice had low serum iron levels (Figure 1C),

lower transferrin saturations (Figure 1D), and low stainable

nonheme iron in tissues such as spleen and bone marrow (Fig-

ure 1E, Figure S1B), suggestive of systemic iron deficiency.

However, low dietary iron uptake was not the cause of iron defi-

ciency in Irp1�/� mice, as the intestinal iron uptake machinery

was functional and responsive (Figures S1C–S1E).

Irp1–/– Mice Develop Polycythemia with Extramedullary
Erythropoiesis
To determine whether abnormal erythropoiesis was responsible

for the abdominal hemorrhages that caused early death, we
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evaluated complete blood counts of Irp1�/� mice. Strikingly,

hematocrits of Irp1�/� animals were elevated on the normal

diet and increased further, to as high as 65% in Irp1�/� mice,

on the low-iron diet (Figure 2A). The hematocrits were also

increased in young Irp1�/� animals (Figure S2A). RBC and hemo-

globin levels were higher in Irp1�/� mice, whereas MCV and

MCH levels were lower, consistent with systemic iron deficiency

in Irp1�/� mice (Table S1). Extramedullary erythropoiesis in-

creased in Irp1�/� mice, especially in the mice maintained on

a low-iron diet, as evidenced by expansion of splenic red pulp

(Figure 2B), gross splenomegaly (Figure 2C, Figure S2B), and

increased percentages of Ter119-positive immature erythroid

cells as assessed by fluorescence-activated cell sorting

(FACS) analysis (Figure 2D). We did not see evidence for an

expansion of hematopoiesis in bone marrow cross-sections of

Irp1�/� mice (Figure S2D). Though the spleen showed less ferric

nonheme iron in histologic stains (Figure 1E), total splenic iron

measured by ICP-MS was higher in Irp1�/� mice on the normal

diet (Figure S2C), suggesting that splenic iron was mainly incor-

porated into heme. Thus, increased diversion of iron for

expanded erythropoiesis likely caused systemic iron deficiency,

as evidenced by low serum transferrin saturations and low tissue

iron stains (Figures 1C–1E).

To determine the cause of polycythemia in Irp1�/� mice, we

analyzed levels of EPO and observed that both serum EPO (Fig-

ure 2E) and EPO mRNA levels in kidney (Figure S2E) were

significantly increased in Irp1�/� mice, especially in mice on

the low-iron diet. Because EPO is a known transcriptional target

of HIF2a (Semenza, 2012), we assessed the HIF2a protein levels

in renal lysates of WT and Irp1�/� animals (Figure 2F) and

observed that HIF2a protein levels were increased in the EPO-

producing interstitial renal fibroblasts (Pan et al., 2011) of

Irp1�/� mice, particularly in the mice on low-iron diet (Figure 2G,

Figure S2F). Since the HIF2a transcript is a known Irp1 target

(Sanchez et al., 2007; Zimmer et al., 2008), and HIF2a mRNA

levels remained unchanged (Figure S2G), we hypothesized that

loss of Irp1 allowed unrepressed translation of HIF2a in intersti-

tial fibroblasts, which activated expression of HIF2a target genes

including EPO, and thereby increased red blood cell (RBC)

production, causing polycythemia (Figure 2A) and redistribution

of iron from tissues to developing erythroid cells (Figure 1E).

Irp1–/– Mice Develop Pulmonary Hypertension
Since high hematocrits stress cardiovascular function, we eval-

uated the potential contribution of cardiac disease to the pheno-

type of sudden death with cardiac ultrasound. Abnormal motion

of the interventricular wall during systole in Irp1�/� animals sug-

gested that there was pulmonary hypertension (Figure 3A, Movie

S1). There was also hypertrophy of the cardiac walls (Figures 3B

and 3C). Systolic ejection fractions did not change in Irp1�/�

mice, indicating normal cardiac contractility (Figure S3A).

Catheterization of the right ventricle revealed that pulmonary

pressures were significantly elevated in Irp1�/� animals at both

3 and 12 months of age (Figure 3D) but did not increase further

in Irp1�/� mice on low-iron diet, in contrast to the polycythemic

response. At autopsy, areas of fibrosis and cardiomyocyte

degeneration were present throughout the heart (Figure 3E, Fig-

ure S3E). However, discernible changes in the pulmonary vascu-

lature (Figures S3B and S3C) and thromboses were rarely
c.



Figure 1. Reduced Life Expectancy of Irp1–/– Mice Is Exacerbated by Iron Deficiency

(A) Survival curves for mice with indicated genotypes and diets.

(B) Image of a 3-month-old low-iron-diet Irp1�/� mouse that died from abdominal hemorrhage in the perinephric area (white arrows).

(C andD) (C) Serum iron and (D) transferrin saturation in 1-year-old normal diet (N) or low-iron diet (L) mice (n = 5 per group) showing iron deficiency in low-iron-diet

Irp1�/� mice.

(E) Representative Prussian blue staining of spleen and bone marrow of WT and Irp1�/� mice maintained on normal (N) or low-iron (L) diets showing low ferric

nonheme iron stores in Irp1�/� mice (n = 4–5 per group). Data are represented as mean ± SD. See also Figure S1.
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Figure 2. Irp1–/– Mice Have Polycythemia and Enhanced Extramedullary Hematopoiesis, High Serum EPO, and Elevated Renal HIF2a

Expression

(A) Hematocrits of 1-year-old animals as determined by capillary tube centrifugation were significantly higher in Irp1�/� mice on both normal and low-iron diets.

(B) Representative H&E staining of spleens from WT and Irp1�/� mice on normal (N) or low-iron (L) diets showed increased red pulp and diminished white pulp

(WP) in Irp1�/� mice.

(C) Spleens of 1-year-old mice of iron-starved Irp1�/� mice were significantly larger than in WT mice, demonstrating splenomegaly in Irp1�/� animals maintained

on the low-iron diet.

(legend continued on next page)
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observed (data not shown). Notably, the low-iron diet did not

induce pulmonary hypertension or cardiac hypertrophy of the

WT mice. Moreover, the resistance and tissue damping of

Irp1�/� lung measured by FlexiVent were significantly lower (Fig-

ure S3D), and the oxygen and carbon dioxide tensions in arterial

blood of Irp1�/� were normal (results not shown), suggesting

that the pulmonary functions of Irp1�/� mice are within the

normal range.

Pulmonary Hypertension in Irp1–/– Mice Was Associated
with High Expression of HIF2a in Pulmonary Endothelial
Cells and Transcriptional Activation of Endothelin-1
As abnormally high HIF2a expression has been implicated in the

pathogenesis of polycythemia (Formenti et al., 2010) and pulmo-

nary hypertension (Hickey et al., 2010), we evaluated the ex-

pression of HIF2a in the pulmonary vascular system. Although

immunohistochemistry and immunoblots of total lung lysates

did not reveal reproducible increases in HIF2a protein levels

(data not shown), we found increased HIF2a expression in

specific cells of other tissues such as kidney (Figure 2G) and

spleen (Figure S4A). Moreover, in primary pulmonary endothelial

cells isolated from WT and Irp1�/� animals, and cultured at low

oxygen tensions, HIF2a protein levels increased significantly in

Irp1�/� cells (Figure 4A) cultured under both normal and low-

iron conditions, whereas mRNA levels did not increase (Fig-

ure S4B). Endothelin-1, a HIF target and potent vasoconstrictor,

has been implicated in the pathogenesis of pulmonary hyperten-

sion, tissue hypertrophy, and fibrosis (Shao et al., 2011). We

found that endothelin-1 expression significantly increased in

Irp1�/� pulmonary endothelial cell lysates and cell media (Fig-

ure 4B, Figure S4C) but did not increase upon treatment with

the iron chelator, desferrioxamine (Dfo). Endothelin-1 also

increased in serum (Figure S4D) and lung tissue of Irp1�/�

mice at 3 months of age, as determined by ELISA (Figure 4C)

and mRNA quantification (Figure 4D), and also at 12 months of

age (Figure S4E). As observed in primary pulmonary endothelial

cells (Figure 4B), endothelin-1 expression did not increase in the

lung tissue lysates of low-iron-diet Irp1�/� animals (Figure 4E),

possibly explaining why pulmonary hypertension was not exac-

erbated by the low-iron diet. Expression of other known HIF

targets also increased (Figures S4F–S4I), including Aldoa,

a key glycolytic enzyme; Cxcl12, a chemokine involved in in-

flammation; Bnip3, a proapoptotic factor; and Retnla, also

known as Himf (hypoxia-induced mitogenic factor), a member

of the resistin family proposed to drive vascular remodeling

and pulmonary hypertension in amousemodel of hypoxia-driven

pulmonary hypertension (Hickey et al., 2010). In contrast, HIF1a

protein levels did not change in Irp1�/� pulmonary endothelial

cells (Figure 4A), indicating that the major prolyl hydroxylase-

dependent HIF degradation pathway was not altered in Irp1�/�

endothelial cells (Kaelin and Ratcliffe, 2008). Therefore, changes

in HIF2a expression occurred in the absence of transcriptional
(D) Representative flow cytometric analyses of splenic cell populations from W

increase of Ter119+ erythroid precursors in Irp1�/� mice.

(E) Serum EPO levels measured by ELISA were increased in Irp1�/� mice, partic

(F) Immunoblot analysis of nuclear fractions from kidney lysates (n = 5 per g

expression in Irp1�/�mice that increased on the low-iron diets. Arrows point to int

expression. Data are represented as mean ± SD. See also Figure S2.
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changes or changes in degradation, implying that the loss of

translational repressor activity caused by loss of Irp1 was the

major factor that drove increased HIF2a expression.

Differences in Tissue-Specific Expression Levels of Irp1
and Irp2 Explain Why Irp1–/– Mice Develop Polycythemia
and Pulmonary Hypertension, whereas Irp2–/– Mice
Develop Neurodegeneration
The two major phenotypic features of Irp1�/� animals reported

here, namely polycythemia exacerbated by iron deficiency and

associated with abdominal hemorrhage, and pulmonary hyper-

tension associated with cardiac fibrosis, occurred respectively

in two tissues, kidney and lung, that contained cells in which

HIF2a expression increased markedly as a result of loss of Irp1

translational repressor activity. Notably, these phenotypes

were not observed in Irp2�/� animals (data not shown). To

explore why Irp2�/� mice lacked these phenotypes, we tested

whether either Irp1 or Irp2 contributed to regulation of HIF2a

expression in Irp2�/� or Irp1�/� mouse embryonic fibroblast

(MEF) cells (Figure 5A), and we concluded from our results that

both Irp1 and Irp2 can contribute to regulation of HIF2a expres-

sion. Then we compared relative contributions of Irp1 and Irp2 to

total IRE-binding activity in several different tissues and cell

lines. Notably, there was very little contribution from Irp2 in

kidney or lung tissue (Figure 5B), whereas there was consider-

able contribution from Irp2 in brain, as previously reported

(Meyron-Holtz et al., 2004a; Meyron-Holtz et al., 2004b). In

Irp1�/� pulmonary endothelial cells, there was almost no detect-

able IRE binding activity (Figure 5C), even when cells were iron

deprived, whereas Irp2 binding activity was readily detected in

Irp1�/� embryonic fibroblasts (MEFs). These findings indicated

that pulmonary endothelial cells depend almost exclusively on

Irp1 to regulate the translation or stability of IRE-containing

transcripts.

DISCUSSION

The polycythemia and systemic iron deficiency that developed in

Irp1�/� mice reveal that Irp1 plays a pivotal role in balancing

erythropoiesis and systemic iron homeostasis. As the master

regulator of EPO expression, HIF2a was previously known

to be regulated by hypoxia, anemia, and iron status through

PHD2/vHL-mediated degradation (Gale et al., 2008; Smith

et al., 2008; Bond et al., 2011). Here, we established that Irp1-

mediated translational control plays a previously unrecognized

critical role in regulation of HIF2a expression, and loss of Irp1

activity has serious physiological consequences.

Under hypoxic, anemic, and iron-deficient conditions, HIF2a

protein stabilization induces EPO expression, which increases

production of RBCs in a process that consumes large amounts

of iron. When erythropoiesis consumes enough iron to cause

nonerythroid tissue iron deficiency, synthesis of the iron sulfur
T and Irp1�/� mice separated with antibodies to CD71 and Ter119 showed

ularly in those on the low iron diet (n = 5–7 per group).

roup) and (G) renal immunohistochemistry showed increased HIF2a protein

erstitial fibroblasts in which intense dark purple stain indicates increased HIF2a

etabolism 17, 271–281, February 5, 2013 ª2013 Elsevier Inc. 275



Figure 3. Irp1–/–Mice Developed Pulmonary

Hypertension and Cardiac Fibrosis

(A) Representative cardiac ultrasound images

showed abnormal motion of the interventricular

septum (IVS) (arrows) during the cardiac cycle.

The IVS flattened and was pushed inward into the

left ventricle (LV) chamber at the end of systole,

giving the LV a D-shaped appearance in the

low-iron-diet Irp1�/� mice, suggesting that right

ventricular (RV) pressure was high, whereas

the IVS maintained a normal concave shape

throughout systole in the WT mice on low-iron

diets (n = 5 per group).

(B) In representative parasternal long axis views of

the left ventricle, the IVS and posterior walls (PW)

of the left ventricle were hypertrophied in the iron-

starved Irp1�/� mice compared with the iron-

starved wild-type mice (n = 5 per group).

(C) Representative parasternal short axis M mode

of the left ventricle demonstrated significant

hypertrophy of the anterior (AW) and posterior

walls (PW) in Irp1�/� mice on low-iron diets (n = 5

per group).

(D) Right ventricular (RV) pressure measured by

catheterization of lightly anesthetized 3-month

and 1-year-old WT and Irp1�/� mice showed

significantly elevated pressures in Irp1�/� mice.

Data are represented as mean ± SD (n = 3 per

group).

(E) Representative H&E staining of hearts fromWT

and Irp1�/� mice on normal and low-iron diet

showed extensive fibrosis in Irp1�/� mice, though

cardiac function was not compromised (see text).

See also Figure S3, Movie S1.
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cluster of Irp1 is decreased, and Irp1 converts to the apopro-

tein form that binds to IREs. Apo-Irp1 represses HIF2a

translation, decreases EPO production, and thereby diminishes

RBC production (Figure 6). Through this Irp1/HIF2a-dependent

feedback mechanism, the body balances erythropoietic

activity and systemic iron availability to ensure that high RBC

production in iron-deficient animals does not deplete iron stores

in tissues such as the heart, brain, and kidneys and compromise

crucial cellular functions such as mitochondrial respiration. In

Irp1�/� mice, derepression of HIF2a translation increases

HIF2a protein levels, which stimulates EPO expression, which

in turn drives red cell production and concomitant systemic

iron deficiency. Moreover, iron deficiency can further stabilize

HIF2a protein levels by diminishing activity of the iron-dependent

prolyl hydroxylases involved in its degradation and can thereby
276 Cell Metabolism 17, 271–281, February 5, 2013 ª2013 Elsevier Inc.
exacerbate the polycythemia further

(Percy et al., 2006; Kaelin and Ratcliffe,

2008). An increase in the total red cell

volume can increase the blood viscosity

and resistance in vascular tissues, and

can thereby endanger the cardiovascular

system. As shown in the model in Fig-

ure 6, we propose that the extremely

high hematocrits of Irp1�/� mice on a

low-iron diet contribute to sudden death

from abdominal hemorrhages, perhaps
because the high viscosity leads to localized blood pressure

increases. Thus, Irp1�/� mice represent a unique model in which

iron deficiency exacerbates a mild polycythemia rather than

causing anemia, and in which iron supplementation partially

reverses the polycythemia. Irp1�/� mice reveal that the

anemia of iron deficiency normally results from a restriction of

EPO production mediated by renal Irp1, which represses

HIF2a translation and EPO expression when the kidney is iron

deficient.

Irp1�/�mice develop pulmonary hypertension, and pulmonary

endothelial cells represent another tissue in which Irp1 appears

to play a dominant role. Since the pulmonary endothelial cells

represent a small fraction of the total population of cells in the

lung tissue and they form a thin cell layer covering the vascular

lumen, we did not consistently detect increased HIF2a



Figure 4. Pulmonary Hypertension in Irp1–/– Mice Was Associated with High Expression of HIF2a in Pulmonary Endothelial Cells and

Transcriptional Activation of Multiple Targets

(A) HIF2a protein expression increased in the nuclear fractions of Irp1�/� pulmonary endothelial cells relative to WT pulmonary endothelial cells isolated from

mice, cultured at 1% oxygen, and treated (for 15 hr) with or without the iron chelator, desferrioxamine (Dfo,100 mM), whereas HIF1a protein levels remained

unchanged.

(B) Endothelin-1 levels (measured by ELISA) in the lysates of pulmonary endothelial cells isolated fromWT and Irp1�/�mice and cultured at 1% oxygen (n = 6 per

group).

(C) Endothelin-1 levels in lung lysates of 3-month-old normal diet mice measured by ELISA (n = 5–6 per group).

(D) Endothelin-1 mRNA levels in lungs of 3-month-old normal-diet mice.

(E) Endothelin-1 levels in lung lysates of 1-year-old normal and low-iron-diet mice measured by ELISA (n = 5 per group). Data are represented as mean ± SD.

See also Figure S4.
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expression in western blots or immunohistochemistry. However,

we cultured primary pulmonary endothelial cells and found that

HIF2a was significantly increased in primary pulmonary endo-

thelial cells from Irp1�/� mice. Increased HIF2a expression

was also confirmed by the expression of some well-known

HIFa targets including the potent vasoconstrictor, endothelin-

1. Endothelin-1 expression is significantly increased in Irp1�/�

mice and likely plays a major role in the pathogenesis of pulmo-

nary hypertension. Endothelin-1 is known to bind to endothelin-1

receptor type A (ETAR) on smooth muscle cells in the vascular

wall and to induce the contraction of blood vessels (Shao

et al., 2011), leading to increased pulmonary hypertension, as
Cell M
we observed. Endothelin-1 also binds to ETAR on cardiomyo-

cytes and fibroblasts and induces their proliferation, leading to

cardiac hypertrophy and fibrosis (Thorin and Clozel, 2010). The

pulmonary hypertension may also contribute to the cardiac

hypertrophy by increasing the workload of the heart as it works

against high resistance in the pulmonary vasculature. The spon-

taneous pulmonary hypertension of Irp1�/� mice warrants

further investigation.

An important role for HIF2a in development of polycythemia

and pulmonary hypertension was recently reported in a mouse

model of Chuvash polycythemia (Hickey et al., 2007, 2010). In

Chuvash polycythemia patients, the vHLR200W mutation leads
etabolism 17, 271–281, February 5, 2013 ª2013 Elsevier Inc. 277



Figure 5. Irp1 Is the Major Contributor of IRE-Binding Activity in Kidney and Lung Tissues and in Pulmonary Endothelial Cells

(A) HIF2a western with nuclear fractions of Irp2�/�, WT, and Irp1�/� MEF cells showed that HIF2a expression increased equally upon loss of either Irp1 or Irp2.

Data (n = 5 per group) are represented as mean ± SD.

(B) IRE-binding activity assays of kidney, lung, and forebrain lysates of normal-diet (N) and low-iron-diet (L) WT and Irp1�/� mice showed that most of the

IRE-binding activity in kidney and lung tissues was contributed by Irp1, whereas Irp1 was not the major contributor of IRE-binding activity in brain.

(C) IRE binding activity and TfR1 western blots of WT and Irp1�/� mouse pulmonary endothelial cell lysates and MEF cell lysates in the absence and presence of

100 mM Dfo showed that there was very little contribution from Irp2 to the total IRE-binding activity in pulmonary endothelial cells both at normal and low-iron

conditions (left lanes), whereas Irp2 was readily detectable in MEFs (right lanes).
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to highly expressed HIF2a protein, which stimulates EPO

production and polycythemia, and also promotes increased en-

dothelin-1 expression and pulmonary hypertension in the lungs

(Sable et al., 2012). In a Chuvashmousemodel carrying the iden-

tical mutation as human patients, mice were protected from

developing pulmonary hypertension by heterozygous deletion

of HIF2a, whereas HIF1a deletion did not prevent pulmonary

hypertension and vascular remodeling, supporting the idea

that HIF2a was pivotal in the pathophysiology of polycythemia

and pulmonary hypertension in the mouse model, and by infer-

ence, in the Chuvash patients. As in Irp1�/� mice, Chuvash

patients also show decreased serum iron levels and transferrin

saturation, supporting the notion that iron redistributes into

RBC production. The HIF2a heterozygous mice were also previ-

ously shown to have resistance to pulmonary hypertension

caused by chronic hypoxia, supporting the essential role of

HIF2a in this process (Brusselmans et al., 2003). Moreover, the

HIF2a locus was recently implicated as being important in

successful adaptation to chronic hypoxia at high altitude (Big-

ham et al., 2010; Yi et al., 2010). Irp1�/� mice confirm the central

role of HIF2a in regulating erythropoiesis and pulmonary hyper-

tension, emphasize the importance of Irp1 in controlling

HIF2a expression, and also suggest a potential treatment for

HIF2a-related diseases including Chuvash polycythemia. Phar-

maceutical activation of the IRE binding activity of Irp1 by chem-

icals such as Tempol (Ghosh et al., 2008) or nitric oxide could

potentially repress HIF2a translation and alleviate the polycy-
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themia and pulmonary hypertension in patients with problems

in the Irp/HIF2a axis.

In conclusion, our results in Irp1�/� mice show that Irp1 plays

an important function in regulating erythropoiesis and maintain-

ing balance with systemic iron status, and the regulation of Irp1

on HIF2a translation represents an important aspect of fine-

tuning of HIF2a expression in physiology. Since human genomes

were recently shown to contain at least 20 loss-of-functionmuta-

tions per genome (MacArthur et al., 2012), and Irp1�/� mice

survive to adulthood, we suggest that loss-of-function mutations

of Irp1 may underlie previously unexplained pulmonary hyper-

tension and/or polycythemia in some patients.

EXPERIMENTAL PROCEDURES

Mice

Irp1�/� animals were generated by targeting Aco1 (Irp1), propagated by

breeding, and genotyped by Southern blotting using gene-specific probes

as previously described (Meyron-Holtz et al., 2004a). WT and Irp1�/� mice

used in this study have a mixed genetic background consisting of 129S4/

SvJae and C57Bl/6. The mice were weaned 3–4 weeks after their birth. Imme-

diately after weaning, mice were maintained on a diet either containing 3.7 ±

0.9 (measured by ICP-MS) mg iron/kg chow (low-iron diet) from Harlan Teklad

or normal diet containing 143 ± 18 mg iron/kg (measured by ICP-MS) chow

(normal diet). Experiments with blood and tissues were performed with

1-year-old mice unless otherwise noted. Whenever possible, siblings were

used in matched study sets to minimize phenotypic variation due to genetic

background. Mice of different genotypes and diets were age and gender

matched for statistical comparisons. All the mouse experiments were done
c.



Figure 6. Model for the Molecular Pathogenesis of Polycythemia and Pulmonary Hypertension in Irp1–/– Mice

In renal interstitial fibroblasts and pulmonary endothelial cells, where Irp1 is the predominant IRE-binding protein, Irp1 deficiency results in increased HIF2a

expression through derepression of HIF2a translation. In renal interstitial fibroblasts, HIF2a induces high expression of EPO, which promotes increased RBC

production and consumption of high amounts of iron, thereby causing iron deficiency in nonerythroid tissues. Importantly, the tissue iron deficiency can stabilize

HIF2a protein further and exacerbate the polycythemia. The systemic iron deficiency and high hematocrits probably stress the cardiovascular system and lead to

sudden death from hemorrhages. In pulmonary endothelial cells, elevated expression of HIF2a leads to increased endothelin-1 (ET-1) expression. By binding to

ETAR, ET-1 induces the proliferation and contraction of vascular smoothmuscle cells, resulting in pulmonary hypertension. ET-1 also induces cardiac fibrosis and

hypertrophy when it binds to ETAR. HIF2a also drives increased expression of other HIFa targets, including Aldoa, Cxcl12, Bnip3, and Retnla, and their potential

contributions to pulmonary hypertension remain to be investigated in Irp1�/� mice.
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following protocols approved by the NICHD Animal Care and Use Committee

and met NIH guidelines for the humane care of animals.

Hematocrit Measurements

Approximately 100 ml of blood was harvested in to a heparin-coated tube (BD

microtainer tubes with lithium heparin) from each mouse by mandibular

method. Hematocrit tubes were filled with blood to three-quarters full by

capillary action, sealed, and centrifuged for 5 min in a microhematocrit cen-

trifuge (LW Scientific). The hematocrit was measured with the help of a hemat-

ocrit reader.

CBC Measurement

Blood was drawn from mice by mandibular method or by cardiac puncture in

deeply anesthetized mice prior to euthanizing. CBCs were performed on a

Hemavet 1500 (Drew Scientific, Dallas, Texas) analyzer.

Intracardial Pressure Measurements

Intraventricular pressures were measured invasively by using a microtip

pressure transducer catheter connected to an electrostatic chart recorder

(Millar Instruments, Houston). The mice were anesthetized with 1%–3% iso-

flurane, and the right external jugular veins were cannulated. For each mouse,

the catheter was advanced to the right ventricle. Correct placement was veri-

fied according to RV pressure curve, and the pressure and volume tracings

were recorded. Body temperature of the mice was maintained between

37�C and 38�C, and the data were recorded using LabChart software (AD

Instruments, Colorado Springs). This was a nonsurvival procedure. Animals

were euthanized, while under anesthesia, by cervical dislocation verified by

thoracotomy, or by exsanguination under anesthesia verified by thoracotomy.

Echocardiography

Transthoracic echocardiography was performed with 1-year-old mice with

a high-frequency ultrasound system (VisualSonics, Vevo 2100). All images

were acquired using a MS-400 transducer (VisualSonics) with a center oper-

ating frequency of 30 MHz, and broadband frequency of 18–38 MHz. The axial

resolution of this transducer is 50 mm, and the footprint is 20 mm 3 5 mm. 2D

imageswere obtained formultiple views of the heart. Mmode images of the left
Cell M
ventricle were collected from the parasternal short axis view at the level of the

midpapillary muscles and obtained by rotating the probe 90� clockwise from

the parasternal long axis view. From the M mode images the LV systolic and

diastolic posterior and anterior wall thicknesses, as well as end systolic and

end diastolic internal LV chamber dimensions (LVIDs, LVIDd), were measured

using the leading edgemethod. The LV functional value of ejection fraction (EF)

was calculated from chamber dimension measurements through system soft-

ware as follows: %EF = 100 ((LV vol;d � LV vol;s)/LV Vol;d) where LV vol;d =

((7.0/(2.4 + LVID;d)) 3 LVID;d3 and LV Vol;s = ((7.0/(2.4 3 LVID;s)) 3 LVID;s3.

Flexivent Procedure for Measurement of Pulmonary Function

To measure lung mechanics, mice were anesthetized, and a cannula was

inserted into the trachea. The mice were then attached to the Scireq FlexiVent

system and were mechanically ventilated. The maintenance of tidal volume

and respiration rate were controlled (150–200 bpm, 7–9 ml/kg, PEEP 3 cm

H20). A few brief sighswere given to themouse to determine lung volume infor-

mation but did not exceed 25 cm H20. After that, the mice were euthanized

while under anesthesia.

Pulmonary Vessel Thickness Assessment

Quantification of the pulmonary vascular media and intima thickness was per-

formed as previously described (Graham et al., 2010).

Immunohistochemistry

Staining for HIF2a was performed following previously published (Jeong and

David, 2006) protocol using rabbit anti-HIF2a antibody (IHC World). Sections

were analyzed using a bright-field microscope (Nikon Eclipse E600).

Fluorescence-Activated Cell Sorting

Freshly isolated spleens were gently poked in cold PBSwith forceps to release

the cells, and the cell suspensions were filtered with a cell strainer to generate

single-cell suspensions. The cells were washed in PBS and resuspended in

PBA buffer (1% bovine serum albumin, 0.1% sodium azide in PBS [pH 7.4]).

Cells (1 3 106) were incubated with FITC-labeled rat anti-mouse CD71 and

PE-CY7 labeled rat anti-mouse TER119 antibodies (BD PharMingen) in PBA

buffer at 4�C for 30 min and then were analyzed by FACS on BD FACS Calibur.
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Erythropoietin and Endothelin-1 Measurement by ELISA

EPO and endothelin-1 were measured by ELISA kit (R&D Systems) according

to the manufacturer’s protocol. The lung lysates were prepared in RIPA buffer

(50 mM Tris, 150 mM NaCl, 0.1% SDS, 0.5% Na.deoxycholate, 1% Triton

X-100) and diluted 100 times before being measured by ELISA.

Measurement of Total Serum Iron and Transferrin Saturation

Serum iron and unsaturated iron-binding capacity (UIBC) were measured in

nonhemolyzed mouse serum using a Pointe Scientific (Lincoln Park, MI)

Iron/TIBC Reagent Set following the manufacturer’s instructions. Transferrin

saturation was calculated from measured serum iron and UIBC.

Measurement of Iron Concentration in Spleen

Animals were deeply anesthetized, and blood was removed by extensively

perfusing PBS through the hearts. Spleens were harvested and immediately

snap frozen in liquid nitrogen. Total iron concentrations were measured by

inductively coupled plasma mass spectroscopy (ICP-MS) as described (Kim

et al., 2009).

Cell Culture

For pulmonary endothelial cells, endothelial cells from lungs of WT and

Irp1�/� mice were isolated following the method of Sobczak et al. (Sobczak

et al., 2010). Lungs from three 8-day-old WT and Irp1�/� pups were used for

isolation of pulmonary endothelial cells. The cells were grown at 1% oxygen

and harvested for experiments when they became about 80% confluent.

MEFs of 13-day-old embryos were isolated and cultured from WT, Irp1�/�,
and Irp2�/� mice as previously described (Meyron-Holtz et al., 2004a,

2004b).

RNA Mobility-Shift Assays

Gel retardation assays were performed as previously described (Meyron-Holtz

et al., 2004a) with lysate containing 10 mg of total protein.

Western Blotting and Antibodies

Protein analysis was carried out as previously described (LaVaute et al.,

2001). HIF1a and HIF2a westerns were performed with nuclear fractions

separated following the protocol of ‘‘Active Motif’’ (http://www.activemotif.

com/) from tissues and cells. HIF2a antibody (affinity-purified goat anti-

human) was from R&D Systems, and a final concentration of 1.0 mg/ml was

used as described in R&D protocol. Purified mouse anti-human HIF1a

antibody from BD Biosciences was used at 1:1,000 dilution. A mouse mono-

clonal Tfr1 antibody from Zymed was used at 1:2,000 dilution. Western blots

were treated with secondary peroxidase-conjugated bovine anti-goat IgG

antibody from Santa Cruz Biotechnology, Inc. or sheep anti-mouse IgG anti-

body from GE Healthcare at 1:1,000 and 1:2,000 dilutions, respectively.

HIF1a and HIF2a western blots were developed using supersignal west femto

maximum sensitivity substrate (Thermoscientific). All other western blots

were developed using supersignal west pico chemiluminescent substrate

(Thermoscientific).

Quantitative Real-Time PCR

Total RNA was prepared with TRIzol reagent (Invitrogen), cDNA was prepared

with High Capacity cDNA Reverse Transcription kit (Applied Biosystems) with

2 mg total RNA. Quantitative real-time PCR (qRT-PCR) experiments were per-

formed with SYBR Green PCR master mixture (Applied Biosystems). The

primers for DMT1, FPN1, Dcytb, hepcidin, endothelin-1, EPO, HIF1alpha,

HIF2alpha, ALDOA, CCXL12, Bnip3, Retnla, and actin are shown in Table

S1. The results were normalized against actin levels.

Statistical Analyses

Where applicable, data are expressed as the mean ± standard deviation.

Pairwise comparisons between two groups were analyzed using the unpaired

Student’s t test. Analyses of multiple groups were performed using two-way

ANOVA. p values of less than 0.05 were considered statistically significant.

For statistical analysis of mouse survival time, survival curves were plotted

using the Kaplan-Meier method and evaluated by log-rank test using the

XLSTAT software package from Addinsoft.
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